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Abstract 

Within Tsallis generalized thermostatistics, the grand canonical ensemble 

is derived for quantum systems. In particular, the generalized Fermi-Dirac, 

Bose-Einstein and Maxwell-Boltzmann statistics are defined. The behavior 

of the chemical potential is depicted as a function of the temperature. Some 

thermodynamic quantities at high and low temperature are studied as well. 
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1. INTRODUCTION 

If the appropriate distribution function for a system is known, we can compute the 

expectation values of all thermodynamic quantities, such as energy and number of particles, 

as well as specific heat, magnetization, etc. However, the entropy still eludes us. Boltzmann, 

followed by Gibbs, introduced the one which yields the correct results for the thermodynamic 

properties of standard systems. This is 

00 

S = -kB L L p~N) lnp~N). 
N=O i 

An important property of this entropy is the extensivity (additivity). 

Now, non-extensivity (or non-additivity) is an important concept in some areas of physics , 

by way of reference to some interesting generalizations of traditional concepts. A general

ization of the Boltzmann-Gibbs statistics has been recently proposed by Tsallis [1-3] for 

non-extensive systems. This generalization relies on a new form for the entropy, namely 

~oo ~ [ (N)]q _ 1 - ~N=O ~i Pi 
Sq = -k ,

1- q 

where q E ~; k is a positive constant and Sq recovers its standard form, in the limit q ~ 1. 

Various properties of the usual entropy have been proved to hold for the generalized one: 

positivity, equiprobability, concavity and irreversibility [4]; its connection with thermody

namics is now established and suitably generalizes the standard additivity (it is non-extensive 

if q =J 1) as well as the Shannon theorem [5]. 

The thermal dependence of the specific heat has been studied for some physical systems, 

among them, we have the d = 1 Ising ferromagnet [6]; a confined free particle (square 

well) [7]; two-level system and harmonic oscillator [8] and an anisotropic rigid rotator [9]. 

It is important to remark that, this formalism has already received some physical and 

mathematical applications. Among them, let us mention: Self-gravitating systems, Stel

lar polytropes, Vlasov equation [10-13]; Levy-like anomalous diffusion [14-17] ; Correlated 
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anomalous difusion [18,19]; d = 2 Euler turbulence [10]; Self-organizing biological sys

tems [20]; Simulated Annealing (optimization techniques in Genetics, Traveling salesman 

problem, Data fitting curves, quantum chemistry) [21-26]; Neural networks [27]. 

This generalized statistics has been shown to satisfy appropriate forms of the Ehrenfest 

theorem [28]; von Neumann equation [29]; Langevin and Fokker-Planck equations [19,30]; 

Callen's identity (used to approximatively calculate the critical temperature of the Ising 

ferromagnet) [31]; Fluctuation-dissipation and Onsager reciprocity theorems [32]; its con

nection with Quantum Groups [33], quantum uncertainty [34,35], fractals [36,37], quantum 

correlated many-body problems [38], finite systems [2,39]' etc. has been established. In ad

diton to this, some aspects of the generalized statistical mechanics in relation to the N-body 

classical problem were discussed [40,41]' in order to treat more general situations than the 

collisionless one. 

There exists an attempt to generalize the quantum (Fermi-Dirac and Bose-Einstein) 

statistics [42], but it was not taken into account the difficulty associated with the concomi

tant partition function owing to the factorization process shown in [40]. Consequently, the 

quantum ideal gas has not yet been adequatly discussed within generalized statistics. 

The micro-canonical and canonical formulations have been quite well studied up to now. 

In the present paper, the formalism in the grand-canonical ensemble is generalized. In 

Section II, the grand-partition function is obtained. In Section III, the extensions of the 

Hilhorst transformations to the grand canonical ensemble are shown. Along the same lines, 

the distribution function is generalized as well. In Section IV, the generalized chemical 

potential is depicted as a function of the temperature for the Fermi-Dirac, and Bose-Einstein 

gases. Approaches at high and low temperatures are derived. 
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II. OPEN SYSTEMS: GENERALIZED GRAND-PARTITION FUNCTION 

In general, open systems can exchange heat and matter with its surroundings; therefore, 

the energy and the particle number will fluctuate. However, for systems in equilibrium we 

can require that both the average energy and the average particle number be fixed. To find 

the probability distribution, we need to get an extremum of the entropy which satisfies the 

above mentioned conditions. We proceed by the method of Lagrange multipliers with three 

constraints. 

In this problem, we can require that the generalized probability distribution be normalized 

over all possible number of particles and all states of the system. Thus, the normalization 

condition takes the form 

00 

LLP~N) = 1 , (1) 
N=O j 

the generalized average energy is defined 

00

L L [p~N)] q EJN) = Uq (2) 
N=O j 

it is also called q-expectation value [3] of the energy. The generalized average particle number 

is defined 

L00 NL [p~N)]q = Nq (3) 
N=O j 

or q-expectation value of N. 

To obtain the equilibrium generalized probability distribution, we must find an extremum 

of the Tsallis entropy subject to the above constraints. This gives us 

QO+q[QEEJN)+QNN- q~ll [p~N)r-l =0, (4) 

where Qo, QE and QN are the Lagrange multilpiers. Let us multiply Eq.(4) by p~N) and sum. 

It is found 
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1 _ ,",00 '"' [ (N)] q 
a o 1 aE L.JN=O L.Jj PJ aN 
----=--U + --N (5)qk q - 1 k q 1 - q k q. 

If we compare the Eq.(5) with the grand potential n = u - T S - JiN, taking aE = -liT and 

aN = jilT and defining '3q((3, Ji) = [(q-l)a o lqkJI/(q-l)' the obtained probability distribution 

for the grand-canonical ensemble is the following 

1 

p~N) = [1 - (3(1 - q)(E;N) - JiN)]!=q l'3q((3,Ji), (6) 

where (3 = llkT, the number of particles N = 0,1,2... , and E;N) represents the N-particle 

energy spectrum (characterized by the quantum number or set of quantum numbers j). 

It is convenient to remark that in general 

(7) 


where PN is the probability of having N particles (no matter the energy value) and p(N) is 

the quantity which enables us re-writting Eq.(3) as l:~=o N [p(N)] q = Nqj unless q = I, 

PN generically differs from p(N) ( for instance, l:~=o PN = 1 always, whereas in general 

The generalized grand partition function is obtained from Eq.(6) with the aid of Eq.(I) 

00 1 

=-q((3,Ji) = L L [1 - (3(1 - q)(E;N) - JiN)] l-q . (8) 
N=O j 

On the other hand, we can also obtain the fundamental equation for open systems, this takes 

the following form 

-=1-q _ 1 
nq = -kT

~q 

; (9)
1 - q 

and it is similar to the fundamental equation for closed systems (canonical ensemble [5]). 

The average particle number is given by, 

(10) 
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For a quantum system the expresion for the probability density operator p being given by 

1 

[1 - .8(1 - q)(H - JlN)JJ::q 
p= 	 (ll) 

where H refers to the Hamiltonian of the system and N to the particle number operator. 

The grand-partition function is given by 

(12) 


The trace in Eq.(12) can 	be evaluated regarding some convenient set of basis states. 

III. 	HILHORST INTEGRAL TRANSFORMATIONS AND GENERALIZED 

DISTRIBUTION FUNCTION 

The so called Hilhorst integral transformations [2J and the extension for q < 1 shown by 

Prato [41J are important because they connect a thermodynamic or statistical generalized 

quantity to its respective standard quantity. Therefore, an extension of the Hilhorst integral 

to the grand-canonical ensemble is derived. From the representation of the Gamma function 

we have 

(13) 


Using this expresion in the generalized grand partition function (8) with the identifications 

v = l/(q - 1) and", = 1 + .8(q - l)(EJN) - JlN), it is obtained 

2,((3,1') = r(~) t.21 f dee ,c, -I exp (-[1 + (3(q - 1)(Etl - pN)le) . (14) 

Whenever 

(15) 


Eq.(14) becomes 
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Finally, it is obtained 

(17) 

for q > 1; and (see [41]) 

(18) 

for q < 1. The contour C in the complex plane is depicted in FIG. 1. The connection 

between Eq.(17) and Eq.(18) is shown in Appendix A. 

Now, we write similar transformations for the q-expectation value of the energy. It is 

obtained 

for q > 1 (for the canonical ensemble it is shown in [9]); and 

_ rC~q) i 1 -.: _~=
Uq - [=:q(,B)F 271" fe d((-Ol qe ~1(-,B(1- q)(,iL)U1(-,B(I- q)O (20) 

for 	q < 1. 

Similar expresions are obtained for the q-expectation value of the particle number 

(21) 

for q> 1; and 

(22) 

for 	q < 1. 

Finally, let us also write the generalized distribution function in the Hilhorst manner. We 

remark that a double sum over all possible number of particles and all states of the systems 
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appears at each quantity, in particular, the average particle number (3). The double sum 

can be transformed to one only sum over all states of a single particle by standard methods. 

Now, let us remember that 

(23) 


where nll is known as the distribution function and it is very well defined in the Maxwell-

Boltzmann, Bose-Einstein and Fermi-Dirac statistics. By replacing Eq.(23) into Eq.(21) and 

Eq.(22)' we obtain the generalized distribution functions. We define 

(24) 

for q > 1; and 

(25) 

for q < 1. 

Therefore, we have defined the generalized distribution functions in connection with the 

standard distribution and partition functions through Eq.(24) and Eq.(25) . In addition, we 

have 

(26) 


which is the generalization of the Eq.(23). 

IV. APPLICATIONS TO QUANTUM IDEAL GASES 

The statistics of N-body quantum systems plays a crucial role in determining the ther

modynamic behavior at very low temperature. It is known however that, in the standard 

framework, there is no difference between Bose-Einstein and Fermi-Dirac statistics at high 
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temperature. Maxwell-Boltzmann statistics is the name given to the statistics which de

scribes the behavior of the systems at high temperature. 

The quantum state E/(N) of the system is specified by the one-particle states. The total 

energy is given by 

Where Ei is the energy of the state and ini is the occupation number, we have also nl + 
n2 + ... + noo = N. The generalized grand partition function for the Maxwell-Boltzmann 

statistics can be written as 

where we have inserted the factor 1/N! in the same way as in the q = 1 statistics, because 

it gives us the proper form of the grand partition function for indistinguishable particles at 

high temperature. 

The generalized grand partition function in Fermi-Dirac statistics, acordding to Pauli 

exclusion principle, is given by 

00 00 00 00 

(28) 

Each different set of occupation number corresponds to one possible state. Sometimes, it is 

convenient to write the partition function by the equivalent form 

(29) 

The exclusion principle restricts the occupation number (ni) of each state to 0 or l. 

The generalized grand partition function in Bose-Einstein statistics is given by 

00 00 00 00 

=B~q - E = ~~ ~ ••• '""' (30)'""' '""' '""' ~ 
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Here, there is no restriction on the number of particles that can occupy a given momentum 

state. Another form for this partition function is 

(31)%;, .. to·· n~o [1 - /1(1- q) ~>«I - ~)] ,-, 
1 

The occupation number (ni) of each momentum state can be 0,1,2, ... 

A. Particles with Periodic Boundary Conditions 

We consider a gas of non-interacting particles of mass m with the condition exp( iklf) = 1, 

so kif = 27rl and l = 0, ±1, ±2, ±3, ... 

The spectrum for a single particle is given by 

where n= h/27r (h is the Planck constant). 

1. High- Temperature Approach 

In order to find =.~-B in connection with =.~-B ( Eq.(17) and Eq.(18)), we write =.~-B 

conveniently. Thus, the grand partition function within q = 1 statistics is given by 

00 N{J [ N1
-=M -B = '" ~ '" e-{Jq (32)~l L N! L 

N=O I 

If the volume is large enough, the particle energies will be closely spaced and we can replace 

the sum over I by an integral over a continuous variable k. Thus, 

(33) 

where D is the dimension. Hence, =.~-B becomes 
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00 (02 )ND/2=.M - B = "" _1 eN{JI' _m-----".{._ 

1 £-:0 N! 27rn2(3 , (34) 

Replacing Eq.(34) into Eq.(18), we obtain: 

~M-B ~ f(r=;)[l + (3(1 - q)JlN]~+¥ ( m£2 ) ND/2 
(35)~q - L N!(l _ q)DN/2f(!.::!I. + ND) 27rn2 a ' 

N=O l-q 2 fJ 

for q < 1. 

2. Fermi-Dirac Gas at Zero-temperature Limit 

The average particle number at low temperature is given by (see Appendix B) 

2 (£2 )D/2 [D/2 100 

(36)Nl = f(D/2) 2:n2 Jl D +~gn(Jl,D)(kBT)2n . 

We solve Eq.(22) with the aid of Eq.(36) for q < 1 

(37) 

where A}f) is defined in Eq.(B4). Finally 

(38) 


+~ 9n(D, Jl)f( ~) ([kT _ (1 _ )(H _ N)]2n) . 
L (1 _ q)2nf(_1 +2n) q Jl q 
n=l l-q 

Here 1q is the q-expectation values of 1 and it is a function of T; in general 1q -=I 1, unless 

q = 1. It is easy to verify that in the limit q --+ 1, Eq.(38) is reduced to Eq.(36). Now, the 

generalized Fermi level obeys the following expresion, 

(39) 
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Now, we can verify that the sum vanishes when q --+ 1, because 

· r(~) -1' (1- )2n_o11m 1 - 1m q 
q-+l r(- + 2n) q-+l

l-q 

thus, Eq.(39) is reduced to the known result for the Fermi level in Boltzmann-Gibbs statistics 

when q --+ 1. 

B. Particles in a Box 

We consider a gas of non-interacting particles into a box. The spectrum for a single 

particle is given by 

where l = 1,2,3, ... and f is the side of the box. 

The chemical potential as function of the temperature is depicted in FIG. 2 for q = 1, 

typical values of Nl and D = 1; the thermodynamic limit is easily computed. See the 

Fermi-Dirac case in FIG. 2.(a) and the Bose-Einstein case in FIG. 2.(b). 

In the Boltzmann-Gibbs statistics the exponential form of the probability distribution 

allows for the explicit integration, in evaluating the partition function :=:1, of the momentum-

dependent part (kinetic energy) of exp( -,8H). This fact, reduces the work involved in com

puting :=:1 of the evaluation over just the configuration variables of the one-body configuration 

space. It is clear, this interesting property is lost for q i= 1. 

The behavior at high temperature of the generalized partition function for q < 1 is given 

by 

-:=M-B _ _1_ DN (_ )DN-m(DN)! r(i=!)[1 + ,8(1 - q)/LN]I':q+T (2mf2 )m/2 
~q - L

00 

2DN L (DN - m)!m! N!(1 _ q)m/2r(~ + ~) 7rn2a ' 
(40) 

N=o m=O l-q 2 fJ 

for particles into a box in D dimensions. 
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The computation is very slow when q differs from the unity. FIG. 3 depicts the chemical 

potential versus temperature for q = 0.8 (see Fermi-Dirac case in FIG. 3(a) and Bose-Einstein 

case in FIG. 3(b)) . The thermodynamic limit in (a) is found by extrapolating (to the origin) 

the trend of the chemical potential with 1/Nq for fixed temperature T . It was not reliable 

to do the same in (b) because all generalized quantities converge very slowly, which made 

numerically inaccessible the region Nq > 6. 

CONCLUSIONS 

It is well established the connection between the generalized statistical mechanics in the 

grand canonical ensemble with thermodynamics through the relation given by Eq.(9). 

Following along the lines of the Hilhorst integral transformations for the grand partition 

function 2 q , we have obtained the analogous expressions for the appropriate averages of the 

particle number and the energy in the grand-canonical ensemble. In the same style, the 

generalized distribution functions are defined as well. 

It is clear that the statistical and thermodynamic quantities transform to their standard 

forms in the q --+ 1 limit, as it has been shown in some cases. 

ACKNOWLEDGMENTS 

The author is very indebted to C. Tsallis and D. Prato for valuable discussions and to C. 

Tsallis, S.A. Cannas, D.A. Stariolo, A. M. de Souza and M. Muniz for their helpful comments 

on the draft version of this paper. This work has benefitted from partial support from the 

Fundaci6n Andes/Vitae/ Antorchas, grant 12021-10. Part of the numerical calculation was 

carried out on a CRAY Y-MP2E of the supercomputing center at UFRGS. 



CBPF-NF-043 / 95 


-13

APPENDIX A 

By taking z as variable of integration, F(z, J.l) = e-z:=:l( -.8(1- q)z, J.l) and Q = 1/(1- q); 

the integral in Eq.(18) can be written as 

1 dz(-z)-a-1F(z,J.l) = (1 +f +1) dz(-z)-a-1F(z,J.l) , (AI)
fe ab lbcd de 

where ab, bed and de are lines of C shown in FIG.!. If we use z = ( for the integral along 

the line ab, z = f.e i () along the line bed and z = (e 2i 
1l" along the line de, we have 

iafa dz( _z)-a-l F(z, J.l) = _e 1l" i d((-a-le-~:=:l( -.8(1 - q)(, J.l) (A2) 

_f.-aeia 1211" d(ei(})(ei(}ta-le-fei9:=:1(_.8(1_ q)f.ei(},J.l) 

_e-ia1r Joo dee-a-le-~:=:l( -.8(1 - q)(, J.l). 

Now, putting q > 1 and f. ---4 0 we can see that the second integral vanishes. Thus, 

On the other hand, we have the following property of the f function 

1r
f(p)f(1 - p) = -.-. (A4) 

Slll1rP 

Using the Eq.(A3) and Eq.(A4) into Eq.(18), we obtain 

(A5) 

Summarizing, we have recovered Eq.(17) from Eq.(18). 

APPENDIX B 

The average particle number Nl for a fermion system in the large enough volume approach 

is given by 



CBPF-NF-043/95 

-14

(Bl) 

Thus 

(B2) 

Let us transform this integral with the following change of variable Ek - J.l = kTz, 

(B3) 

Defining 

(D) {.O)D 27rD/2 (2m )D/2 _2_ ( m£2 ) D/2 
(B4)AF = ( 27r f(D /2) 1:2 f(D /2) 27r1i 2 

the integral can be written as: 

(B5) 

Using the simple transformation 

(B6) 

in the first integral, then 

(B7) 

The second integral converges very fast; therefore, if T vanishes the upper limit can be 

replaced by 00, so 

00Nl J.lD/2 (J.l + kTz)D/2-1 - (J.l - kTz)D/2-11
--~~-= + dz~----~----~----~---- (B8)
kTAW) /2 (D/2)kT 0 ez + 1 

Finally 
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2 (£2 ) D/2 [D/2 1 (B9)00 

NI = r(D/2) ;:'/i2 JlD + ~ 9n(Jl, D)(kaT )2n , 

where 

9n(Jl,D) = (D/2 -1)(D/2 - 2)", (D/2 - 2n + 1)(1 - 21-2n)JlD/2-2n~(2n), (BID) 

and ~(2n) is the Riemann function: 

1 
~(17) = L

00 

mT/' 

m=l 

In the same approach, the average energy U1 is given by 

(Bll) 

then, we obtain 

2 (£2 )D/2 [D/2+1 100 
(BI2)U1 = r(D/2) ;:1i,2 ~ +2 + ~ hn(Jl, D)(kaT )2n , 

where 

hn(Jl , D) = (D/2)(D/2 - 1) , .. (D/2 - 2n +2)(1 - 21-2n)JlD/2-2n+I~(2n), (BI3) 
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FIGURES 

FIG. 1. 

Contour C in the complex plane. 

FIG. 2. 

Chemical potential for (a) Fermi-Dirac and (b) Bose-Einstein cases for D = 1 and typical 

values of Nl within Boltzmann-Gibbs statistics (q = 1). The thermodynamic limit is shown 

in each case. 

FIG. 3. 

Chemical potential for the (a) Fermi-Dirac, (b) Bose-Einstein cases for D = 1, typical val

ues of N q and q = 0.8 within generalized statistics. The thermodynamic limit is extrapolated 

in (a) by standard method. 
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Fig. 1 
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