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to simulate the effect of a right-handed fermion coupling to the gauge field Tlwt~fgfeth~0 (tit"I: odel for studies in anomalous gauge theories [8]. The most interesting recent development 
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is probably the advent of the minimal CSM, where a chiral fermion couples to the gauge 

field [9,10). The seemingly negligible difference from the original formulation [4,81, i.e. 

the absence of a free right-handed fermion, has a surprisingly grave effect. Standard 

bosonization technique is no longer applicable, and one has to apply chiral bosonization 

[11,121. Strictly speaking this is also the only acceptable way of quantizing the original CSM 

as defined in [4]. Namely, the conventional bosonization made possible by the presence 

of the right-handed fermion introduces superfluous degrees of freedom in the effective 
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Twenty years ago Gross and Jackiw [11 showed that an asymmetric fermion content 

and the ensueing anomaly renders a gauge theory inconsistent and/or nonunitary. Only 

very recently has it been realized that their proof rests on an incorrect application of the 

Faddeev-Popov procedure [21. This scrutiny of an apparently settled issue came about with 

ideas of Faddeev and Shatashvili [31 concerning the possibility of consistently quantizing 

anomalous models, and the demonstration by Jackiw and Rajaraman [41 that the chiral 

Schwinger model (CSM) is an appropriate example. Here a Dirac fermion couples chirally 

to an abelian gauge field in (1+1) space-time dimensions (2d). One should expect an 

anomalous breakdown of the chiral gauge symmetry upon quantization. Howevert the 

anomaly converts usually unphysical gauge degrees of freedom into physical ones, and 

thereby restores the symmetry. One ends up with a consistent quantum solution, which is 

also unitary in a limited sense [41. 

The idea of an anomaly generating new physical degrees of freedom has already made a 

first appearance in Polyakov'. approach towards 2d quantum gravity [5). In fact this gravity 

is completely induced by the Weyl anomaly. But the quantization of the corresponding 



action. Unfortunately chiral bosonization is much harder to perform. Moreover there 

exists an ambiguity concerning the question what the correct bosonized form of the CSM 

is. Accordingly several solutions have been put forth, either based on chiral bosonization 

after Siegel [9,11] or after Floreanini and Jackiw [10,12J. 

In the present letter a new bosonized CSM is proposed. Heavy use is made of knowl

edge accumulated in the quest for defining 2d quantum gravity (5-7], in particular its chiral 

version (13,14]. We will see that the anomaly in the CSM has the effect of a "quantum 

mirror". That is to say, the quantum solution of the CSM coincides exactly with the so

lution of the Schwinger model [15], where both left- and right-handed fermions couple to 

the abelian gauge field. 

The Lagrangian of the minimal CSM reads [161 

£ =-~F;II + l/J!(2iO+ +eA+)l/J- , (1) 

which means in our conventions that a left-handed fermion couples to A+. Both l/J- and 

A+ depend only on x+ , i.e. they are purely left-moving. When l/J- is integrated out, 

Jdl/J!drp_ exp{i J~x£} = exp{iWdA1} , (2) 

we find (4J 
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[ 1 2 e ( 0_WI [A] ::;: f d x 2 -4F,w + 811' aA+A_ - A+ 0+ A+)J , (3) 

where -!F;II ::;: l(o+A- -o_A+? The parameter a is due to a regularization ambiguity. 

In order to understand its origin, let us recall that the fermionic measure is not invariant 

under the chiral gauge transformation 

eA+ -+ eA~ = eA+ + 20+8, 
(4) 

rp- -+ rp'- = exp{i8}rp_ . 

The corresponding Jacobian is calculated in the standard derivation after Fujikawa [17J 

with the help of D+ == 0+ - i ~A+ for a necessary regularization. However, in [17} the effect 
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of a so-called abelian anomaly is calculated, i.e. a breakdown of a global gauge symmetry. 

The local gauge symmetry is supposed to survive quantization. This is not true in the 

present case, and a possibility of accounting for this is to adopt a more general ansatz for 

the regularizing Dirac operator: D+ -+ D+ == 0+ - iIf(l - i)A+ + iA-} [18}. In order 

to complete the bosonization of (I), the nonlocal term in (3) has to be removed. Usually, 

one employs the relation 

exp i 2 Jd xA+ 2 0+ A+ } '" dhexp -8' d x [ ho+o_h - e- 811' e 0_ J {i J 2 2 .;;ho_A+J } . (5){ 

The kinetic term of h introduces a right-moving contribution which renders it unsuitable 

for bosonizing the left-handed fermion l/J-. Moreover, even in the case of the conventional 

CSM, where a free right-handed fermion is added to (1), this bosonization is unsatisfactory 

(10]. The only effect of such a fermion should be a constant factor to the partition function. 

In order to avoid the unwanted right-mov~ng degrees of freedom, one has to take resort to 

a form of chiral bosonization [11,12). With eA+ == 20+4> and 0_ -+ V_ == 0_ - iho+, we 

get 

exp {-8~ e 
2 J~xA+ :: A+ } '" f dhexp {2~ J~x4>o+V-4>} • (6) 

This describes a left-moving boson 4>, at the price of introducing a field h [111. In contrast to 

relation (5) h does not have a kinetic term, so that it is merely a Lagrange multiplier. The 

term 4>0+ V _4> is invariant under Siegel's transformation 84> = 80+4>, 8h = 80+h - iV_8. 

This is vital for showing that only the left-moving field 4> is physical, since h can be 

dismissed as representing gauge degrees of freedom [II). 

How can this reasoning be generalized to work for the CSM, as given by the effective 

action (3)? Obviously, the aim cannot be to express (3) by a crural boson, since the CSM 

is massive. However, one should still be able to introduce only the very minimum number 
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of new degrees of freedom by following Siegel's idea. Let us consider the action 

W2 [4>, h1 = / d2 x { 2~2 8+(V -4> - 8+h)OV:l(V -4> - 8+h) 
(7) 

- 211r (24)8'!rh - 4>8+ V-4»} , 
which has been derived from (3) by a = 2, 8_ -+ V _, eA+ == 28+4> and eA_ == 28+h [191· 

Moreover, the operator 8_V:l has been inserted in F;III' The variation of (7) under 

64> =88+4> - i8+8 , 
(8) 

6h=88+h-iV_8 

takes on a surprisingly simple form, 
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68 W2 [4>, h1l,=o = - 41r ~h . (9) 


The crucial observation to be communicated in the present letter is that the partition 

function which defines the quantized CSM, 

Z = / d4>dhexp{iW2 [4>,h]} , (10) 

is indeed invariant under (8), thanks to a highly nontrivial effect. In order to show this 

we apply work done on 2d chiral quantum gravity [13,14]. In fact, the CSM as bosonized 

above resembles the chiral gauge version [141. First 4> is transformed into a new field F, 

which is defined by 

F = V -4> - 8+h . (11) 

The partition function now reads 

Z =/ dFdhexp{iW3 [F,h]} , (12) 

with 


W3 [F, h1 = Jd2 x { 2~2 8+FOV:lF 

(13) 

1+2~ (8+FV: F- [1 + 1~] 8!hV:18+h)} 
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The term -21'/f'8'!rhV:18+h originates straightforwardly from the substitution (11). It ac

counts for the right-hand side of the anomaly equation (9), while the F-terms are invariant. 

The new contribution - 2!'/f'~hV:18+h derives from the noninvariance of the measure d4> 

under the transformation (11) into dF [141. For the partition function Z we now get 

(14)!ZI,=o = 0, 

since the noninvariance of the measure dh under (8) gives rise to yet another contribution 

to (13), 4~~~hV:18+h. This is a gravitational anomaly; the h-term in W3 has just 

the form of 2d quantum gravity in the chiral gauge, and (8) is a combined coordinate 

reparametrization and Weyl rescaling [6,141. 

There is another possibility of understanding the symmetry-restoration expressed by 

(14). The second line in (7) is, up to the coefficient, chiral gauge 2d chiral quantum gravity 

for vanishing matter central charges [141. The analogous expression in the conformal gauge 

reads [131 

W4 [<p,/} = 4~ / d2 x(<p0<p - 10f) , (15) 

where <p is the Weyl variable and I the Lorentz variable. This time it is the Weyl symmetry 

6<p = 8, 61 = 0 which is anomalously restored. We get contributions from two bosonic 

fields <p and I (9~!I'<P0<P each), and from the gauge fixing sector (-9~~<P0<P). 

So (8) is indeed a gauge symmetry of the quantized CSM, as described by the effective 

action (7). The equations of motion of the quantized fields F and h read 

1forF: (0+ :)8+V: F=0, 

and (16) 

for h: iF8+(V~)-1 [(0 + :) 8+V:IF] =O. 

We see that the h-field represents redundant degrees of freedom and can be gauged away 
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by fixing the unitary gauge, h = O. Then we are left with 

( 0 	+ ::) 0+0:1F = 0 . (17) 

Since equation (11) now reads {L 4> = F, we see that the classically massless crural field 

A+ has gained a mass, m2 = ~. Therefore one ends up with exactly the same result as if 

one had started with the vector Schwinger model [15} 

c =-~F;" +tP!(2io+ +eA+)tP- +tPl(2io- +eA_)tP+ , (18) 

and fixed the chiral gauge A_ =0 in the effective action derived by integrating over tP±. It 

looks as if one could apply the gauge condition directly to the Lagrangian. The ensueing 

crural anomaly acts like a quantum mirror, i.e. it restores the effect of the tP+-term in (18) 

on the quantum level. Stated differently, it provides an exact compensation for the degrees 

of freedom lost by the "wrongly applied gauge fixation" . 

It has to be stressed that trus new solution of the CSM has been reached by taking (1) 

as its bosonized action. This action was derived by applying certain ad-hoc assumptions, a 

drawback which is shared by prior solutions [4,8-10]. However, our solution is singled out by 

being really minimal, i.e. no superfluous degrees of freedom are introduced. It is important 

to note that this could only be achieved for a = 2, wruch makes the equivalence to the 

Schwinger model complete. If the CSM is taken as a pattern for realistic (3+1 )-dimensional 

chiral gauge theories, the present result simply means that no physical phenomenon, like 

e.g. mass generation [4}, can ever be attributed to a chiral anomaly. Its effect is not 

discernable from that of a very heavy, and therefore unvisible, crural fermion which leads 

to anomaly-cancellation. 
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