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I. INTRODUCTION 


Since the early studies of the semiclassical [1-4] and quantum molecular [5,6] dynam

ics for intermediate-energy heavy-ion collisions, the problem of implementing the Pauli 

exclusion principle for interacting fermionic many-body systems has been discussed as one 

of the key aspects for the models. Different levels of refinement in the prescriptions have 

been presented in the literature [7-12] in order to overcome this difficulty. The most recent 

version of quantum molecular dynamics, with explicit antisymmetrization of the many

packet nucleon trial wave function for the system, seems to be a reasonable self-consistent 

tool for calculation of the interacting many-nucleon system, including the Pauli principle 

[9,10,13-17]. We also refer the reader to a recent and comprehensive review article by 

Feldmeier and Schnack for details on the different versions of these models [18]. It is 

important to remark the relevance of having a practical and consistent prescription to in

clude Pauli-blocking in a microscopic description of the nuclear medium in order to better 

discuss the liquid-vapor phase transition [19-21]' and its implication on the fragmenta

tion of hot nuclei appearing in the final state of heavy-ion collisions at the intermediate 

energy region. Pauli-blocking is decisive to determine the many-nucleon clusterization 

process during the stage of the compound nuclear system disassembling [15,22-24], being 

necessary to have a more complete knowledge of the N-body distribution function in the 

phase space. 

On the other hand, when we are dealing with nuclear processes at lower excitation en

ergies such that the nucleus is not so drastically modified by fragmentation processes, it is 

unnecessary to have a detailed description of the complete N-body distribution function. 

In these cases, Pauli-blocking effects for internucleon collisional processes can be intro

duced in a more simplified way. This is, for example, the case for photonuclear reaction 

processes at energies below the meson photoproduction threshold, the so-called quasi

deuteron photonuclear absorption region (",30-140 Me V). The first proposal for a phe

nomenological Pauli-blocking function in these processes was presented by Levinger [25], 

who reformulated his original model [26] to better describe the nuclear photo-absorption 

cross section. 

In the beginning of the nineties an attempt by Chadwick and co-workers [27] arises to 

establish theoretical bases for the phenomenological Pauli-blocking function introduced 

by Levinger. The theoretical scenario considered to discuss the blocking has been the 

non-interacting Fermi gas, therefore Chadwick et al. have used the free nucleon mass 

for defining kinematic relationships and nucleon phase-space boundaries. However, we 
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show that there is still room to extend Chadwick's calculation to interacting nucleon 

gas by considering the change in the kinematic relationships and phase-space boundaries 

introduced by the use of a nucleon effective mass. Such a change can be qualitatively 

understood in terms of inclusion of the nucleon interaction in a mean field approximation 

for relativistic meson-nucleon as it is done in Walecka's theory [28-30]. In fact, a number 

of calculations for the nucleon effective mass have been carried out including phenomeno

logical adjustment to the nuclear properties or by considering many-body approaches for 

different forms of the nucleon-nucleon interaction in the context of both non-relativistic 

[31-34] and relativistic [28-30] mean field theories. 

II. 	PAULI BLOCKING FUNCTION IN QUASI-DEUTERON NUCLEAR 

PHOTOABSORPTION 

To discuss the Pauli blocking in quasi-deuteron photoabsorption, Chadwick et al. [27] 

introduced a Fermi gas model to describe the nucleus, and defined the blocking function 

at zero temperature as 

f(E) = JOkF JokFd3kvd3~p(lp,kv) p(lp,k7r) O"qd (k,E,) F(kv,k7r'k,) (1) 
JOkF JOkF d3k v d3k 7r p( 1p, kv) p( 1p, k7r) 0"qd (k, E,) , 

where 

F(k k 1...) = pP(2p, E, k) (2)v, 7r, ......, (2 E k) .p p, , 

Here, pP(2p, E, k) represents the neutron-proton state density when the Pauli principle 

is taken into account, given by [27] 

pP (2p, E, k) = J J d3k~ d3I<rp(lp, k~)p(lp, k~)o(E - k~ 2 12m - k~212m) (3) 

xo(k - k~ - k~)e(k~ - kp)e(k~ - kp). 

In Eq. 2, p(2p, E, k) is the same neutron-proton state density but without considering the 

Pauli principle. This corresponds to eliminate the step functions in the above expression 

for pP(2p, E, k). The delta functions in Eq. 3 take into account the energy-momentum 

conservation in the kinematics of the neutron-proton pair photodisintegration process, 

and the theta step-functions impose the blocking on the nucleon final state. In Eqs. 1-3 

kp is the Fermi momentum, kv, k7r and k~, k~ are, respectively, the initial and final 

nucleon momenta, (E" k,) is the energy-momentum 4-vector of the incident photon, and 

(E, k) represents the total energy and momentum of the photon and neutron-proton pair. 
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Note that the two-particle state density is expressed as a product of the one-particle state 

density for neutron, p(lp, k~) = 3N/(41rk}), times the one-particle final state density for 

proton, p(lp, k~) = 3Z/(41rk}). In all expressions above the integrals are six-dimensional 

in phase space, constrained to the hypersurface of momentum and energy conservation 

for the initial and final nucleon states, 

kv+~+ky=k~+k~, (4) 

I I 
EI = Ev + E1f' . (5) 

The purpose of the present work is to introduce the blocking for nucleon excitation by 

means of a procedure which can be applied to photonuclear, as well as to proton-nucleus 

and nucleus-nucleus reactions. The procedure consists in to simulate by a Monte Carlo 

calculation the quasi-deuteron photodissociation process, rejecting those events for which 

the nucleon final state has kinetic energy less than the Fermi energy. The Monte Carlo 

histories are generated by choosing initial nucleon momenta in the nucleus according to a 

Fermi distribution. The neutron-proton pair is randomly chosen inside the nucleus, and 

the kinematic relationships for the disintegration process are solved according to Eqs. 4-5. 

If the final kinetic energy of one of these nucleons is smaller than the Fermi energy, the 

process is blocked. Another history is generated, a new neutron-proton pair is chosen and 

the procedure is repeated for different Monte Carlo configurations of the neutron-proton 

pair in the target nucleus, until statistical convergence is reached after Nrep Monte Carlo 

trials. To determine the Pauli blocking function we have to calculate the ratio of the 

nuruber of blocked disintegration events to the total number of Monte Carlo trials, 

j p ( ) = Number of blocked disintegrations 
(6)EI N . 

rep 

This result substitutes Eq. 1 in our approach. 

Since the final nucleon state is determined by means of kinematic relationships (Eqs. 

4-5), and these should take into account the fact that the involved nucleons are bound, it 

is interesting to discuss the effect of the nuclear binding on the results obtained for the 

Pauli blocking function in Eq. 6. For instance, in the context of a simple relativistic field 

theory [28,29]' the nucleon mass receives a shift due to the scalar field, m* = m - gqa ( m 

is the free nucleon mass and gq denotes the nucleon-a coupling constant), and the nucleon 

momentum should be changed correspondingly to an effective value, keff = k - gw w (here 

gw is the nucleon-w coupling constant). However, in the mean field approximation for 
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spherically symmetric system the spatial contribution of the vector field to the effective 

momentum vanishes. The change in the nucleon energy is represented by the use of 

the effective mass in the dispersion relation, [(k2 + m* 2]1/2, and by the uniform shift in 

the energy levels, € = gwwo + [(k2 + m* 2]1/2. From the point of view of quasi-deuteron 

disintegration kinematic relationships established in Eqs. 4-5, this uniform shift in the 

energy is completely irrelevant. Therefore, in discussing the blocking of bound nucleons in 

the mean field approximation, we can solely use the change in effective mass to represent 

the binding effect. Several approaches to discuss nuclear matter in relativistic or non

relativistic mean field approximation can lead to different values of effective mass. In 

order to cover possible values obtained in these different approaches we have used the 

effective mass value as a numerical parameter to discus the effect of the nuclear binding 

on the Pauli-blocking function. 

III. RESULTS AND CON€LUSION 

In order to compare our results with those obtained by Chadwick et al. [27], we have 

focused on the quasi-deuteron mechanism for photonuclear reactions. A Monte Carlo 

sampling method has been used to calculate directly the blocking function. Also, in order 

to discuss the effect of binding on the Pauli blocking function we have varied the value of 

the nucleon effective mass m* = a m within the range 0.4 ~ a ~ 1.0. 

Results for the blocking function using the free nucleon mass and characteristic values 

of effective mass in the range appearing in the literature [28-34] are depicted in Fig. I-a, 

showing a significant change in the blocking when different values of the effective mass are 

used. Note that our curve for a = 1.0 is in good agreement with the results presented by 

Chadwick et al. [27] obtained for free nucleon mass. The small difference observed in the 

high energy region is probably due to the fact that in our method the blocking function is 

extracted from a direct Monte Carlo simulation of the quasi-deuteron photodisintegration, 

whereas in Ref. [27] it is obtained by solving numerically a multidimensional integral in 

nucleon phase-space, in terms of which the blocking function is defined. 

In Fig. I-b, Levinger's phenomenological blocking curves for two current values of 

the damping parameter (D = 60 MeV and D = 80 MeV in the exponential form e-D/f.--y, 

where €,.." is the photon energy), and Chadwick's result are presented for the sake of 

comparison with those in Fig. I-a. Our Monte Carlo simulation procedure reproduces 

Chadwick's results [27] for the blocking functions at finite temperature by sampling the 

nucleon momentum in the nucleus, using the partially degenerate Fermi distribution. For 
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temperature greater than zero, the decrease of the effective mass increases the blocking 

effect, which leads to smaller values of the Pauli-blocking function. In Fig. 2 we illustrate 

this effect on the blocking functions for T = 10 Me V (part-a) and T = 20 Me V (part-b). 

Finally, we call attention to recent experiments with a direct measure of the Pauli

blocking in the context of a two-spin state interacting degenerate Fermi atomic gas where 

collisions between these two states have been observed as blocked near Fermi temperature 

(see Ref. [35] and references therein). 

In conclusion, in the present work we have studied the relevance of the effective mass 

to the Pauli blocking function for the quasi-deuteron nuclear photoabsorption mechanism. 

We have shown that results by Chadwick et al. [27] can be reproduced by our method 

of defining the blocking function when a free nucleon mass is used, both at zero and 

finite temperatures. We have also observed that the effect of decreasing effective mass is 

to make stronger the blocking, both at zero and finite temperatures.In addition, and as 

it should be expected, the increasing of temperature weakens the blocking. Finally, we 

wish to emphasize that the present procedure to include Pauli-blocking in semi-classical 

computational simulation of photonuclear reaction can be directly applied to nucleon

nucleus and nucleus-nucleus reactions as well. 
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Figure Captions: 

Fig. 1: Quasi-deuteron Pauli-blocking as a function of incident photon energy. The full 

line represents the result by Chadwick et al. [27] for T = O. Our Monte Carlo simulation 

for the blocking function with m* = amo (the in-medium nucleon mass) is represented by 

squares for different values of a (part-a). For comparison, Levinger's phenomenological 

function e-D/€-y is shown for two values of the damping parameter D as shown in part-b. 

Fig. 2: Pauli-blocking function at finite temperature for different values of the nucleon 

effective mass. In part-a we show results for T = 10 MeV, and in part-b for T = 20 MeV. 

The full lines represent the results by Chadwick et al. [27]. 
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