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Abstract 

The holographic encoding is generalized to subalgebras of QFT localized in double cones. It is 
shown that as a result of this radically different s pacetime encoding t he modular group ac ts geomet
rically on the holographic image. As a res ult we obtain a formula for localization entropy which is 
identical to the previously derived formula for the wedge-localized subalgebra. The symmetry group 
in the holcgraphic encoding turns out to be t he Bondi-Metzner-Sachs group. 

The aims of this paper 

In the algebraic setting of QFT the hologmphic projection changes the spacetime indexing of subalgebras 
contained in a given localized algebra; the bulk localization structure becomes replaced by the spacetime 
indexing of subregions associated to its causal horizon. In this process the bulk algebra as a global object 
remains equal to t he horizon aigebra. In other words holography does not change the a bstract algebraic 
substrate; not unlike enzymes acting on stem cells, holography just leads to a different organization in 
space and time. The simplest case is the wedge-localized algebra which is identical to its (say upper) 
horizon algebra A(W) = A(Hor(W)) , but both spacetime interpretations (bulk and causal horizon) lead 
to an entirely different substructure. It turns out that each substructure is local in its own setting but 
non-local relative to the otherl. In [1] the holographic method for the special case of the free scalar 
field was presented for the wedge algebra; in this case holography is closely related to the old "lightcone 
quantization" . In the interacting case the naive restriction method on pointlike fields fails and instead 
the more structural algebraic modular localization approach takes over. Independent of the mathematics 
used , the main aim is always to simplify certain properties of QFT, naturally at the expense of certain 
others. Either way, the result is that t he theory on the horizon is the restriction of a transverse-extended 
chiral theory on the lightfront restricted to the horizon which is half the lightfront. The main conceptual 
instrument for analyzing the thermal properties of the vacuum state restricted to the algebra of the 
horizon (which is half the lightfront) is a theorem which says that this situation is in a one-to-one 
relation with those of the global lightfront theory in a standard heat bath lightlike translation KMS state 
at temperature 2;'1'. This theorem permits to carry the standard thermodynamic limit formalism into an 
approximating seqL:ence for thermal manifestations of the vacuum state restricted to the wedge algebra 
A(W). In particular one finds for the entropy [1] 

C71' 
s/oc(c) = A Ilncl- + o(c) (1)

<-0 5 

C71' ( 1 ) . AR - R=V-+o-,\!= ,E=e
5 R 

where A -> co is a sequence of transverse "boxes" which exhaust the area of H or(W) (i.e . the edge of the 
wedge W) and E is interpreted as a measure of distance of the (Gibbs state) approximand to A(Hor(W)). 
The second line is the entropy in the heat bath interpretation of the global lightfront algebra in a f3 = 2;'1' 

IThe well-studied conformal holography of .-\dS~conformai QFT is not a holography in the present sense since its 
spacetime encoding does not result from projecting AdS onto a null surface but rather onto a timelike boundary at infinity 
(the limiting case of a "brane" ) which just inherits the original causality [2)[31. Holography in the present sense of projection 
onto the null horizon is a. much more radica l change of spacetime encoding [11 · 
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thermal state; here R is the "box size" 2 in lightray direction and V is the standard volume factor. The 
formula shows that the lincl divergence of the area density of the localization entropy is of a kinematical 
ongm; the only quantum. matter-depe~dent contribution is contained in c which measure the cardinality 
of holograhlc matter which for SimplICity has been normalized according to the c-value in the Witt
Virasoro algebr~. This is precisely wha~ one. intuiti:el~ expects for an entanglement-entropy caused by 
vacuum fluctuatIOns wlthm a collar of sIZe c m the lImit c -> 03 . As in the classical heat bath case there 
is a numerical factor which depends on the quantum matter and a (diverging) size factor (the volume V) 
of which two. trans:,erse powers .go mto the area factor and the longitudinal (Jightray) factor undergoes a 
remterpretatlOn (via conformal mvariance) as lincl in terms of a Iightlike short distance c. In the classical 
heat bath case t.'Iis differentiation (according to the kind of quantum matter) is absent and the classical 
Bekenstein area formula shares this area proportionality (although conceptually it has a very different 
origin in differential geometry without any direct relation to thermodynamics). 

It is our aim in this paper to show that these conclusions are independent of the geometry of the 
localization region and its causal horizon, in particular they are not related with the noncompact extension 
but also remain valid in the compact case. As a typical causally closed compact region we take the double 
cone (i .e. the imersection of the forward lightcone with the backward lightcone whose apex has been 
shifted into positive timelike directionO. As a result of the non-geometric nature of the modular data 
for the double cone algebra with respect to the vacuum (A(D) , O), the derivation is considerably more 
subtle than the ca.se of a wedge algebra. 

As an interesting side result of the double cone holography we obtain a derivation of the Bondi
Metzner-Sachs symmetry group, which was discovered by the three named authors and analyzed in 
terms of an asymptotic classical formalism developed by Penrose [21] In the present context it arises as 
an intrinsic (i.e. lJot through quantization) property of local quantum physics. It turns out that the 
appearance of this huge group belongs to those properties which allow a. much more natural physical 
understanding in the quantum context than in the classical setting. Another well-known example of 
conceptual simplification on the quantum level is the notion of integrable field theories. Whereas classical 
integrability is a very complex property whose presence has to be checked in a case by case study, quantum 
integrability has a simple and universal structural characterization in terms of the notion of wedge
localized vacuum-polarization-free-generators (PFG) [18]. It is interesting to note that the vacuum
polarization properties are also at the root of those big symmetry groups whose ("fuzzy") action on the 
bulk has no classical Noether counterpart. 

The framework in which we work is that of local quantum physics. This is often (especially in the older 
literature) called "axiomatic QFT", a term which we do not use because it has the connotation of a once 
and for all laid down set of postulates. Although there is a stock of universally accepted requirements 
(as Poincare invariance and locality), the spirit of local quantum physics is flex..ible and what one adds 
depends a bit on the aims one wants to achieve. Whatever one adds must at least be true for free fields. 
A second important requirement is that it allows an intrinsic (i.e. no reference to a classical parallelism 
as Lagrangian quantization) and fairly precise mathematical formulation. 

For the present purpose we add the quantum version of the laws of classical causal propagation. We 

demand the causal completion property 
A(0) = A(a") (2) 

where the dash stands for the causal disjoint of a spacetime region a arId the causal completion is the 
double causal disjoint. It is customary to also require chis "causal shadow property" in the limiting case 
where the region deg,merates into a piece of a spaceJike hypersurface. The associated algebra is then 
defined by taking a sequence of regions Oi of deceasing height (time goirlg upward) whose intersections 
approach the spacelik,~ hypersurface and forming the algebra niA(CJ;) of intersection. Classically also 
certain characteristic data (data on null hypersurfaces) cast a causal shadow4

• For example characteristic 
data on half of a lightfront (i.e. semiinfinite extension in lightray direction) casts a shadow which is 
identical to the wedge of which the horizon is the half of the light front frOID which we started. The 
shadow is a region for which all lighrays which path through it must either have passed through the 

2The box is defined in terms of the conformal Hamiltonian L6R 
) [1) i.e. it is a "relativistic box" in the sense of [4). 

3The .o-dependence in this approach can only be taken seriously in the limite -> O. For finite c (corresponding to finite 
R in the thermodynamic case) one must confront the computationally much more involved "split property" [1). 

4The only case where this picture breaks down is that of massless 2-dim. QFTs. 
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characteristic null surface or (in case of an upper horizon) will still path through such a surface. On 
the other hand a region on the lightfront which is transversely not fully extended or which is bounded 
in licrhtray direction does not cast a causal shadow5 

. In the case of a lightcone any neighborhood of the 
ape; on the mantle casts a causal shadow which includes a (possibly very small) double cone; ~ut any 
other region on the mantle which does not contain the apex does not cast any shadow. We requrre 

Condition 1 If C is a characteristic null-surface which casts a nontrivial causal shadow Oc == Gil, we 

require the "extended causal shadow condition" 

A(C) = A(Oc) (3) 

As often, the devil is in the details. It is a priori not clear how to define the left-hand side, in 
particular if interactions are present . .An attempt to treat algebras on null-surfaces as limits of algebras 
on spacelike surfaces runs into difficulties. The solution is to employ holography in the sense of a radical 
change of spacet.ime-indexing of the bulk algebra. This will be done in the next section. For free fields 
this is achieved by explicit computations. If it turns out that there are interacting models which fulfill 
the spacelike bUt not the characteristic causal shadow property (I do not know any such example and 
would be somewhat surprised if there is any), the above condition and the validity of holography would 
be restricted to those models which fulfill this condition 

The paper is organized as follows. In the next section we present an explicit proof of our claim about 
double cone holography in the case of a massive free scalar field; we also present the structural arguments 
for the case with interactions. In section 3 it is shown that double cone holography leads to the Bondi
Metzner-Sachs symmetry group as well as to the afore-mentioned formula for the localization entropy 
(1) . 

Holography for double cones; from fuzzy modular bulk actions 
to diffeomorphisms on the horizon and back 

In the setting of :\Iinkowski space, i.e. of spacetime without curvature and with trivial topology, the wedge 
situation is the only non-conformal situation for which the modular group acts as a diffeomorphisms on 
the causally enclosed bulk matter. The K\JIS property of the modular group, and as will be shown here 
also the area density of entropy, are however equally valid if the modular flow is "fuzzy". In such a case 
there is no possibility to analyze the thermal structure in terms of an Unruh type Gedankenexperiment; 
nevertheless the thermal aspects of localization are important structural elements and it is natural to be 
interested in all aspects of a theory which is as stupendously successful as QFT. 

Such a typical non-geometric situation arises for a double cone localized operator algebra which acts 
standardly on the vacuum. In case the theory describes massive free particles the modular automorphism 
group (1t of the standard pair (A(D), fl) cannot be described by geometric trajectories [5][6J since it 
act~ in a "fuzzy" maz:.ner inside D (and in its causal complement) in the following sense: a subalgebra 
A(D) c A(D), with D c D a smaller double cone, suffers an instantaneous "foamy explosion" inside D 
and its causal disjoint D', i.e. (1t(A(D)) for every t > 0 and a generic jj inside D spreads instantaneous 
all over D in such a way that the image does not contain any localized subalgebra6 . Using Wightman's 
description in terms of smeared fields, the action of (1/ can be transferred to the space of D-supported 
test functions, but a further encoding into diffeomorphisms acting on the spacetime variables of the test 
function is not possible. It is expected [81 that for free massive fields such spreading can be described 
in terms of pseudo-differential generators which act on D-supported test-function spaces, leaving the 
support and its causal disjoint invariant; but presently this hard functional analytic problem is only 
partially solved [9). 

Here we will avoid such a head-on brute force functional analytic attempt in favor of a radical change 
of spacetime indexing in terms of holography. The latter maintains the total double cone algebra (see 
4) but changes the spacetime substructure from its original indexing in terms of subregions of the bulk 

5Such a region plays no role in classical field theory, but the local quantum physics process of algebraic intersections 
assigns a nontrivial .llgebra to it. These are the algebras which are "fuzzy" in the bulk setting. 

6A mathematically precise form of this statement (even in the presence of interactions) can be found in [7J. 
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to that of subregions on its causal horizon. It turns out, and this is the main simplification, that the 
modular group acts geometric in the new indexing on the horizon. This is possible because the two kinds 
of spacetime-indexed subalgebras have a partially nonlocal relation relative to each other. 

One could ill fact substitute the net of bulk subalgebras in the AQFT approach by the family of 
their (lower or upper ) causal horizons indexed subalgebras. In this case all the modular groups act 
geometrically, but the formation of intersections by using horizons without the bulk becomes awkward 
in terms of these "hollow" light-cone stumps . There is a kind of complementarity principle: either one 
uses the bulk setting and works with the geometric picture of intersections for which the modular groups 
act non-geometrically, or one uses the holographic projections in which case the modular groups act 
geometrically and instead the problem of intersections becomes awkward . 

We will now translate this verbal description of the modular structure obtained after holographic 
projection into mathematics. In analogy to the wedge situation, we expect the holographic projection of 
A (D) to be a an extended dUral theory. The lower (upper) causal horizon of a rotational symmetric D is 
a characteristic boundary which, if we place classical characteristic data on it, leads to a unique classical 
propagation inside D . For simplicity we take the lower horizon of a rotational symmetric double cone of 
radius 1 which we center at the origin so that the (lower) horizon aD(+) becomes part of the mantle of 
the forward lightc:me with the apex shifted down to (-1, 0). 

If the double cone algebra A(D) would be a subalgebra of a conformal QFT, the modular group of 
(A(D), D) would be identical the geometric conformal transformation in [10j. This situation has been 
recently analyzed in the spirit of a "conformal Unruh observer" [11] . Whereas the mathematics is straight
forward, it seems that the authors stretch its physical aspect far beyond Unruh's Gedankenexperiment. 
Whereas conformal QFT is a useful idealization of certain particle physics observables in certain high 
energy limits for h.ighly inclusive cross sections [12], it becomes somewhat science fiction if used on the 
side of the observer and his/her hardware. The fuzzy modular action on the massive bulk prevents a 
geometric interpretation a la Unruh; it is hard to imagine what an observer must do in order to put 
physical life into such a Hamiltonian with a two-sided spectrum and a fuzzy propagation . On the other 
hand the world of the holographic projection in which the modular Hamiltonian acts geometrically is 
physically unattainable for an observer and his hardware; at least for this is true for double cone horizons 
in Minkowski spacel;ime whereas in the case of black hole event horizons this is not so clear. 

Here we will use I;he double cone situation in order to investigate structural questions of (not necessarily 
conformal) QFT. in particular about localization entropy. The starting point is the algebraic identity 

(4) 

which is the local quantum physics version of the classical statement that the characteristic data on 
aD(+)) fix uniquely the propagation inside D (the + sign is used because the lower horizon of the double 
cone is part of the mantle of the forward cone). For the algebra of free fields this can be shown similarly 
to [13] i.e. the problem can be reduced to the "first quantization" level of spatial modular theory within 
the Wigner represent.ation setting. Viewing this as a limiting case of the time-slice (causal shadow cast 
by spacelike surfaces) property, one simply takes this as the starting definition of holography for causally 
completed regions in the presence of interactions. If there really exist physically viable nets of local 
observables which obeys spacelike locality and fulfills stability (energy positivity or KMS stability [14]) 
but do not obey this characteristic causal completion property (and therefore are problematic from an 
holographic view'point) , they simply will not be considered here. 

N; in the previous case of a wedge, the main achievement of holography is that the lightlike boundary 
has a radically different local substructure of aD(+) as compared to D . A crucial difference is that the 
fuzzy action of the modular group on the bulk gives way to a geometric modular action on the boundary 
i.e. (appealing ro the continuity of the modular action) the action becomes asymptotically geometric 
near the horizou aD(+) where it coalesces with the restriction of the action of the conformal modular 
group 

(5) 

where r+ = r + ;. t = r - 1, -1 ::;:: r+ ::;:: 1 and the two angles parametrize the directions transverse to 
the light rays . In analogy to the wedge-localized situation, the chiral Moebius group and the associated 
spacetime substracture of aD(+) results from the modular inclusion A(aDi+)) c A(aD(+)) where aDi+) 
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is a shortened part of oD(+l with -1 -:s: r+ -:s: a < 1. Inverting the situation on the basis of property 
(4), the geometric boundary action would have a modular extension into the causal dependency bulk 
region D which for the realistic case of massive matter content would be "fuzzy". In terms of the 
pointlike Wightman setting, "fuzzyness" in the case of free fields is expected to mean that the space of 
D-supported test-function spaces suffers a transformation whose infinitesimal description is associated 
with a nonlocal pseudo-differential operator7 which however preserves supports within D and within 
its causal complement. The holographic equation (4) implicitly fixes the action of at on A(D) and as 
long as one avoids detailed questions concerning how at acts on the local substructure of D (i.e. on 
smaller double cones inside D) it is sufficient to know the geometric action of the modular group on the 
holographic projection A(oD( +»). In fact one could encode the whole net structure of algebraic QIT 
into the associated holographic projections, thereby hoping to render the modular group actions more 
geometric8 . Since the actions of the modular group (but of course not the anti-unitary inversion J) on 
algebras localized in causally closed regions are uniquely fixed in terms of the representation structure 
of the Poincare group [15j[16], it would be highly desirable to have a proof of consistency between the 
holographic definition and the one in terms of algebraic intersections starting from the geometric modular 
action on wedge algebras. 

In the following we explain how double cone holography works for a free field; since the arguments 
are completely analogous to the wedge case we can be brief. The restriction of the free scalar field to the 
mantle of the forward light cone is obtained by parametrizing the free field in the spacelike region of the 
apex of the Iightcone taking the limit from spacelike directions i.e. 

A(x) = _1_3 Jeimr+(shxch£J-cOS1?chxshO)a*(e, e; ~ dD. + h.c., f) = <f.(x, PJ (6) 
(27r) 2" 

t = r +shX, r = r +chX, Po = mcM, 1751 = msM, p= 1751 e-
In order to maintain t, r finite in the limit r+ -> 0 it is necessary to compensate by letting X -> 00. As 
for the analog case of the lightfront [1] [1 7) [18] the m looses its role of a physical mass and passes simply 
to a dimension-setting parameter whose contribution to the two-point function is an additive logarithmic 
spacetime-independent constant. The additive decomposition in the momentum space rapidity does not 
change the algebraic structure and the limit becomes indistinguishable from the formula for a restriction 
of a massless free field to the mantle of the forward light cone (where for convenience of notation we leave 
out the subscript; LC (Iightcone) replacing the LF in the lightfront restriction [1]) 

A(r(x), e(x)) == Am:o(x)lmantle = limr+_oA(x) ~ Jeir(X)p(8)(l-cos19)a*(B, e(PJ) d: dD. + h.c. (7) 

[a*(B, e), a(B', e')] = ~o(e - B')o(e - e') 

[A(r, e(x)).A(r', e(.i'))] ~ Joo dp eiP(r-r')ol.(e - e') (8) 
-00 2p 

[orA(r, e(x)), or,A(r', e(£'))] = 0' (r - r')ol.(e - e') 

where we have denoted the x-space angular behavior by the spatial unit vector e(x); r(x) = eX denotes the 
remaining (after performing the limit) affine lightcone parameter corresponding to the x-space rapidity X. 
As in the Iightfront case the longitudinal part has an infrared divergence which in a proper test-function 
treatment (invohing functions which decrease at Ixl -> 00 in the x-space rapidity variable X) is rendered 
harmless (in the modular-adjusted rapidity parametrization it does not occur). The transverse factor is 
a quantum mechanical o-function and expresses the absence of transverse fluctuations. From this result 
one concludes that for a free field the lower horizon of the double cone supports an algebraic structure 
which is identical to (7) except with the apex now being at (-I,D) 

A(r(x) , e(x)) ~ Jeip(fJ)(r-l-rcos19)a*(e, e(PJ) ~dD. + h.c., -1 < r = thX < 1 (9) 

7 A investigation 3long the line started in [51 could be helpful to clarify this issue at least for free fields and strengthen 
the confidence that lbe propagation equation associated with the "modular Hamiltonian" is a nonlinear pseudo-differential 
equation (assuming ~hat the interacting field under consideration obeyed a local equation of motion). 

8 As mentione befure there is however a prize to pay for working with only horizons without their bulks in that the rules 
about intersections would loose their geometric appeal and become messy. 
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If we shorten the height of the conic section we obtain an inclusion of boundary algebras. 
The consistency of this modular inclusion with the ambient causal shadow property (4) requires the 

modular group of the larger double cone algebra J{? to act for T < 0 as a "compression" on the smaller 
one 

J{?(A(D)) c A(D), T < 0 (10) 

It would be nice to verify these consistency results also by an explicit calculation of the relevant modular 
groups for the massive free field along the lines in [5] together with the conjectured pseudo-differential 
nature of the modular generator; as mentioned before there are partial results in this direction. 

In analogy to the upper lightfront horizon for the wedge we take the mantel of the upper backward 
lightcone as the causal horizon of a double cone. Haag duality then localizes the commutant in the 
backward causal shadow cast by the extension of the lightcone to infinity in positive time direction. In 
this way the horizon oD(+l of the double cone becomes encoded into the interval -1 ::; r+ ::; 1 of a 
transverse extended chiral theory. The situation is similar to the wedge situation except that the action 
of the modular group on the bulk is fuzzy and that the transverse part is a compact angular region 
instead of a infinite Cartesian extension. The same theorem which in the wedge case [lJ assures the 
absence of transverse vacuum fluctuations (Takesaki's theorem on the structure of subalgebras and their 
relative commutants which are left invariant by the modular group of the larger algebra). In the wedge 
case these were the transverse finitely extended subalgebras whose boundaries consist of paraIIellightlike 
intervals, whereas for double cones these are regions of finite rp, 'l/J angular extension which are bounded 
by focussing lightrays9. In the latter case the manifest subsymmetries coming from the Poincare group is 
much smaller than in the case of the wedge horizon (the group of subsymmetries include the transverse 
rp,'l/J rotations) but again there are new chiral conformal subsymmetries which as a result of (4) act in a 
fuzzy manner on the ambient algebra. We collect the results for the characteristic holographic boundary 

algebras of double cones in case of massive fr ee fields into the following theorem 


Theorem 2 The inclusion of double cone algebras in geometric situations where the lower causal horizon 

of the smaller algebra A(D) is contained in that of the bigger one A(D) is a half-sided modular inclusion 

(28/ i.e. 


J;?(A(D)) c A(15), T < 0 	 (11) 

We view this as a geometric limitation on the fuzziness of modular propagation imposed by the 
geometric modular inclusion of the holographic projections to the (lower) horizon together with the 
causal shadow identity (4). It is the only geometric relic of the geometric conformal modular flow of the 
bulk which survives its delocalization caused by the mass. 

The proof consists in noting that this compressive (endomorphism) one-sided modular inclusion prop
erty holds for the holographic spacetime indexing . Hence by the characteristic causal shadow conditions 
formulated in the introduction this one-sided inclusion property is inherited by the corresponding bulk 
algebras. Although the modular action on the bulk is not geometric, it is still "partially geometric" in 
the sense of this theorem. 

The partial extension of the ambient Poincare symmetry to certain fuzzy acting conformal symme
tries10 is a new interesting result of the modular setting. It seems to be part of a wider story of modular 
symmetries which act as local diffeomorphisms on subalgebras [18J where the case of subalgebras indexed 
by subregions on horizons is certainly the most interesting and radical illustration of this point. 

3 	 The symmetry group and the localization entropy of the holo
graphic projection 

Without the transverse angular part the commutation relation for the holographic light cone restriction 
of the free field would be that of a potential associated with an abelian chiral current. It is well-known 

gIn both cases the algebras associated with the region between two light rays are totally "fuzzy" in the sense of the 
ambient spacetime indexing. They are born in the process of intersections and their possible pointlike field coordinatization 
cannot be done (apart from free fields) in terms of the ambient Borchersclass. 

lOThose symmetries beyond the Poincare and Moebius symmetries have no globally invariant state. As well-known from 
chiral theories, the higher diffeomorphisms are unitarily implemented but they possess at most partially invariant states. 
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that for chiral currents the Diff(SI) automorphism group of the commutator can be lifted to a unitary 
(ray) representation [19]. By the same argument this also can be verified for its transverse angular 
extension. But the symmetry group of the extended chual theory is much larger than that of a pure 
chiral theory. Since the tensor-factOrizing transverse quantum mechanical behavior manifests itself in the 
presence of a rotational invariant angular delta function, the full symmetry group includes now in addition 
to transverse rotations and circular (through lightray compactification) e-independent diffeomorphisms 
of a chiral theory e-dependent diffeomorphisms. The generated big group is known under the name 
Bondi-Metzner-Sachs (BMS group ) groupwhich generalizes the chiral diffeomorphisrns [20]. It contains 
"supertranslations" (angular dependent lightray translations) as a normal subgroup. To be more precise, 
the symmetry group of the holographic image on the mantle of a double cone is a subgroup of the BMS 
group; the full group is only achieved by taking the limit of an infinitely extended double cone. In 
the classical theory this group arose from the asymptotic t ± r lightlike behavior of classical zero mass 
finite helicity equations [21 ]; in the application to the Einstein-Hilbert classical gravity, which involves 
nonlinear helicity two fields, one also needs the assumption of asymptotic flatness [20] . 

The appearance of the BMS group in the holography of local quantum physics permits to remove 
the somewhat mysterious aspect of the classical setting which resulted from noticing that the asymptotic 
group is much bigger than the global symmetry (in our case the Poincare group) . The local quantum 
physical setting removes this mystery because any symmetry of the holographic image is also a symmetry 
of the bulk matter albeit not necessarily one which enters through quantization i.e. one which of the 
Noetherian type. Modular localization puts into evidence those nongeometric "fuzzy" symmetry actions 
which contains important informations about the dynamical structure. 

In case of interacting QFTs the holography becomes part of a structural analysis based on the use 
of modular localization theory. Thls was explained in some detail in a previous paper [1] for the case 
of the noncompact wedge region where a 7-parametric subgroup of the Poincare group which leaves the 
lightfront invariant was identified. We will defer the corresponding details for the compact double cone 
and the ensuing infinitely extended mantle of the lightcone for a separate paper [23]. 

Again one expects that the holographlc lightcone fields have pointlike generators, although apart from 
the free field one cannot hope for a simple linear relation to the generators of the original ambient QIT 
(assuming that the ambient massive net has pointlike generators). The generalization of the commu
tation structure of pointlike light front generators to the interacting case suggests to expect generalized 
(e-dependent) chiral fields which, as a result of the lightlike conformal invariance and the transverse 
factorization must be of the following form 

(12) 
n 

where the sum goes over a finite number of derivatives of delta functions and en are (composite) oper
ators of the model. The presence of the quantum mechanical 5.1 -function and the absence of transverse 
derivatives expresses the transverse tensor-factorization of the vacuum i.e. all the field theoretic vacuum 
polarization has been compressed into the r lightray direction. In view of the fact that in chiral theories 
the existence of pointlike field generators follows from the net and covariance structure of the algebraic 
setting [24], there seems to be no problem to construct pointlike fields in this transverse extended chiral 
theory; the local structure of the commutation relations is then a consequence of locality and Moebius 
covariance [1 ]. 

For the same reasons as in the above special case the BMS group is the symmetry group of this 
algebraic structure. 

Finally we should return to the problem of localization entropy which according to the title and the 
presentation of the final result in the introduction was the main purpose of this work. Since the transverse 
structure has no vacuum polarization and the vacuum polarization due to longitudinal localization are 
described by those of a chiral theory, the localization entropy law is identical to the area law for the 
wedge localization (or localization on the light front ) since the different transverse part does not generate 
entropy. A full proof which requires to relate the localization entropy on a lightcone to a global KMS 
state at temperature 27r on the lightcone will be deferred to [23] 
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4 Concluding remarks 

For reasons of clarity we have limited the presentation of holography and its consequences for localization 
entropy and the BMS symmetry to QFTs on Minkowski spacetime. The most interesting case arises 
however when gravitationally caused curvature converts the present structural relations into direct obser
vational physics as will be the case from the appearance of black holes in observational astrophysics. The 
Hawking temperature state after the formation of a black hole is a KMS statell for an observer outside the 
black hole with the KMS automorphism being that of the Killing observer time. Whatever localization 
entropy is in detail , it should be the other side of the coin corresponding to the same localization-caused 
thermal behavior as Hawking radiation . All entropy calculations for black holes, including those done 
within string theory must take place in this KMS thermal setting since the problem is to understand 
the entropy associated to the thermal Hawking effect and not to lend support to the classical Bekenstein 
area law by some quantum mechanical kind of degree of freedom counting l2 . The present derivation 
via holography fulfils this requirement, in fact it relates the Hawking effect , localization entropy and the 
quantum BMS group to the same basic physical principle. 

Holography is a radical change of the spacetime-indexing of bulk matter in such a way the new 
horizon-based indexing is partially nonlocal with respect to the original natural bulk indexing. It is 
precisely this partial nonlocality and the ensuing associated change of symmetry (in contrast to the 
symmetry-preserving AdS-eFT holography) which is at the root of the extraordinary analytic strength 
of the holographic method in the present context. In the light of this, discussions as in [26] about whether 
it is the bulk or the horizon which is reponsible for thermal manifestations, are somewhat academic. 

Perhaps the strongest indication that there is yet another reality to QFT which we are only beginning 
to comprehend is the way in which modular theory realizes the famous "monade setting" of Leibniz [27J 
within QFT [18][1]. Here the monade stands for the ubiquitous localized operator algebra of QFT, an 
algebra which is dist inctively different from all other classified factor algebras and which in Murray von 
Neumann classification terminology is called the hyperjinite type III 1 factor algebra [28J. A finite set of 
copies of this monade (2 in chiral theories, 6 in 4-dim. QFT), carefully positioned according to modular 
theory within a common Hilbert space, captures the full physical and mathematical richness of a QFT 

[29] . 
. The presence of such rigorous observations together with the holographic projection setting of the 

present work, shows in a most dramatic way that there is a lot of virgin territory out there in QFT to 
be discovered. In view of these new facts it is hard to believe that the problem of quantum gravity can 
be solved without a more profound understanding of these modular encodings of geometry coming from 
these recently observed fundamental properties of QFT beyond Lagrangian quantization. 
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