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Abstract 
Using Ehlers and unitary transformations, from Bonanos solution of the Ernst 
equation, we build a new vacuum stationary axisymmetric solution of Einstein 
equations depending on three parameters. The parameters are associated with 
the total mass of the source and its angular momentum. The third parameter 
produces a topological deformation of the ergosphere making it a two-sqeet 
surface, and for some of its values forbids the Penrose process. 

PACS numbers: 04 70B, 0425D 

1. Introduction 

We present a vacuum stationary axisymmetric solution of the Ernst equation which can be 
obtained by using the Euclidon method proposed by Gutsunaev et aJ [1]. Then we show that this 
solution reduces to the one found by Bonanos [2], and later rediscovered by others, in particular 
by Das [3] . This solution is symmetric in the prolate spheroidal coordinates and depends on 
one parameter, called qI. The construction of the corresponding gravitational potentials, with 
lhe help of the Boyer-Lindquist transfonnation, shows that this solution represents the extreme 
Kerr black hole [2, 3]. An Ehlers transfonnation followed by an unitary transfonnationon 
the latter solution, while keeping its asymptoticaJ flatness, pennits introduction of two more 
parameters. So. the obtained new solution. in Boyer-Linquist coordinates, depends on three 
parameters, which are connected, as in the Kerr case, to the total mass of the source and its 
angular momentum. However. we did not succeed in relating directly this solution to the Kerr 
solution, but we know that such a link does exist by reason of the uniqueness theorem for 
the solution with a good asymptotical behaviour and without naked singUlarity [4]. Only the 
extreme black hole of Kerr appears as a limit, when ql ~ 0, of the proposed solution, and 
this latter does not present a naked singularity. Varying the ql parameter allows us to show its 
role in the crgosphere shape. The ergosphere, which initially has a torus shape, continuously 
loses its fonn and finally separates into a two-sheet toroidal surface, progressively exposing 
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the event horizon more and more. Then the Penrose process (5J is no longer able to take place 
in a'domain of the azimuthal angle. for some range of the ql parameter values. 

The paper is organized as foJIows. In section 2 we present a brief resolution of the 
Ernst equation. In section 3 we present the Bonanos solution [2J and transfonn it into a 
three parameter stationary axisymmetric solution of the Ernst equation. Then in section 4 we 
analyse the causal structure of the newly found three parameter solution. We end the paper 
with a brief conclusion. 

2. Brief recall on the resolution of the Ernst equation 

The line element of a general axisymmetric stationary spacetime is the so-called Papapetrou 
metric, which in the cylindrical coordinates. P. z and ¢. reads 

ds2 = f(dt - wdtJI)2 - f- 1[e2y (dp2 + dz2
) + p 2d</l] (1) 

where the gravitational potentials, f. wand yare functions of p and z only. The canonical 
coordinates of Weyl, p and z. can he given in terms of prolate spheroidal coordinates. A and 
fL, by the relations 

p = k()\? - })1/2(1 - JJ.?) 1/2 Z = kJ...1J, (2) 

where k > 0 is a constant. J... a radial coordinate and -1 ~ J.L ~ 1 is an angular coordinate. 
The metric (1) with relations (2) can be rewritten as 

2 
ds2 = f(dt _ wdcp)2 _ k

2 [e2Y (A2 -11-2)( dJ... + dlJ,2 ) + (),? -1)(1 -1-L2)drjJ2] (3)
f )..2 - J 1 - p.2 

where the potentials are now functions of J... and /.t. The Ernst equation is [6] 

(~~ - 1)y>2~ = 2~Y>5 . V~ (4) 

where V and y>2 are the gradient and the three-dimensional Laplacian operators respectively, 
~ is the conjugated complex potential ofS, and in general its solution can be expressed as 

HA, J-L) = P(A. J.L) + iQ(J.... J-l) (5) 

where P and Q are real function~ of A and IJ,. Among the classical solutions of the Ernst 
equation. we can cite the well-known Kerr solution [6), 

~K = pA + iqJ.L (6) 

where p and q are real constants satisfying 

p2 +q2 = 1 (7) 
and the Tomimatsu-Sato solution, 

~s = O'(A, /1-; p, q, ~) 
(8)

fJ(A, p.; p. q,~) 

where Ct and f3 are two complex polynomials depending on the Kerr parameters p and q and a 
parameter 0 assuming integer values describing the defonnation of the source [7]. To detennine 
the potentials f, wand y of the metric (3), the method consists of using the following relation 
between f. the twist potential <Xl and ~, 

~-l
f + icl> = -"- (9)

~+1 

which implies with (5) 

p2 + Q2 _ 1 2Q 
¢=­f = R2 R2 (10) 
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or, equivalently, 

f = 1 _ aIn R2 
ap 

oJnR2 
tP=-­

aQ (11) 

where 

(12) 

In (9). tP is the twist potential defined up to a constant and related to the dragging ev by the 
following differential equations: 

8ev k(l - J.t2) a<l> oev k(A2 - 1) acp
-= - --­
OA /2 ajl. -ajl. = - /2 li' (13) 

The potential ev is obtained by integration of (13), and y is determined by quadratures. Any 
solution of the Ernst equation is a solution of the Einstein equations. 

3. A new three parameter solution 

Using the method proposed by Gutsunaev et al [1], the so-called Euclidon method. to obtain 
vacuum axisymmetric stationary solutions of Ernst equation (4), we can obtain 

(14) 

where q I is an arbitrary real parameter. We shall present in another paper detai Is of the method 
used to obtain (14). 

By applying the method recalled in section 2, we obtain the potentials corresponding to 
solution (14), 

(Al - 1)(1- jJ,2) +qr(A - J.I.f 
(15)

/ = (A - 1)2(1 + tt)2 + qt(.1. - jJ,)4 

2ql (A - J.t)3 
<I>------=-::....:--:--~::------:- (16) 

- (A - 1)2(1 + J.t)2 + Qr(.1. - jJ,)4 

2 
(z) . 2k {).. + (1- J.t2)[(A - 1)(1 + jJ,) - qrO.. - tt)3]} . 

( 17) 
ql qr().. - J1.)4 - ()..2 - 1)(1 - J1.2) 

We can observe that this solution is not asymptotically fiat, because gtrp does not vanish as 
).. ---+ 00 and has the same behaviour as the Dernianski-Newrnan glq, [11. 12]. 

Now making on (14) the simple transfonnations, jJ, -;. -jJ" then ~ i~. and then -joo 

~ ---+ ~", we obtain 

AIL + 1 
~B=-ql(A+J1.)+i . (18)

A+J1. 

Calculating the corresponding potentials in (18) by using the method of section 2. we obtain 

()"J1. + 1)2 + (A + jJ,)2[qf(A + jJ,)2 - 1] 
(19)

fs = (AIL + 1)2 + (A + JL)l[ql()" + J.t) - ]]2 

(20) 
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2k()"2 - 1)(1 - Ji2)[ql (A + JL) - 1] 
We -­

- ql [qrP, + 1J.)4 - (A2 - 1)(1 - Ji2)r (21) 

Introducing the coordinates r and () through the Boyer-Lindquist transformation [9] 

r- M 
A=-­ J.t = cos() (22) 

k 
we obtain asymptotically, r -+ 00, for (19) and (21) 

k 1 ( 1 ) fs ~ I + 2-- + 0 - (23)
q) r ,2 

(24)wB ~ 2(:.)
2 

(1 - JL2)~ + 0 (,12 ), 

From this asymptotical behaviour, (23) and (24), it is easy to interpret the solution given by ~B 
in (18) as describing the extreme Kerr black hole. The solution h has been obtained in 1973 
by Bonanos and rediscovered by Das [3], and developed by Bonanos and Kyriakopoulos [2] 
from the Herlt method [14]. 

We can further transform the Bonanos solution (18), as follows, by including two more 
parameters. The new solution thus obtained has an interesting causal structure which is studied 
in the next section. 

By means of the following particular Ehlers transformation (8) on (18), 

~I = C_j~8 +d l (25) 
dl~B + c] 

we can introduce a second real parameter ai, where 

CI = 1+ iaj d] = ial (26) 

satisfying 

(~l ~I) ESU(1, 1) (27)
d1 C1 

It can be proved that solution (25) does not have suitable asymptoticaI ftatness. Then, a second 
step consists of performing a unitary transformation on ~I, 

2 + n2~2 = _ei80~1 = (m + in)~l m = 1 (28) 

with 80 an arbitrary real constant, and m and n real constants. Then (28) with (5), (18) and 
(25) becomes 

~2 = [-0'1 QB - 1 + ial (I'B + l)]-l{ l'B(m - atn) - QB(alm + n) - atn + ifPB(a.m + n) 

+ QB(m - atn) + aim]} (29) 

where flrl and QB are the real and imaginary parts, respectively, of (18). Considering 
n 

0'1=---- (30)
2(1 + m) 

and applying the method recalled in section 2, we find the potentials corresponding to the 
solution (29) of the Ernst equation 

I(1 + )"J,L)2 + (A + Ji)2[q?O. + Ji)2 - 1] I -2 ()o
h= ~ - (31)

(1 + AJ,L)2 + (). + J,L)2[q] (A + Jl.) + IF] 2 
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cI> - 2 { (1 + AJ.t)(A + J.L) } -2 80 
(32)2 - - (1 + At.l.)2 + ().. + ,u)2[ql ().. + J.t) + IF cos "2 

_ 
W;. -

2k { (I-fL2)()..1_1)[I+Ql(.l..+J.l)1 } 2 00 
- COS -
ql (1 + J...fL)2 + (J... + ).L)2[qf(J... + J.L)2 - 1] 2 . (33) 

We find for Y2 in (1) from (29), 

_ ~ I [2
Y2- 2 n ql­

()..
2 

- 1)( J ­
().. + J.t)4 

JL 2) ] 1 2 
-:2lnQ1' (34) 

Furthermore, the factor cos-2«(Jo/2) in (3 J) can be absorbed by a rescaling process of the metric 
into a conformal metric, such as dsi = cos-2 ((Jo/2)ds1 . Now introducing the coordinates 
r and f), through the Boyer-Lindquist transformation (22), into (31) and (33), we obtain 
asymptotically, r ~ 00, 

k 1 ( 1 ) h~1-2--+0 - (35)
ql r r2 

(36) 


We see from (35) and (36) that the solution now has the good asymptotic behaviour allowing 
us to interpret the parameters qlt 80 l:Illd k as 

2 Bo J a 
cos -=-=- (37)

2 M2 M 

whereM and J are, respectively, the mass and angular momentum of the source, and a = J / M 
the angular momentum per unit mass. In the Kerr solution (6) there are two parameters linked 
by condition (7). The asyrnptotical behaviour of this solution imposes [10] 

k a 
p = - Q = - (38)

M M 
and condition (7) fixes k, 

(39) 

In our solution, the asymptotical relations (35) and (36) impose (37), but ql, Bo and k are 
arbitrary, as can be seen from (14), (28) and (2) (with (22)). Of course, it is always possible 
to compare our parameters to those of Kerr by putting 

a 260 k 
- = q = cos - - = p = ql (40)
M 2 M 

and assuming 0 ~ ql ~ I. So, we would have also from (7), 

(41) 

However, it is not necessary for us to choose (40) and (41). In general, our solution presents 
three independent free parameters, q\, (Jo and k, whereas the Kerr solution presents only one 
independent parameter, either p or q. Furthermore, imposing (40) and (41) does not reduce our 
solution, (31)-(34), to the Kerr solution. The differences between both solutions are further 
studied in the next section. Besides, we note that the solution (31)-(34) does not belong to the 
usual Tomimatsu-Sato solutions [7]. 



CBPF-NF-042/02 
-6­

4. Horizons, ergospberes and singularities 

Expression (31) can be written as 

h N -2 eo= -cos -
D 2 

(42) 

with 

N = (1 + )..1.1.)2 + (A + 1-L)2[qrO. + JL)2 -1] (43) 

D = (1 + AJL)2 + ().. + ~)2[ql ().. + J.L) + 1]2. (44) 

4.1. Horizons 

The horizons correspond to the solution of h = 0 for ~ = ± 1 which is, from (43), and (22), 
rn = M ± k. These horizons split into the Cauchy horizon, with radius feb = M - k, and the 
event horizon, with radius reb = M +k. These results arc satisfactory since, for any stationary 
axisymmetric metric, the horizons depend only on the spacetime synunetries. 

4.2. Ergospheres 

The equation of the ergosphere surfaces, from (42). is N = 0, and two cases have to be 
distinguished from (43). 

4.2 .1. A+ I-'- = O. In this case N = 0 if. in addition. 

1+),,~ = 0 (45) 

which, with (22), imposes two solutions, describing two 'points' 

~ =-1 r = M +k == reh (46) 

~=1 r = M - k = reb. (47) 

These 'points', (46) and (47), are the interse{;tions of the z-axis with the event horizon, 
r = reh = M + k, and the Cauchy horizon, r = reh = M - k, respectively, be10nging to the 
ergospheres. It has to be nOled that (46) and (47) produce, from (44), D = 0 as well, hence 
there is an indetermination for the ratio N / D. TIUs indetennination can be raised by studying 
the limits (r - M)/ k ---+ ±1 which produce 

lim h{JL = -I) = Jim !l(1-'- = 1) = O. (48) 
r~rc:1J "~"c:n 

The limits (48) are finite and zero, hence these points belong to the ergospheres. 

4.2.2. ).. + IJ. i= O. In this case, ()" + J.L)2 can be factorized in (43), and the equation for N = 0 
becomes 

(49) 


which is the equation for the ergo sphere surfaces. It is a fourth degree surface, and for the 
represen tation of this surface, it is useful to express it through a parametric representation with 
the help of a parameter t', such that 

1 + )..J.L)2 2 
(50)= cos r( )..+J.L 
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Figure 1. ql = 0.01, 'en = 4.04"<11 = J.%. 

Figure 2. ql =0.04, 'eh = 4.16, 'eb = 3.84. 

We can see from (50) that it is a bounded closed surface for any value of the ql parameter. 
We have ploned some curves, which are intersections of this surface by the meridian plane 
rI> = 0, for different values of the parameter 1 ~ ql > 0, as shown in figures 1-10. These 
curves present the following interesting features: 

• When ql ~ 0 the aspect of the ergospheres and horizons tends towards the aspect of the 
Kerr extreme black hole (e.g. see figure 4 of [12]), as shown in figure 1. 

• When £/1 increases its value the aspect of the ergospheres remarkably differs from this of 
a Kerr black hole. as shown in figures 2-5. Especially. we can note, the surface of the 
exterior ergosphere becomes double, presenting some thickness being a two-sheet torus. 
It is the same for the interior ergosphere. 

• For a defined value of ql. near q" ~ 0.5, the exterior ergo sphere opens itself on the axis 
J.L = 0 (f) = 1r /2), as shown in figures 6-8. Then the event horizon becomes naked in a 
certain angular aperture, whereas the Kerr event horizon is always dressed by the exterior 
surface of the ergosphere. Thus, on this spatial portion, the Penrose process [5] is no 
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6 

Figure 3. QI = OJ, rell == 4.4, rch = 3.6. 

Figure 4. ql =0.25, reh = 5, reh = 3. 

longer able to take place. This special topology of the ergosphere also indicates, here, a 
difference with the Kerr metric . 

• The evolution of the interior part of the ergosphere, for increasing values of ql. looks 
intricate, with. particularly, the advent from the centre of a new curve. as shown in 
figures 3-4, with a four-leaved clover shape, which grows until it passes beyond the 
Cauchy horizon, as shown in figures 8-9, which ofcourse vanishes when ql = 1 (M = k), 
as shown in figure 10. This complicated behaviour also presents an important difference 
with the Kerr metric, because in this last case, the Cauchy horizon always covers the 
interior ergosphere. 
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.5 

FIgure 5. ql = 0.4,'elI = 5.6, feb = 2.4. 

Figure 6. ql = 0.5.,ch = 6, rch = 2. 

Figures 1-10 show the parametric plots of the curves describing the intersections of the 
interior and exterior ergospheres, defined by (50), with the meridian plane <p = 0 for different 
values of the parameter ql in the range [10-2 , 1]. The vertical axis is z. The ergospheres are 
the axisymmetric surfaces which can be generated by rotation of the curves around the z-axis. 
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Figure 7. ql = 0.6. reb = 6.4, rrh = 1.6. 

5 

2. S 

-5 

Figure 8. ql = 0 .75, rcn =7, reb = 1. 
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2 5 

-2.5 

-loS 

-5 

Figure 9. ql = 0.9, ren = 7.6, feb = 0.4. 

The event horizon and Cauchy horizon are also represented (circles of radius reb = M + k, 
rch = M - k, respectively). The mass M has been fixed to the value M = 4. k is given by 
(37). 

4.3. Singularities 

The singularities correspond, when they exist. to curves or surfaces defined by D = 0 from 
(44). We see that Dis a sum of squares and it can vanish only in two cases. 

4.3_1. 1 + Aj.L = 0 and A + J.L = O. This system of equations is the same ac; studied in 
section 4.2.1, and corresponds to the two points (46) and (47) of the horizons where N = O. 
Since, after raising the indetermination of the ratio N / D. the limit (48) is finite and zero, these 
two points are not singular. 

4.3.2. I + Aj.L = 0 and ql 0.. + f-L) = -1. Consequently, 

QIJ..L
2 + J.L - ql = O. (51) 

The polynomial (51) always has two roots 

-l±v'IS 
(52)J.L± = ---­

2ql 

thal gives the two solutions 

-I +..Ji5. 
(53)J.L+ = 
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10 

-1,5 

Figure 10. ql = 1. rch = 8, rr,h =O. 

and 

l+JX 
P-- =---- (54) 

2q1 

The first solution, (53), produces 0 ~ J1..+ ~ 1, while the second. (54), produces IJL-I > 1, 
hence it has to be rejected. From (53) with (22), we have 

qf 
( 

2 ) (55)r+ = M 1 + 1 - ~ 

which gives T .. '< reh = M - k, hence the two ring singularities (55), which are the solutions 
for P, .. = cos(±B+). are inside the Cauchy horizon and so, a/orriori, inside the event horizon. 
There are no naked singularities. 

S. Conclusion 

It is possible to recover with the Euc1idon method [1] the Bonanos solution {I 8) of the Ernst 
equation, originally obtained with the Her)t method [141. It depends on one parameter, ql, and 
can be interpreted as an extreme black hole. To introduce a second parameter in this solution. 
we perfonned an Ehlers transfonnation, producing a non-a<;ymptotical1y flat spacetime instead. 
Only after perfonning an unitary transformation, the new solution obtained, (29), with 
condition (30). achieves the appropriate physical asymptoticaJ flatness. A second parameter, 
Bo, appears in this process, to which we have to add the free parameter kofthe prolate spheroidal 
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coordinates transfonnation. In Boyer-Lindquist coordinates. the asymptotical behaviour of 
the metric time component, 12, and of the dragging, lI>]., permits the parameters introduced to 
be interpreted in tenns of the mass and angular momentum of the source (37). 

We did not succeed in obtaining the Kerr limit of the solution, however we know mat it 
does exist because of the uniqueness theorem, since this new sol ution has asymptotical flatness 
and does not present naJced singularities. 

One of the parameters introduced, ql, shapes the ergospheres showing notable topological 
differences to the Kerr spacetime. When this parameter ql -+ 0, the solution tends to the 
extreme Kerr black hole, which is different from the Bonanos extreme Kerr black hole solution 
since, for this case, ql =j:. 0 is arbitrary. For some range of the parameter values, the exterior 
ergosphere opens itself leaving the event horizon naked, which forbids a Penrose-like process 
in this aperture. We conjecture that the obtained new solution (31)-(34) represents a distorted 
stationary black hole. which would extend the results obtained in the static case [13], but this 
needs further investigation. 
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