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Abstract 

We revisit axisymmetric stationary vacuum solutions of the Einstein equations, 
like we did for the cylindrical case [1] . We explicitly formulate the simplest hy
pothesis under which the S(A) solutions, or a..'Cisymmetric Lewis solutions can be 
found and demonstrate that this hypothesis leads to a linear relation between the 
potentials. We show that the field equations still can be associated to the motion of 

a classical particle in a central field, where an arbitrary harmonic X function plays 

the role of time. Three classes of solutions are obtained without the need of invoking 
the Papapetrou class. They depend on two real parameters, and the potentials are 
functions of X only. The new approach exempts the need of complex parameters. 
We interpret one of the parameters as related to the vorticity of the source . 
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I Introduction 

Axially symmetric stationary vacuum spacetimes in Einstein's theory are important be-
cause they can describe the exterior fields of massive rotating astrophysical objects [2, 3]. 
Here we reexamine the S(A) class of solutions of these spacetimes (see [8] p. 204). 

In a preceding paper [1] we have already reexamined the vacuum solutions obtained by 
Lewis [4], and van Stockum [5], for a stationary cylindrically symmetric spacetime. Lewis 
established the existence of three classes of solutions in terms of four parameters. One of 
these classes appeared by the introduction of complex parameters. Through our approach 
the three classes arised without the need of complexification. We cannot use the Ernst 
formalism [6, 7] in the cylindrical case since the partial differential equations which link 
the dragging w to the twist potential <P become ill defined. Furthermore, we showed that 
the structure of the field equations can be associated to the motion of a classical particle 
in a central field. This association allowed a kinematical interpretation of the parameters, 
describing the Lewis spacetime without the need of specifying a particular matter source 
of the field. 

Here we extend our analysis to the axisymmetric case. In order to proceed, we formu
late the fundamental hypothesis (section III) which allows the employment of our method. 
By doing this we obtain directly the S(A) solutions without making use of the Papapetrou 
class [8] as it is usually done. Thus the S(A) solutions arise as a natural extension to the 
axisymmetric case of the Lewis solutions. Hence these solutions could be appropriately 
called the axisymmetric Lewis solutions. Then we follow some similar steps of the paper 
[1] and show that the classification and mechanical interpretation used in the cylindrical 
case can be extended , also, to the axisymmetric case. 

The paper is organized as follows. In section II we recall the system of equations to 
be solved for the axially symmetric stationary vacuum metrics. We introduce in section 
III the fundamental hypothesis from which the linear dependence between the potentials 
is deduced. In section IV, we examine the main consequence of the kinematical role of 
the arbitrary harmonic functions of these solutions. The solutions and classification are 
presented in section V and its vorticity is calculated. We end with a brief conclusion. 

II Field equations 

The general line element for a stationary axisymmetric spacetime, with signature +2, can 
be written like 

(1) 

where J, l, k and p, are all functions of the Weyl coordinates rand z. Defining for conve
nience, 

J=rF(r,z), l=rL(r,z), k=rK(r,z), (2) 
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we obtain from Einstein's vacuum field equations [4, 5], 

6.F = 	-Fn, (3) 

6.L = -Ln, 	 (4) 

6.K = -Kn, 	 (5) 

p,r = -~[1 + r2(FrLr - FzLz + K; - K;)], 	 (6)
2r 

r 
p'z = -2(FrLz + FzLr + 2KrK z), 	 (7) 

with 
FL+K2 = 1, (8) 

where the Laplacian 6. and 0, are defined by 

1 
6.F = Frr + -Fr + Fzz , 	 (9) 

r 
0, = Fr Lr + K; + FzLz + K;, (10) 

with the indexes standing for differentiation. The function p, is obtained by quadratures 
and, thus, we have only to determine F, Land K. 

Let us note that the field equations (3)-(5) can also be written in the more symmetric 
form, 

F6.L = L6.F, (11) 

L6.K = K6.L, (12) 

K6.F = F6.K. (13) 

III 	 The fundamental hypothesis on the F, Land K 

functions 

In the cylindrically symmetric case, where in (2) F, Land K, depend only on r, we have 
demonstrated the existence of a linear dependence between the potentials [IJ. However, 
in the axially symmetric case, when F, Land K are functions of rand z, such a general 
demonstration is no longer possible. Thus, we have to introduce some further hypothesis 
to solve the field equations. 

Keeping in mind the method used in the cylindrical case [IJ we make the hypothesis 
that there exists a functional relation, different from (8), between F, Land K, 

ip(F, L, K) = O. 	 (14) 

Then, from (8) and (14) we can obtain two general relations that can be expressed, 
for example, as 

F = F(K), L = L(K). (15) 
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From (15) we have the identities, 

\7F· \7L + (\7K)2 =(1 + FKLK)(\7K)2, (16) 
6F == FK6K + FKK (\7 K)2, (17) 
6L = LK6K + L KK (\7 K)2, (18) 

where \7 is the gradient operator. With (15)-(18), we can rewrite the two first field 
equations (3) and (4) like 

(1 + FKLK)(KFK - F) = FKK , (19) 

(1 + FKLK)(KLK - L) = LKK , (20) 

which is a system of two differential equations permitting to determine the functions (15), 
as we shall see (equations (41)). Hence, the only partial derivative equation to solve is 
the third field equation, (5), for the function K(r, z), 

(21) 

A kinematical interpretation can be given from (19)-(21). Indeed, considering (19) 
multiplied by Land (20) by F and subtracting both equations, we obtain, 

(22) 

Without any loss of generality, we can make an arbitrary change of unknown function 
by putting K = K(X), where x(r, z) is a new unknown function. Then (21) becomes 

(23) 

where 
(24) 

Always without loss of generality, we can fix this change of function such that K(X) 
satisfies the differential equation 

Kxx ( )K2 = f(K), 25 
x 

implying that X is an harmonic function. 
Let us examine what (25) implies on the two first field equations (19) and (20). Sub

stituting (25) into (22) and integrating we obtain 

(26) 

where C1 is an integration constant. In a similar way, but starting from (4) and (5) with 
L = L(F) and K = K(F), and considering (3) with F(X); and repeating again from (3) 
and (5) with F(L) and K(L) and considering (4) with L(X), we obtain 

KLx - LKx = C2, (27) 

FKx - KFx = C3 , (28) 
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respectively, where C2 and C3 are also integration constants. 
The equations (26)-(28) express the conservation of an angular momentum (5 

(C1 , C2 , C3 ) in the space (F,L,K), like in the cylindrical case [1], but here it is X which 
plays the role of time, instead of T = In r in [1]. In section IV we study consequences of 
this fact. Besides, from (26)-(28), we can immediately deduce a linear relation between 
the potentials, 

K = aL + f3F, (29) 

where a and f3 are constants. The relation (29) is the one that we were looking for when 
we stated (14), and it describes a family of 2 parameters planes in the space (F, L, K). 
Hence, most of the interpretation in terms of a classical particle in a central field made 
in [IJ holds here again. In particular, the discussion about the nature of the conic, which 
is the intersection of the surfaces (8) and (29) in the (F, L, K) space, followed in [J.] for 
the cylindrical case, remains the same in the axisymmetric case. 

Let us stress that all the results of this section can be obtained in the axisymmetric 
case only under the hypothesis (14), that we call the fundamental hypothesis for the S(A) 
class, while in the cylindrical case they were general, i.e. valid without any hypothesis. 
A well known counter example of an axisymmetric solution that does not satisfy this 
hypothesis is Kerr solution. 

The linear dependence between the potentials (29) allow us to write this relation using 
the well known Papapetrou functions f p and w giving 

2 
(3)-1/2 

fp = r 	(w + ~ - ~ (30) 

We recognize from (30) the class S(A) (see [8J p. 204) of stationary vacuum solutions, 
which thus presents itself as the most natural generalization of the cylindrical class of 
Lewis solutions. 

These solutions can also be named the axisymmetric Lewis solutions. 

IV 	 Consequences of the kinematical role of the har
monic function X 

In order to analyse these consequences we return to the cylindrically symmetric case. 
We give now an integration method of the K(r) equation slightly different from the one 
presented in [1J. By doing this, we want to enlight the common feature of the two types 
of Lewis solutions, cylindric and axisymmetric, namely the fact that they only depend on 
a harmonic function. However, this function is imposed in the cylindric case, whereas it 
is arbitrary in the axial case. 

In the cylindrical case, (21) with (29) reduces to 

~K _ 8KK;K rr + r r 6. = 0, 	 (31) 
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with 
2

L\ =oK - 4a(3, 0 == 1 + 4a(3. (32) 

Changing the unknown function K = K(X) in (31) in such a way that 

Kxx OKKx-- = ---'-" (33)Kx L\ 

leads to 
Xrr 1 
-=- (34)
Xr r 

Consequently, after integration of (34), we obtain 

(35) 

J 
where ki and ro are integration constants, and, by integration of (33), 

dK r 
fA = kiln - + k2 , (36) 

V L\ ro 

where k2 is an integration constant. The study of the integral (36) leads to the cylindrical 

solutions of Lewis [1J. Let us note that all these solutions depend only on the solution of 
the differential equation (34), i.e., 

1 
6X = Xrr + -Xr = 0, (37) 

r 

which means that X is a harmonic function. In this special case, of cylindrical symmetry, 
the differential equation (37) can be explicitly integrated, giving the only solution (35). 

It is no longer the case in the more general axisymmetric situation, for which the 

corresponding equation (hereafter (40)) is a partial differential equation, even though the 

line reasoning remains the same. Indeed, coming back to (21), it can be written as 

6K = f(K)(V K? (38) 

The standard procedure of changing the unknown function K = K(X) used in (23), gives 
now with (29), 

(39) 

With (39), (38) reduces to 

6X=0. (40) 

Vye have that (39) is (33) with x(r, z) arbitrary harmonic functions in place of the par
ticular harmonic function, In r, convenient for the cylindrical case. 

So, we can obtain from the functional hypothesis (14) the different classes of the Lewis 
solution by an analysis similar to the one used in the cylindric case [1]. 
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V 	 Three classes of axisymmetric solutions obtained 

from (29) 

The solutions K(X) of (39), expressed in terms of an arbitrary harmonic function x(r, z) 
can be classified following the sign of 0, defined in (32), like in the procedure used in the 
cylindrical case [lJ. 

The corresponding functions F(X) and L(X) are deduced from the relations 

F = K -:r- ViS. L = K ± ViS. (41) 
2a' 2f3' 

obtained from (8) and (29). From (6)-(8) and (41) the potential /-l obeys the equations 

1 r 2 2 
/-lr = - 2r + E"2(Xr - Xz)' (42) 

/-lz = ErXrXz, (43) 

with the following values for E, 

+1, 0> 0 
E = 0, 0 = 0 

{ 
-1, 0<0. 

For this axisymmetric spacetime we can calculate its vorticity vector Da given by 

Eafh8 

Da = 2J9 U!3(Ub;8j + U[a;J.l U8)UJ.l), 	 (44) 

where ua is a time like vector 
Ua = 1 oa 

J-gtt t· 

Calculating the scalar of (44) for (1) we obtain 

(45) 

Some remarks about the vorticity of the S(A) solutions is presented in the conclusion. 
Finally, we present the three classes of solutions obtained, which are the following. 

V.I Class I: 0 > 0 

V.l.l af3 > 0 

(3) 1/2
K = 2 a cosh X, 	 (46)( o 

F ~ (%r (~COShX'F sinh X) , 	 (47) 

f3)1/2 ( 1 	 )
L =; y{; cosh X ± sinh X . 	 (48)( 
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V.1.2 Ct{3 < 0 with -Ct{3 < 1/4 

Ct(3) 1/2 . 
K=2 ( -T smhX, ( 49) 

Ct) 1/2 ( 1 )
F = ( - {j VJ sinh X =F cosh X , (50) 

(3) 1/2 (1 . )
L = (-~ VJ smhX ± cosh X . (51) 

V.1.3 Ct{3 = 0 

Here we use (8) and (29), instead of (41). 
Case Ct = 0 and {3 =I- 0 

K = eX, (52) 
1

F= -ex (53){3 , 

L = (3(e- X - eX). (54) 

From (45) with (52) and (53) we have n2 = O. 
Case Ct =I- 0 and (3 = 0 

K =ex, (55) 

F = Ct(e-X - eX), (56) 
1

L = -ex. (57)
Ct 

From (45) with (55) and (56) we have n2 =I- O. 
Case Ct = {3 = 0 
We use (3), (8) and (29) obtaining the Weyl static metric, 

K=O, (58) 

F = eX, (59) 

L = e-x. (60) 

This solution, without dragging, is an axisymmetric extension of the cylindrical Levi
Civita solution. 

V.2 Class II: 8 < 0 

We remark here, as we did in [1], that there is no need of introducing complex parameters 
in our approach, as it is usually done in the corresponding cylindrical case [8, 9, 10]. 

Ct{3) 1/2
K = 2 T sinX, (61)( 



CBPF-NF-041/02 8 

F = (~~r (~SinHCOSX), (62) 

(3) 1/2 ( 1 )L = - -; H sin X ± cos X . (63)( 

V.3 Class III: <5 = 0 or a{3 = -1/4 

K=X, (64) 
1 

F = 2(3 (X =t= 1), (65) 

1 
L = 20 (X ± 1). (66) 

Here we can integrate (42) and (43) obtaining eJ.L = c/Vr where c is an integration 
constant. This class corresponds to the van Stockum's class [5} (see [8} p. 205). 

VI Conclusion 

The general solution of the cylindrically symmetric stationary vacuum Einstein's field 
equations is the Lewis solution. It is no longer the case for the more general equations 
with axial symmetry. We precised here the most general hypothesis under which we 
can find the axisymmetric solutions obtained by Lewis [4, 5}. This hypothesis (14) is a 

functional dependence between the potentials F, Land K different from (8), and allowed 
us to demonstrate a linear relation between the potentials. This fact implied that the field 
equations can be interpreted as describing the motion of a classical particle in a central 
force field, like in the cylindrical symmetric case [IJ. We can recognize the solutions as 
belonging to the S(A) class (see [8J p. 204). We obtained these solutions without recalling 
to the Papapetrou class, as is usually done. These solutions depend upon an arbitrary 
harmonic function, and its classification in three classes is similar to the cylindrically 
symmetric case. Here again, as in [1], we do not need to appeal to complex constants, like 
in [9, 10]. This harmonic function plays the role of time in the motion of the precedent 
classical particle interpretation. It is interesting to observe in V.1.3, that for 0 = 0 and 
(3 =1= 0 the vorticity scalar n vanishes, while for 0 =1= 0 and (3 = 0 it does not. This 
shows a similarity with the corresponding solutions for the cylindrical case [I} where 0 

is associated to the parameter that produces the vorticity of the source, as showed by 
[11, 9]. On the other hand, (3 in spite of being also associated to the stationarity of the 
source does not produce vorticity, but topological defect as shown in (11] and topological 
frame dragging demonstrated in [12]. For b = 0, in V.3, we have eJ.L = c/ Vr which has the 
same r dependence as in the cylindrical system [11, 9] with energy density per unit length 
(j = 1/4. This class of solutions, like in the cylindrical case, is in the frontier between the 
two other corresponding classes. 
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