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ABSTRACT 

The primordial Universe is treated in terms of a non-perfect fluid configuration endowed 
with an anisotropic expansion. The deGennes-Land;au mechanism of phase transition acts 
as a very efficient process to provide the elimination of the previous anisotropy and to set 
the universe in the current isotropic FRW stage. The entropy produced, as a consequence 
of the phase transition, depends on the strenght of the previous shear. We suggest the 
hypothesis that the germinal perturbations that will grow into the observed system of 
galaxies occur in the anisotropic era. We present a model to deal with this idea that 
provides a power spectrum of fluctuations of the form 8~ I'V 1/(a +bk2 

). We compare this 
prediction of our model to the current knowledge on the galaxy formation process. 

Key-words: Cosmology; Anisotropy; Galaxy formation. 
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Introduction 

The standard cosmological lTIodel treats the matter content of the Universe in its very 
condensed prior era as an ideal gas. This oversimplification is Toughly responsible for 
a great part of our modern vision of the global properties of spacetime in the actual 
expanding Friedmann-Robertson-Walker (FRW) universe. However, it is also a scenario 
with several difficulties. 

Among all problems that are usually attributed to this standard model [1] there are 
two that ask for an immediate attack: 

• The existence of a singularity on the FRW cosmological metric . 

• The high degree of isotropy of the microwave background radiation (MER). 

It is not our purpose here to comment further on the question of prilnordial singularityl 
but instead we will limit our exam here only to the above second question. 

It is a rather general belief tl~at the high degree of isotropy shown at cosmological 
dimensions deserves indeed a further explanation. In the standard view, this problem 
appears as a consequence of a causal trouble, once the existence of a horizon present in 
the FRW geometry inhibits the free exchange of information throughout all the spacetime 
at the period in which the cosmic radiation starts·to become free of spurious interaction 
with the rest of all existing matter. The most fashionable solution to this, in the last years, 
the so called inflationary proposal, circunvents this difficulty by the introduction of an 
efficient mechanisln which allows the Universe to pass quickly from a very small volume to 
a larger one in a very short time, in comparison with the growing of the cosmical horizon. 
By arguments that are now well known this, in turn, avoids the above causal difficulty. We 
would like to stress that in the inflationary scenario there is no real description of a true 
mechanism of isotropization. Although the solution of the horizon problem is certainly 
a necessary condition of homogeneization, it is far froIn being suffidenL -rti"t'he present 
paper we would like to extend the 'usual framework and analyse the main 'consequences 
of assuming the presence of a non-negligible anisotropy in prior epochs. Thus, the main 
problem beconles to find an efficient mechanism to extinguish this primordial shear2. 

To circunvent such difficulty, in the last decade, the idea was set up to modify the 
sinlple description that treated the primordial matter in terms of a perfect fluid by the 
alternative assumption that it should be represented instead in terms of quantum fields. 
In the present paper we will examine another description of the matter content of the 
Universe in its early highly concentrated era. We shall see that, as a natural consequence of 
our approach, not only we can provide a solution to the problem of finding a isotropization 
mechanism but further than this, a well-desired .by-product of this solution is achieved: 
a proposal of a new mechanism for the formation of inhomogeneities in an othenvise 
homogeneous non-isotropic primordial background. 

There has been plenty of arguments in the literature that support the existence of a 

lThe interested reader may consult for instance the analysis on this in [2]. 
2We remind that some previous proposals in the early 60's [3] to treat anisotropic universes have 

stumbled precisely in the difficulty of finding such mechanism of isotropization. 
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period in which anisotropic stresses had an iIIlportant role in the cosmic past3 • This means 
that the associated matter-energy distribution responsible for the curvature of the global 
spacetime should not be represented by the 'sirnple form of a perfect fluid configuration. 
Unfortunately, it became ahnost a common sense among physicists to accept that any 
non-perfect fluid model is a rather strange treatment of the cosmic content; although it 
should be precisely the opposite that should cause surprise and mistrust. Indeed, the 
reduction to a perfect fluid, of the myriads of interactions' of particles and fields in a 
tremendously high background curvature, in the very hot early era, is temerary; and it 
seems nothing but a miracle that such a gross simplification resisted such a long period 
without further criticism. It seems worth to note that even the alternative treattnent to 
describe the main sources of the curvature of spacetime in terms of quantum or classical 
.(scalar) fields (as in the first versions of the inflationary scenario) adrnits an equivalent 
representation as a non-perfect fluid endowed with viscosity that yields the presence in 
the stress-energy tensor of a tensorial pressure IIJ-Lv, 

It has been a COITlmOn procedure in the first works on this subject to make the simple 
assumption that. the dynamical quantities (e.g. IIJ-Lv) are linearly related to the associated 
kinematical structures, e.g., the shear tensor aJ-LV' A typical case was exhibited in the 
pioneer work of Misner [3]. However it was soon recognized that such silnplification was 
of no use in solving the main problems, e.g. the isotropization of the Universe. Thus, one 
should look for a more general description [4, 5]. In the next sections we will show how 
one can proceed in this direction. 

Our analysis here is based on a previous paper [6] in which a mechanism of cosn10­
logical phase transition was presented. Although the baSic structure of such phenomenon 
is taken from the treatment of the nematic-isotropic states of matter in the standard 
deGennes-Landau model, there is an important novelty here: the control parameter, in 
the new version, is not the ternperature T, but it depends on a global property of the 
expansion4 , identified to the Hubble parameter 8 . At first sight this could appear as 
a minor modification, once 'a lot of permissible geometries display a direct relationship 
between T and 8. However, the quantity 8 belongs to the kinematical framework of 
the cosmic fluid, and as such it must 'obey certa.in conservation laws that restrain, in 
principle, its arbitrariness and impose some constraints in any evolving theory. This, on 
the other hand, should not be treated as a drawback of the uses of e as the controller 
of the distinct phases of the fluid. The reason is simple: contrary to Landau model in 
which the dependence of the phase transition on T is put by hand, and is supported by 
its consequences and not by first principles, here in our mechanism the 8-dependence is 
a direct consequence of the Stokesian nature of the cosmic fluid. . 

The n1ajor distinction of our scenario from the previous ones concerns precisely the 
treatment of the n1atter in the prior epoch. In section r.l we describe the cosmical matter 

3 Almost all analysis which claims to be a deep investigation of the exceptional state that represents 
the first few moments near the point of maximum conpensation of the universe (singular or not) have 
one point in common: they agree that the use of a perfect fluid configuration to characterize that epoch 
is nothing but a toy model. One is allowed to use it just for convenience of treatment; but it remains a 
welcome fact that it yields a good first order approximatio~ of the global properties of the universe. 

4This should not be confused with the fact that the expansion is not isotropic: the quantity that 
characterizes the anisotropic expansion is the shear that will be identified later on to the order parameter; 
the scalar of expansion e is an independent variable. 
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as a non-perfect fluid. Then we review the phenornenon of phase transition which allows 
a very efficient rnechanisrn of isotropization. The dependence of the control parameter on 
the kinematics poses some problems when dealing with the fluctuations. This is treated 
in the subsequent section, where we present the idea that perturbations ocurring in the 
previous anisotropic era could be the cause of the ·ulterior formation of large scales in­
homogeneities which are the origin of the creation of structures like the actual system of 
galaxies. Vve present a toy rnodel to show how such perturbation could be treated. \Ve 
use a simple scheme of a nen1a.tic liquid-crystal to evaluate the basic shear fluctuations. 
As a consequence of this we show that the density of contrast decays proportionally to 
e-f, in which ~ is the correlation length. This yields for the power spectrun1 of the density 
fluctuation the form S~ f'.) (A + elk2)-1. We end with section 5 in which various steps of 
the Cosnlological Program that we analyse here are described. 

1.1 Cosmic Fluid Configuration 

At the very condensed era the Universe develops viscous processes. This has been consid­
ered by many authors in a rich variety of distinct situations. Its origin may be ascribed 
either to direct matter-to-nlatter interaction (as in the l\1isner luodel [3J which treats the 
interaction of neutrino with matter as a viscous process) or by creation of particles due 
to the gravitational cosrnological field (Zeldovich) '[7]. The basic underlying symmetry of 
the geometry, related to the cosmic fluid, is usually taken to be of one of the two types: 

• Homogeneous and isotropic; 

• Homogeneous and anisotropic. 

The first case, that constitutes one of the corner-stones of the standard model, requires 
precisely a sort of very special initial condition that we are trying to avoid. Thus we start 
our analysis on'the hypothesis that the second case occurred in our universe. 

There have appeared many distinct treatments dealing with this case [8J. However, all 
these proposals suffer from the same disease: they do not provide an efficient isotropiza­
tion mechanism. This has even led some authors to turn the analysis of this problem to 
a geometrical framework [9] with generic statements that led isotropization to be consid­
ered as a miracle once they argued that the spectrum of anisotropic spatially homogeneous 
geometries ending in a Friedmannian stage has null Iueasure. Others, in an opposite posi­
tion, have claimed that isotropization is a rather trivial phenomena that can be a.chieved 
by t.he effects of an arbitrary cosmological constant [10]. 

Here we want to continue our recent proposal to deal with this problem in a new way. 
We start by the assumption that there ha.s been an epoch in which the cosTnic matter 
behaves as a non-perfect fluid to which we ascribe the property that its associated velocity 
field has a non-null shear. We shall see ill a subsequent section that such cosmic fluid can 
undergo phase transitions and pass in a continuous way from a less symmetric phase to a. 
more symmetric one; that is, it can remove its anisotropies during the cosmic evolution 
[11, 12]5. 

UThis behaviour is very similar to a liquid crystal. 
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The idea that the prirnordial Universe passed an anisotropic phase led naturally to 
the following question: is there any observable consequence of such primordial anisotropy 
that could be used, even indirectly, as a proof of the existence of such an era? As far as the 
previous analysis is concerned the negative answer to this question diminished the interest 
on such prior proposals. Here we would like to argue differently, with a positive answer 
to this question. Concorrlitantly to providing a proper Dlechanism of isotropization, we 
wjll present a new proposal that states that germinal perturbations in the coslnic fluid, 
seed of galatic structures, occur precisely in this anisotropic era. 'Ne will present a simple 
ioy-n10del in order to shuw how this rnechanism works. 

We start with the natural question: What can be said about the kinematical properties 
of the matter comoving observers? Everyone agrees in one point: that it seems reasonable 
to rnake the hypothesis that there is no primordial vorticity, once its conservation law 
troughout the evolution would be manifested into today's galaxy nlotion. The standard 
hypothesis is rnade that we can establish a global Gaussian system of coordinates, by 
the definition of a cosmical tirne. Then, one is led to a very general description of the 
Inatter, both killerrlatically and dynamically. This can be implemented by taking for the 
derivative VjjjV and for the anisotropic pressure IT PlI the generic expressions with which we 
will deal with next. We set 

(1) 

where the quantity hpll is the projector on the 3-diInensional rest-space of the comoving 
observer V P: 

hpl" == gPll - Vp ~1I (2) 

while VPVp == 1; the Hubble parameter e and the symmetric traceless shear (J'/LlI are 
defined in the usual way: 

e == Vjj- ;jj 

and 
(J'aP"== ~hPahP),Vt( .),)-~ ehaP•

2 P, 3 

We take the stress-energy tensor of the cos'mic fluid to be 

(3) 

We will consider the standard Stokesian fluid in which the anisotropic pressure depends 
only on the kinematical quantities e and (J'ij' Since IT/w is symmetric and traceless it can 
be written in the fonn: 

ilpll == fl hpll + f2 (J'pll + f3 (J' jja (J'~. (4) 

The functions fi are given by the series . 

fi - fiG + fit II + [fi2 (Il? + f~2 I2l 

+ [fi3 (11 )3 + J~3 II 12 + /;3 131 + ... (5) 

The property that il,w is traceless reduce the. arbitrariness of the coefficients, once 
they lTIUst satisfy the constraint 

(6) 
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Let us choose the four-velocity VI' = b~ and denote the spatial components by Latin 
indices running (1,2,3). The quantities Ik are the canonical invariants of the 3x3 matrix 
e~ defined by 

. . 1 . 
ej. = Uk + - e bk (7)- 3 

and are written as 

11 = T'r e~ = e (8) 

. k . k 1 
12 := Tr [ej. 8 l ] = uk Ui + 3" 8 2 (9) 

13 =Tr [ei ef e~J = .,.~.,.f .,.: +e .,.; .,.: + ~ e3 (10) 

Thus we can rewrite eq.(4) in the form 

II,w = h .,."V + /J [.,.,,~ .,.v''' - ~ .,.2 h"V1 (11 ) 

Let us restrict our analysis here to a simple case. That is, in the general form intro­
duced above in eq.(II), we will make the choice that /1 is a constant and f2 contains only 
terms linear and quadratic in the invariants I k , that is, 

(12) 

in which a, a, f3 J and '"'I are constants. Just for convenience we will redefine the constant 
a a; being a2e··. 

Let us point out that this limitation in the expansion of the anisotropic stress up to 
the third order in the parameters e and U J.'v is nothing but a matter of simplifi~ation of 
the present exposition, and it is possible to proceed further on with the present model for 
a more 'general dependence. Besides, it has been shown [6] that, as far as the mechanism 
of phase transition is concerned, this limitation is not restrictive.6 

One should wonder if the structure of the fluid that we are concerning here is not a 
very intricate one. That this is not the case can be shown by an analysis that, for instance, 
compares it with the structure of the energy-momentum tensor" of a scalar field. For this, 
in the general case, e.g. without symmetries, we must deal with an infinite series for the 
corresponding expansion of the stress-anisotropic tensor as in eq(II). 

We are now almost prepared to go into the main result concerning the isotropization 
mechanism of the above fluid configuration. However, before going into the details of this, 
let us make some very brief COlnments on the standard phase transition mechanism as it 
appeared in Cosmology during the last decade. 

6We limit our presentation here to the ca..c;e in which the primordial anisotropy is uni-axial. In order 
to take into account bi-axial phases, we must go further on in the series and consider terms up to the 
sixth power. . 
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Phase Transition in the Early Universe 

One of the most fashionable approaches in the last decade in Cosmology was the use of 
standard Landau phase transition mechanism in order to analyse some specific configura­
tions of the early universe. This appeared as related to the possible distinct behaviour of 
matter that is described in tenns of a single scalar field CPo Indeed, it has been shown by 
methods of field theory that under certain special circunstances the energy momentum 
tensor of q, can be associated to a cosmological constant. This was the result of the ap­
plication of the socaJlcd spontaneous breakdown of symmetry in the cosrnical frame. The 
origin of this procedure goes back to the suggestion to treat the effects of the surroundings 
on cP through a potential that beconles a temperature-dependent quantity. The scalar field 
itself becomes an order parameter and the temperature T the controller. In a non-static, 
e.g. expanding universe, it implies that at the conditions of thermal equilibrium, T is a 
functioQ. only of the coslTIological time t. However, in the standard uses of this mechanism 
of phase transition, such time dependence was not explicitly taken into account. This was 
not a serious drawback since it was always assumed that the whole cosmical structure 
was homogeneous and isotropic, which implies that the temperature T is a well behaved 
function only of the scale factor e. Now, if we move to the considerations of a more 
general behaviour for the cosmic fluid, e.g. as in the inclusion of anisotropies or in the 
presence of inhomogeneities, we must go beyond this simple analysis. 

The mechanism of phase transition, in the phenomenological treatment of Landau, 
depends not only on the existence of a parameter of order (to make possible the distinction 
between the different phases), but on an associated controller, which in most cases is 
identified to the temperature. 

In our present investigation, we shall turn our attention to the generalization of the 
phase transition mechanism developped by deGennes to deal with structures like, for 
instance, liquid-crystals. One has to investigate the possible states of matter by taking 
as the order parameter a tensorial quantity that characterizes the isotropy/anisotropy of 
the space. Following a procedure similar to the one used for the scalar case, deGennes 
introduces a distortion parameter, say Qij, which is responsible for the characterization 
of the symmetry of the states. Then a modification on the free-energy F as a functional 
of Qij is made. The theory follows along the same lines as in the traditional Landau case, 
by looking for the particular values of Qij that minimize the free-energy. Let us follow 
the sanle lines as it has been employed in the standard treatment of phase transition in 
the cosmological framework up to just one unique additional condition of not requiring 
the further symmetry that the space is isotropic. In this vein, we are led to apply directly 
the deGennes-Landau's approach to deal with the primordial fluid. We shall see that this 
treatment of the cosmic fluid can be responsible for a continuous change of the symmetry 
of the Universe: from a prior anisotropic to an ulterior isotropic stage. 

For a huge structure, as is the case when treating the whole Universe, the tensorial 
order parameter should be directly related to the shear of the cosmic fluid. The theory 
does not need to make Landau assumption that there exists an equilibrium temperature. 
that controls the evolution. Indeed, it has been considered a very attractive model to 
use an intrinsic geometric quantity as the true control-paranleter. The natural model 
[6] deals with the (Hubble) expansion factor e in place of the temperature. This is not 
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astonishing and could have been already used in all previous cosmological program of 
phase transition, since in the old standard model 0 is a regular well-behaved function of 
T. 

We now will examine the consequences of the condition upon which the self-gravitating 
cosrnological fluid looks for the states that minimize its free-energy [17]. We set: 

(13) 

in which IlFgTaV == m2n~1I0-Ju/. The analysis of the extrema of such free-energy yields the 
results summarized in a previous lemma [6] that for completeness, we will enunciate in 
the following subsection. 

2.1 .Generalized deGennes-Landau Cosmological Lemma 

There are three critical values for the Hubble parameter: 8 c , 8* and 8 t , that separate 
the differents stages of the Universe, increasinK the global disorder as follows: 

• 8 < 8 c : The most favourable state is an isotropic phase (I); 

• 	 8 c < 8 < 8 t : The most favourable state is the isotropic phase (I) but there is a 
local minimum corresponding to a small anisotropy (U); 

• at < 0 < 8* : The most favourable state is the anisotropic phase (U) but there is 
a local minimum corresponding to an isotropic (less favourable) phase (I); 

• a* < a : Corresponds to an anisotropic phase (U). 

The constants 0 c and 0 t can be written in terms of the variables that appear in the 
expansion of the anisotropic tensor: 

and 
* ",/2

0 t == a - 24a2p. 

I 
I 

The usual kind of substances dealt by deGennes are thermotropic: the temperature 
is the control-parameter. In the case we examine here, one can say that we treat the 
primordial Universe in analogy to such thermotropic fluids, through the direct dependence 
of our control-parameter, the Hubble constant 8, only on the temperature. I 

It should also be a matter of interest to anatyse the evolution of the entropy of the I 

Universe induced by such phase transition. Assuming that the dependence of the control 
parameter (the Hubble expansion a) on the temperature is a regular monotonic function, 
as it occurs for instance in the standard FRW model, we conclude that the variation of 
the entropy, IlS = - ~~:, is proportional to the value of square of the total shear 0-

2 at 
the mOlnent of transition to the isotropic era. Thus it follows that the contribution to 
the total entropy of the phase transition, from the anisotropic primordial Universe to the 
current isotropic FR\V geometry depends on the initial value of the shear. Based on the 
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efficiency of the deGennes-Landau mechanism described above we can contemplate the 
situation in which the actual high value of the entropy of the Universe could be related 
to the largeness of the prinl0rdial anisotropy. The scenario which we have sketched here 
seems to support such suggestion. . 

In the above description of the phase transition we do not take into account any spatial 
inhomogeneity. The Landau-DeGennes theory can go on without this knowledge. This 
seems a rather rnarvellous property of the theory, once it allows us to deal separately with 
the problems of isotropization and of the formation of structures. However, it is not out 
of reason to speculate if both questions should not be related. Let us examine how this 
unification could be treated. Before this, we would like to point out to the reader that we 
can now indeed enter in the analysis of the observable consequences of the existence of 
such era only because we have at our disposal a very efficient mechanism to remove the 
prior anisotropy. 

Structure Formation 

The observed pattern of inhomogeneities present in our Universe is generally admitted to 
be a conseque'nce of a particular set of germinal perturbations in the otherwise spatially 
homogeneous and isotropic FRW background. The crucial problem that remains unsolved 
is modelling the origin of the initial spectrum of these perturbations. Both the standard 
model and the more recent inflationary scenario assume that this perturbation occurs in 
an epoch in which any eventual primordial anisotropy had already vanished. 

How could this process be modified in our present proposal? We will try to answer 
this question by conside.ring the very natural hypothesis that takes the origin of the fluc­
tuations present in the latter isotropic and homogeneous era (the FRW geometry) as 
reminiscent of shear fluctuations, occurring at very high temperature before the annihi­
lation of the primordial anisotropy. To analyse this idea further and in order to have some 
knowledge that could guide us on this, let us see what occurs in the analogous situation 
on the conventional theory of a liquid crystal in our laboratory. 7 

Our question is thus the following: under what conditions can small fluctuations pass 
from the ordered to the disordered phase with a significant probability? That is, how can 
matter, in the homogenous and isotropic phase inherit space-time dependent fluctuations 
from primordial anisotropic perturbations? 

The answer to this question can be found by an examination of the similar behaviour 
of liquid-crystals. This treatment ~s unified by means of the phenomenological criterium 
set up by Ginzburg which, in our cosmical application, can be expressed in the following 
way. Let b..:F be the difference of the mininla of the energy densities associated to the 
anisotropic (U) and isotropic (1) states for a given temperature T. The criterium asserts 
that if in a volume X3 it is true that 

7We deal here with a simplified model; it seems worth thus to follow the standard procedure in 
conventional cosmology, by imitating well· known terrestrial 'phenomena. 
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then the fiuctu~tions c.an pass fr?m the ordered less sYl!unetric (Inore ordered) phase to 
the subsequent IsotropIC (more dIsordered) coslnological phase . 

. At this point one should be careful with the domain of validity of this inequality. We 
wI!l assume through~ut this work that this condition remains valid all the time. Only in 
tIlls case we can envIsage to associate the presence of inomogeneities in the FRW era to 
a previous anisotropic perturbation. 

In our present case the temperature, that is, the control-paralneter is transforrned 
. h ' Into t e scale factor e. In order to apply the above criterium to our scenario we Inust 
guarantee both: (i) that e can be maintained as the control-parameter (that is, it does 
not become a spatial-dependent quantity); and (ii) that the passage to the isotropic phase 
occurs in the epoch in which the corresponding value for e is sufficiently high in order to 
surpass any quantity associated to a measure of the barrier separating the isotropic and 
the anisotropic phases. In ot?er words, once the actual order parameter (the scale factor) 
is a regular function of the temperature, we see that if the fluctuations occur very ea.rly, in 
a very hot era, then the above criterium could be used, allowing the fluctuations ocurring 
in the anisotropic era to be at the origin of the ulterior process of galaxy formation. 

The question then turns to the knowledge of the inhomogeneities present at the ani­
sotropic phase. Let us explain how this can occur. Before this, however, and to simplify 
here our task, let us guarantee that we can keep using e as the true controller. 

3.1 The Control Parameter Problem 

The usual structure of phase transition in the terrestrial laboratory is controlled by the 
temperature T. In the above analogy on Cosmology for the treatment of the cosmical fluid 
that we are employing, the corresponding control-parameter is the Hubble expansion 8 
defined by the comoving observers. The internal structure of the geometrical franlework 
of Einstein's theory of gravity connects the behaviour of this parameter to the evolution 
of the remaining kinematical quantities, e.g., the shear; and to the matter content on the 
Universe. Thus before considering the schmne of fluctuations that generates the spectrum 
of density perturbation we would like to simplify our treatment by allowing e to keep its 
basic controller property. For this to be possible, one needs - as it is the case for the 
temperature in the standard treatment of fluctuations in usual nematic substances, e.g. 
liquid-crystals - to separate the quantity e from the general perturbations. In other 
words, we would like to allow the shear to becomes a space-dependent quantity and the 
corresponding general perturbation of the matter, without having any spatial dependence 
of the parameter of control 8 8 

• Only in this case our treatment can keep a complete 
equivalence with the conventional perturbation scheme on the laboratory9. 

8Recently [23] more realistic description of the phcnom;non of phase transition employed in cosmology, 
taking into account the evolution of the background geometry, has been examined. However, let us point 
out here that this dependence of the control parameter on the global time is not completelly general. 
Some aditional hypothesis on the homogeneity structure of the space is imposed. In our treatment here 
we circunvent this problem by limiting the possible processes to those in which the control parameter is 
homogeneous. 

9We note that in the general case, i.e., when e has generic fluctuations, a more sophisticated procedure 
must be used. We postpone the analysis of this generalization to a future work. 
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The kinematical quantities associated to the fluid have, besides the evolution equations 
(e. g. Raychaudhuri's equation), sonle constrai~ts that relate their corresponding spatial 
dependences. For our purposes, the equation that concern us here is given bylO: 

~e." h~ - (a"p +w"p);" hp), - a"(a,,), +w,,),) = RI''' V" h"A (14) 

in which aJ1. =VJ1. 'a va is the acceleration. The fluid has no non-gravitational interaction 
and no heat flux;' we thus set aJ1. = 0 and qJ1. = O. Besides, these quantities will not 
be activated during the perturbation. It then follows from flq.(14) and using Einstein's 
equations of General Relativity that any spatial dependence of e is associated to the spa­
tial divergence of the shear. From what has been said above the spectrum of perrnissible 
perturbation will be limited to the divergence-free perturbed shearll. 

This solves our difficulty and allows us to keep the quantity 0 as a good control­
parameter12. 

3.2 Fluctuations in the Anisotropic Era 

In the usual treatment of generation of large-scale structures in a spatially homogeneous 
Universe [14] the scale factor e does not have its spatial independence preserved under an 
arbitrary change of the metric and the matter content. Indeed, in the FRW background, 
the perturbation of the matter density 8p is given in terms of the evolution of the scale 
factor by the equation 

. 2 1- 3-X . 
60 + -0 80 = . 8p (15)

3 2 
in which a dot means derivative with respect to the global Gaussian time. 

This property is a direct consequence of the usual hypothesis that the germinal pertur­
bation that will grow into galaxies occurs in an epoch in which the Universe had already 
dissipated any eventual irregularity, like the shear, for instance. In the present model 
we propose an alternative hypothesis which states that this perturbation occurs in an 
earlier time, in which the cosmic fluid was still in the more ordered configuration, when 
the anisotropy had not disappeared completely and the geometry was not yet in its FRW 
form. 

In this case the equation that controls the behaviour of the density perturbation 6p is 
no more given by eq. (15) but instead is controlled by its generalized form 

. 2- 1- 3.\
68 + -8 68 + jj 6u J1.V 2 6p (16)3 J1.V 

order to obtain this equation one must use the non-commutativity of the covariant derivative and 
eq.(l). . 

11 We remark that the possibility of non-trivial perturbation of the density of .matter in the case of 
divergence-free shear, depends on the existence of a non-vanishing shear in the background. Indeed, it is 
a consequence of the conservation of the matter that, for instance, in FRvV isotropic background, there is 
no possibility of evolving perturbation which has a divergence-free shear. The easiest way to show this, 
in FRW background, is to develop the perturbations in terms of the spherical harmonics basis [8]. 

12Let us emphasize that this requirement is by no means an essential requirement for our model, but 
just a simplification of the problem that concerns the analysis of the evolution of the perturbations in 
the cosmical framework. 
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in which e and iJ,,~ represent the unperturbed values. 
At this point we face a fundamental question: What can be said for the fluctuated 

shear buJl.~ ? Or, in other words, what is the pattern of the germinal fluctuation of the 
shear that will cause perturbations on the matter density? 

Based on the considerations on phase transition that we analysed above let us follow 
Landau's treatment and use the standard Fourier decomposition for the density of free­
energy :F to include the perturbed terms. In the lowest-order approximation we have 

(17) 


Once :F is a scalar, besides the previous invariants given by the algebraic quantities Tr (1'2 

and T,r u3 that appears in eq (13) we rnust consider the additional derivatives terms: 
Uijjk (1'ij;k and u ii jj ukijk. We can then write 

if.. T 2 + T 3 + ij;k + (ij) 2:F == '¥ r u 'I r u e1 Uijjk u e2 U ji 	 (18) 

in which q) and 'I can be obtained from the homogeneous case. From our previous hypoth­
esis, the term on divergence of Uij, that is C2«(1'ii;j)2 does not exist, once (for the reasons we 
have pointed out before) we restrict our analysis only to divergence-free perturbations. 
The fundamental states U and I are still obtained as the minima of the unperturbed 
background (or by taking the limit el -). 0). This means that the spatjal depcndence of 
the flutuation of the shear does not modify the fundamental structure of the equilibrium 
states which is obtained by taking the thermal average in the perturbed schenle, that is, 
in the thermodynamic limit V -). 00 (sec [17]). 

To proceed.within our scenario let us present a toy model which provides a calculable 
spectrum for the density of contrast 

8p 

P 

Taking the average of the perturbed Raychaudhuri's equation we obtain 

D+ < iJJl.~ 8uJl.~ >== X< 8p > 	 (19) 

in 	which X== 1-3>' and D is a spatial constant which results from to the vanishing of the2
space fluctuation of the Hubble parameter. A further simplification of the model sets two 
hypothesis on the way this mean is to be calculated: 

• 	 Take the thermal averages for the shear; 

• 	 Use the Gaussian approximation to evaluate the two-point correlation function for 
the shear. 

The fluctuations that satisfy these conditions have been e~amirted in dcGennes'work [12, 
17]. We define 
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then 
< DW > +D = ,~ < hp > (20) 

It then follows, for the two-point correlation function 

(21) 

The right-hand side is nothing but the product of ~2 'and p2 with the galaxy-galaxy 
correlation function ~(ri) [16]. 

We are concerned with the spectrum of galaxy perturbation Dk which is nothing but the 
Fourier transformation of Dp/p. Hence it depends on the two-point correlation function 
of the shear. Applying Ginzburg's criterium we should evaluate the two-point correla­
tion function of the shear in order to obtain the corresponding spectrum of the density 
fluctuations. For simplicity, it is worth to work in the associated phase space. We set 

{Tij (k) = ~ Jd3 x{Tij (x )exp(-ikx) 

Since we limit our analysis here only to the uniaxial case we can use standard parametriza­
tion. Then, the average matrix of shear takes th~ form 

(22) 

So, the free energy, that is given by equation (l7), becomes: 

" F = 2(2~)3 Jd
3 

k(<I> + elk2) Tr ({Tij? (23) 

The mean energy is given by: 

(24) 

where, 

z = J[D81J!]exp( -f3F), 

and hW is nothing but the quantity E in the above parametrization. 
Hence, the two-point correlation function is: 

< 81J!(k)81J!(k') >= Z-l J[D81J!] 81J!(k) 8:,(k') exp( -f3F) (25) 

}4011owing a standard procedure (see Appendix B) to evaluate this quantity, we obtain: 

< 81J!(k) 81J!(k') >=" <I> 1 k
2 (26)+el ~ 

It then follows, for the power spectrum 8~ the form 

c2 1 
Uk rv 

q, + c1 k2 
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This accomplishes our task here to obtain the form of the spectrum of the matter 
perturbation generated by the shear fluctuation. Let us make now some further comments 
on this. 

First of all we should say that although we have made all the above calculations for 
the case in which there is a plane of isotropy, that is, for the uniaxial case, the power 
spectrum that we have obtained is almost independent of this13 • The reason for this 
independence is a direct consequence of the gaussian nature of the approximation that 
we have employed in our calculation. 

The fOrIn of the spectrum that we obtained has a very important advantage over 
nlost of the concurrents: in the standard power law spectra, for instance, there appear 
divergences either on large or on small scales, if they are extended over the infinite domain. 
This is not the case for the spectra we derived above which is bounded in the entire range. 

The Power Spectrum 

The model that we are presenting here is an example of a scenario concerning the effects 
of a prior anisotropic era in the cosmic past. It seems worth thus to analyse some of its 
main· consequences that could be submited to the observational test14• Just to simplify 
our exposition we will compare our results with ~he theoretical predictions of a typical 
inflationary scenario. 

The inflationary model provides a power spectrum for the perturbation which attracted 
the interest of theorists. Letting aside the many difficulties frorn the fundarnental point 
of view that still pervades such scenario, the main drawback of it, from an observational 
point of view, as it has been pointed out by many authors [21], is precisely the difficulty 
of conciliating 'the scale invariance property of such model to the observed power spec­
trum of galaxy clustering determined from the efA Redshift Survey, for instance. This 
observation shows an evolution for the spectrum that can be understood only if one ac­
cepts the idea that the fluctuations.in the gravitational potential of a density distribution 
becomes dependent on the scale of the perturbation. In other words, it becomes difficult 
to conciliate the scale independence of standard inflation with observation. A possible 
solution to this could be, as suggested by Jones, to fit Harrison Zel'dovich spectrum to 
the corresponding observed large scale part and accepts a factor two of disagreement in 
the small scale amplitudes. This, of course, is somehow a compromise solution which 
becomes possible only due to our ignorance of the galaxy formation process, as pointed 
out in [21]. 

13We will analyse the bi-axial case in a subsequent' work. 
HIn this section we will follow the notation and the main ideas on the status of observational cosmology 

as described by Jones [21]. 

http:fluctuations.in
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4.1 	 The Large Scale Limit and the Angular Dependence of 
Temperature Fluctuations 

The behaviour of the large sca.le fluctuations predicted in the anisotropic model that we 
are presenting here is similar to a white noise disturbance. Indeed, frorn the expression 
of 8~ above, this spectrum becomes constant for small values of. k, that is, for large scale 
of perturbations. 

Through an analysis of the Sachs-Wolfe effect, it then follows a direct relationship 
between temperature fluctuations and the spectrum of density fluctuation. In the case 
of very large sca.les a direct examination [21] shows that it is possible to distinguish the 
behaviour of the fluctuation of the temperature on angular scales. The rms value of the 
temperature fluctuation is given by 

~T rv o~(l-n)
T . 

It then follows from this expression that the model which we present here shows an 
explicit angular dependence for the amplitude of the temperature fluctuations which is 
given by 

liT (}l
-rv 2T . 

This is a well desired result once it points out on the possibility to decide between 
cosmological scenarios from observations. 

Finally, let us add that a direct inspection of the spectrum of the galaxy clustering 
shows that it is possible to fit it over the observed range with our analitical function for 
ek. We will come back t'o this elsewhere. ­

5 Conclusion 

The Cosmological Program that we are consideriI!g in the present paper can be summa­
rized by the following steps: 

• 	 The global structure of the Universe can be represented by the highly symmetric 
configuration of FRW geometry. 

• 	 The corresponding material content of the Universe is described by a perfect fluid. 

• 	 These two above properties of both geometry and matter of the Universe were not 
valid during all its history. 

• 	 In the past, very near the point of maximum global condensation -(denoted as pri ­
mordial era) the Universe passed a phase in'which the overall process of expansion 
was less regular and a non-negligeable anisotropy of the spatially hOluogenequs cos­
mic fluid existed. 

• 	 This phase did not admit the representation of the cosluic matter content in terrns 
of such sin1plc perfect fluid description: viscous processes existed. 
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• 	 The elimination of the primordial irregularities (like the primordial shear, for in­
stance) were made precisely through viscous processes. 

• 	It is possible to use the standard deGennes-Landau theory of phase transition to 
model such process of regularization. 

• 	 Small fluctuations on the spatially hOlTIogeneous ,structure that ocurred in the pri­
mordial era can survive the phase transition as it occurs in standard fluids that 
satisfy Ginzburg's criterium of perturbation. 

• 	 The actual system of galaxies and clusters that we observe today are nothing but a 
residual consequence of those primordial fluctuations in the anisotropic era. 

The present paper gives a simple model of this program. 

6 Appendix A 

In Landau's theory the structure of the phase transition is contained in the polynornial 
dependence of the free energy 0!l an order-parameter u, e.g. 

F(p, T, u) = Fo(p, T) +nu +.au2 + bu3 + cu4 + .... 

The possibility of an equilibrium state u = 0 imposes that n = O. Besides, the existence of 
different phases characterized by a control-parameter, say the Temperature T, is contained 
in the assumption that the coefficient a can'be written as a = ao(T - Tc). In the case of 
a tensor parameter, UJ.'V like the one employed in this paper to define the liquid-crystal 
behaviour, the external influence trough, for instance, a magnetic field yields a modifi­
cation of the above series by the additional term D.F rv HJ.'HvuJ.'v. This, in turn can be 
equivalently written in terms of the electromagnetic energy-momentum tensor TJ.'v) once 
it follows that D.F rv TJ.'vuJ.'v as uJ.'V is symmetric and traceless. Using Einstein's General 
Relativity, we write 

D.F rv RJ.'vuJ.'v 

which is at the origin of our equation (13) from the text. The use of this expression in the 
case of a self-gravitating Stokesian fluid implies that Landau scheme of phase transition is 
automatically sets into work. The role of the control-parameter is played by the Hubble 
expansion 8, as in reference [6]. 

7 Appendix B 

Just for completeness let us present here a rough calculation of the Gaussian two-point 
correlation function. We set 

< c5W'(qo) c5W(q~) >= Z-l J[Dc5wlc5w'(q) c5W(q') exp( -fJF) (27) 

\Vhere the free energy is given by: 

I 
j 

I 

i 

! 

I 

! 
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(28) 


In order to solve eq (27) we follow the common trick of defining a functional W[P]: 

W[P] - j [DW] exp[- ~ j W+(q) T(q, q') W(q')d3q dV] 

exp[j p(q) W(q) rfq] (29) 

Hence the equation (27) becomes: 

(30) 

In order to evaluate W[P] we transform the integral into a sum. Thus, it yields that 
TIV[P] is nothing but a Gaussian integral, which can be evaluated in a straightforward way. 
The result is 

(31) 


Coming back to the integral form and making the functional derivative on .p we have 

(32) 

That is 

6Pt:o~~q&) = ,8T-1W[p] + (,8 Jrfq'T-1(qo, q')p(q'))2 W[P] (33) 

Hence, using equation (30) we have: 

(34) 

This result independs of the particular form of the operator T. 
From our hypothesis of the toy model we are considering, we can evaluate this for a 

simple liquid-crystal configuration. Let us take the known example of a calculation of 
< 6W(xi)6w{xi + ri) > in the special case in which the elastic constant e2 vanishes15 • 

Assurning that the background has a planar anisotropy, the knowledge of 6w depends 
only on one single component of the perturbed shear. Thus, without generality loss, we 
set 

(35) 


15This corresponds to our case in which the divergence of the shear is taken to vanishes. 
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in which 'l1per represents the (0 - 0) component of the perturbed shear and the average 
shear is given by 

-!E 0 0)2 1 ­o -2E Q . (36)( o 0 E 

The calculation of the Fourier transform of 'l1per is known in the literature [17] and yields: 

(37) 
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