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. Abstract 

The spontaneous symmetry breaking of continuous symmetry in light-front 

quantized scalar field theory is studied following the ,tandard Dirac procedure 

for constrained dynamical systems. A non-local constraint is found to follow. 

The values of the constant background fields (zero modes) at the tree level, as 

a consequence, are shown to be given by minimizing the light-!ront energy. The 

zero modes are shown to commute with the non-zero ones and the isovector built 

£rom them is seen to characterize a (non-perturbative) vacuum state and the cor­

responding physical sector. The infinite degeneracy of the vacuum is described 

by the continuum of the allowed orientations of this background isovector in the 

isospin space. The symmetry generators in the quantized field theory annihilate 

the vacuum in co~trast to the case of equal-time quantization. Not all of them are 

conserved and the conserved ones determine the surviving symmetry of the quan­

tum theory Lagrangian. The criterian for determining the background isovector 

and the counting' of the number of Goldstone bosons goes as in the equal-time 

case. A demonstration in favour of the absence of Goldstone bosons in two di­

mensions is also found. Finally, we extend the discussion to an understanding of 

the Higgs mechanism in light-front frame. 

Higgs'Key-word s : L igh t-cone q uan t i za t ion; Gauge theory; 

mechanism; Dirac method. 
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1. The possibility of building a Hamiltonian formulation of relativistic dynamics on 

light-£ront surface, T = (t + z) = con.st., was pointed out by Dirac [1] and rediscovered by 

Weinberg [2] in the guise of old-fashioned perturbation theory in the infinite-momentum 

frame. Since the longitudinal momentum k+ turns out to be necessarily positive and 

is conserved, the vacuum structure is much simpler and it is conjectured that the non­

perturbative effects may be easier to handle in the light-£ront 'framework. The perturba­

tive field theory is, in fact, much simplified and with the introduction of the discretized 

light-cone quantization (DLCQ) [3] it haS developed into a useful tool to handle the non­

perturbative . calculations as ·well.~~theJ!' interesting developments are the recent studies 

04 L!ght-front T8.IDLQ.-Dancoff Field Theory [4]. to study non-perturbative. effects and the 

begining of a systematic study of perturbative renormalizatiC?n theory [5]. 

The problem of non-perturbative vacuum structure, say, in the presence of a sponta­

neous symmetry breaking scalar potential, Higgs mechanism, the fermionic condensates, 

and other related problems, in the light-front framework, however, has remained without 

a- clear understanding even at the tree l~vel. 

We address here to a description of the spontaneous symmetry breaking of a con­

tinuous symmetry in scalar field theory and obtain non-trivial vacuum properties [6] and 

then apply it to describe the Higgs mechanism. It is well known that any theory written 

in terms of light-front coordinates describes a constrained dynamical systen:l. A method 

for constructing the canonical framework is the ,tandard-Dirac procedure [7] widely tested 

in the context of gauge and other constrained systems. It was applied without anti mod­

ification, to describe the spontaneously' broken reflection symmetry in 1 + 1 dimensions 

[8]. We will extend its application to -the problem at hand. We remark that it will in 

the least be very embarassing for the usual Dirac procedure if we were forced to modify 

it, as suggested in some recent papers, for handling the simple degenerate systems under 

consideration. The procedure leads to nonlocal constraints. Such constraints which are 

. expected to occur in other theories wr!tten in light-front coordinates as well seem to have 

been overlooked. In our case they lead to a tree level description of spontaneous symmetry 

breaking analogous to the well known one in the case of equal-time framework. It is worth 

remarking that in view of the Coleman's theorem [9] some transverse dimensions must· be 
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present and we do confirm their necessity in our context and an argument in favour of 

the absence of Goldstone bosons in two dimensions seems to follow. We will not discretize 

the modes in order not to introduce spurious zero modes and finite volume effects. The 

Dirac procedure may also be used with discretized modes (box quantization) and the same 

conclusions are reached in the limit of the continuuum ease. 

2. The'scalar field Lagrangian with a global isospin symmetry in light-frame coordi· 

nates is 

(1) 


where the. real scalar fields <Pa., a = 1,2... are the components ot an isospin-multiplet 

<p, V(4)) (~ 0) is the potential, and for simplicity, in our context, we may assume it 

not to involve any derivatives of the fields. Here an overdot and a prime indicate the 

partial derivations with respect to the light-front coordinates T = z+ = (zO + z3)/V2 and 

z =z- = (Zo - z3)/V2 respectively, 21 =(zl,z2) represents the transverse directions, 

and d4 z = dTdz Q.2z. The Euler-Lagrange equation of motion, 2~'a. , -V~(<p) + 8i8i<Pa. 

, where i = 1,2 and V~ =bV(4))/b<pa., shows that the classical solutions, for instance, 

<p", = const., are possible to obtain. We seperate the zero mode along the longitudinal z 

direction, and write 4>",(T, z, 21) = wa.(T, 21) + V'a.(T, z, z) , such that V'a has no longitudinal 

zero mode and its integral over the space coordinate z vanishes. It is then easily seen that 

the Lagrangian density may be written as 

J:. = [ <Pa'(>'a - ~(8icPa)(8icPa) - V(cP) ], (2) 

which is of first order in ~a, contains no 'kinetic term for the zero mode, and consequently 

describes a constrained dynamical system. Indicating by Pa.(T, 21) and 7ra.(T,Z,21), the mo­

menta conjugate to Wa. and V'a respectively, the primary constraints are Pa.(T, 21) ~ 0 

and ~a =7ra - V"a ~ 0 while the canonical Hamiltonian is obtained to be 

He = L:dztPz [V(cP) + (1/2)(8icPa)(8icPa).]. (3) 

I 

. 
I
! 
I 
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where ~ stands for the weak equality [7]. 

We postulate now the standard Poisson brackets at equal T, viz, {Pa.(Z),Wb(Y)} ­

-62(z -Y), {1ra.(z,z),rp(lI,Y)} = -6(z -1I)62(z -ti) and define an extended hamiltonian 

(4) 

where 1Ia. and Ua. are Lagrange multip'liers and we suppress the coordinate T for convenience 

t of writing. On requiring the persistency in T of the primary constraints, we obtain 

P..(iC) - {p..(iC), H'} = - L: dz [V~(",) - 8i8i"'..] = -fJ..(iC) ~ 0, (5) 

From (5) we obtain an interaction dependent and n~nloca.l secondary constraint /3a ~ 0, 

which is the same as that follows also on integra.ting the Euler-Lagrange equation, as 

already pointed out in ref. [8], if we assume suitable assymptotic boundary conditions on I· 
i 

the fields, while (6) is a consistency requirement for determining 'Ua.. Next we extend the 

Hamiltonian to 

H" = H' + JRiC ",..(iC)fJ.. (iC), . (7) 

and check again the p~rsistency of all the constraints encountered above making use of 

H". We check that· no more secondary constraints are generated if we set #La. ~ 0 and we 

are left only with consistency requirements for determining the multipliers. 

The constraints Pa. ~ 0, f3a ~ 0, and ~a. ~ 0 are easily verified to be second class 

[7]. They may be implemented in the theory by defining Dirac brackets and this may be 

performed iteratively. We have 

Ca.b(Z, y) ={f3a(Z),Pb(Y)} 

= [L[- c5..b B,Bi + V~~(",) 1+ :! V~~~cI("') Jdz CPcCPcl + ...] c52 (iC - g), (8) 
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(9) 

where we have mad~ a Taylor expansion in (8) and set L = 21r6(0). The Dirac bracket 

with respect to the pair Po ~ 0, Po ~ 0 may be defined by 

(10) i 

which does satisfy {,Bo, g}" = 0 and {Po, g}" = 0 for any functional 9 of the canonical 

variables. We may set now Po = 0 and Po = 0 as strong relations. The second term in the 

bracket (10) introduces modifications only to the standard Poisson 1:>rackets of Wo with 

1ro apart fr°om serving to eliminate Po from the theory. We, however, show below that, in 

our context, this modification is also vanishing and consequently the Dirac brackets of the 

surviving canonical variables at this stage coincide with the standard Poisson brackets we 

started with. 

On making a Taylor expansion in the constraint ,Ba = 0 we find 

(11) 


In the limit when L -+ 00 it leads to 

(12) 

which is also seen to minimize the the expression (3) for the light-front energy. The 

expression (3) indicates also that its value gets lowered when the zero modes do not depend 

on z. They are then determined by solving V~(w) = 0 and would be shown to be relevant 

for a tree level description of the ground state. 

We will consider for definiteness the potential V{tP) = (A/4){tPatPa - m 2/A)2 , with 

~ > 0 and a wrong sign for the mass term to allow for spontaneous symmetry breaking. 

We require, V'o{w) = (AW 2 - m 2 )wo = 0, where w2 = WaWc' In the assymmetric or 

broken phase w2 = (m2/A) while in the symmetric phase or when the potential has the. 

correct sign for the mass term Wa = O. In the latter case the leading term in (8) is, 

f 

t 

\ 
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2-L(8,8, +m ) bGb62(f - ti), whose inverse vanishes when L -f 00. For the assymetric case 

the leadi~g term is CG,,(f,ti) == L [-bo,,8i8i + 2m2PG,,]S2(f - ti) where Po" = waW"/,,,2 

is a projection operator. In the L -f 00 limit the last term in (10) again drops out in the 

{n'.,,,,,,}· bracket. 

The remaining constraint ~a ~ 0 is second class by itself, {~G(z, 15), ~,,(y, ti)} = 

-260 " 62 (x - ti) 8z 6(:z; - y) . In view of the discussion in the preceeding paragraphs it may 

be implemented through the following (final) Dirac bracket 

We may now set also 1rG = cp~ as a strong relation and all the constraints are now 

hnplemented leaving behind the constraint (12) and removing Po. and 1I'G from the theory. 

The expression for the Hamiltonian now reduces to that given in (3) and we find from (13) 

(14) 

(15) 

The presence in the case of spontaneously broken continuous symmetry, of the trans­

verse directions, was crucial for showing that the zero modes have vanishing Dirac brackets 

with the non-zero ones. For example, in 1 + 1 dimensional field theory, we are unable to 

demonstrate this result due' to the lack of such an extra space dimension. In fact, we find 

Cob = 2Lm2 Pab which contains in it a projection operator which can not be inverted. 

There is, however, no problem with the spontaneous symmetry breaking of a discrete sym­

metry in this case as was shown in ref. [8]. We obtain thus another demonstration, in our 

framework, in iavour oi the absence of 'Goldstone bosons in two d.imensions [9]. 

The quantized theory commutation relations for the corresponding field operators are 

obtained by the correspondence i{/,g}D -f' [/,g] and we may need also an appropri­

ate prescription for ordering the operators in order to obtain a successful quantized field 

theory. The zero mode operators are seen to commute among'themselves and wi.th the 
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non-zero (longitudinal) modes contained in 'Po- They are thus proportional to the identity 

operator and the constants of proportionality are found by solving (12). They behave as 

background 'fields. The zero modes, in general, may be operators, for example, in the case 

of the bosoruzed version of the Schwinger model quantized again by the ,tandard Dirac 

procedure [10]. The model is obtained by functionally integrating out the fermion field and 

introducing a scalar field in the theory to keep the action local. The chiral symmetry of the 

initial Lagrangian goes over to the symmetry with respect to the shift by a constant in the 

scalar field. In order to be able to implement it at the quantized level, a zero mode from 

the only other available field in the model, viz, the gauge field, must form a a canonically 

conjugate pair with the zero mode-operator of the scalar field. 

The light-front commutation relations of the field operator 'Pc may be realized in 

momentum space through the expansion' 

1 Jdkd2 k _1_ 8(k) [a (k k) e-i(kz+I.&) + a(k k)t ei(kZ+I:.&)] (16)(V21r)3 , .J2k e, e , , 

. where the operators satisfy [ab(k, k), ae(k', k') t] = 5be5(k - k')52 (k - k') while othe:rs are 

vanishing. Here k = (kl, k2 ) indicates the transverse components while k is the longi­

tudinal component of the light-front momentum. Only the k >, 0 modes occur in the 

expansion. The vacuum state is defined to be annihilated by the destruction operators, 

a(k, k)lvac) = o. The normal ordering with respect to' the creation and destruction oper­

ators, which is interaction independent, may be introduced. The longitudinal momentum 

densityis :'P'o'P'o: and we find [P+,ab(k,k)] = -kab(k,k), [P+,ab(k,k)t] = kab(k,k)t 

which gives a justification for the above normal ordering. 

The description at the tree level of the ground state, when the symmetry is sponta­

2neously broken, goes as follows. A particular solution, (Wl,W2,W3 ••• ), of (AW 2 - m ) = 0 

defines a preferred direction in the isospace out of a continuous set of permitted orien­

tations. It characterizes a particular (non-perturbative) vacuum state, (ItPol)'UCie = W CI • 

The Fock space of the corresponding physical sector in the quantized theory is built by 

applying the particle creation operators on this vacuum state. The infinite degeneracy of 

the vacuum is described, in the light-front framework, by the continuum of the allowed 
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orient!1tions in the isospin space of the background isovecto~. In the symmetric phase 

Wa = 0 and there is no preferred direction to select. In the broken phase, when the vac­

uum expectation values of 4>0 select out a certain fixed direction in isospace, the potential 

expressed in terms of the fields CPa reveals that the surviving symmetry (wa remain fixed) 

is of lesser dimension than the initial one and we obtain Goldstone bosons in the theory as 

is shown below. There are no operators in the theory which will take us irom one sector 

to another. We obtain the same results if we use functional integral method as applied 

to second class constraints. In our example, we find also P- = H = J dz : V(4»: and 

P-lvac,w2 = m 2 / >..) = 0 while in the w" = 0 phase we obtain an infinite value. We also 

note that the normal ordered expression of the constraint (11) when applied to the vacuum 

state again leads to the expres~ion (12). This follows, in the light-front iramework, from 

the normal ordering, the positivity of the longitudinal momenta, and its conservation. Our 

procedure to handle the non-local con'straint may thus be considered justified. The full 

implication of the operator constraint 130. = 0 needs further study. 

We discuss now the isospin symmetry field generators. The global invariance of (2) 

under the isospin group at the classical level gives rise to conserved isospin currents and 

the corresponding field theory generator,s. Before the constraints are implemented they 

are clearly given by 

(17) 

Here ta are the hermitian and antisymm~tric matrix generators of the isospin group. After 

the constraints have been implemented, the field theory generators in the quantized theory, 

are now given by (Pa = 0, 'Ira = cP' a) 

Go(r) = -iJd'iildzfP'a(Z,iil)(to)abfPb(Z,iil) = Jd'kdk8(k)ua (k,k)t (to)ab ub(k, k) 

(18). 

80 that (18) is already normal ordered; the infinite term arising on normal ordering vanishes 

identically. In the quantized theory, the isospin symmetry generators, in the case of the 

light-iront quantization, thus, annihilate the vacuum state, independent of the form of the 



CBPF-NF-Ol0/92 

-8­

potential. This is in contrast to the case of equal-time quantization where some generators 

do not annihilate the vacuum when the symmetry is spontaneously broken. We find, on 

using the expressions (14) and (15) for the corresponding operators in quantized theory, 

that [Go, <Pea] = -(ta)elb~b, [Go,Wc ] = 0, and [Go;, Gp ] = ijofj-y G"n which are consistent 

with the generators annihilating the vacuum state. The selected preferred direction remains 

unaltered under isospin rotations in the quantized theory. 

It is now clear that for a vacuum state specified by a particular background isoveetor, 

satisfying "\w2 = m 2 ,there may survive a set of linearly independent field generators which 

still commute with the Hamiltonian (3), e.g., are conserved. They are evidently found 

by solving (ia)elbWb = 0 where la are appropriate linearly independent combinations, 

depending on the Wei, of the original matrix generators. The corresponding operators Go 
generate the surviving symmetry of the Lagrangian written in terms of the quantized fields 

<Pel, with Wei regarded as fixed constants, and whose number is also seen to be independent 

of the particular vacuum state selected. The counting of the number of Goldstone bosons 

may be done following the arguments as in the conventional equal-time quantization case 

. [11]. The nurobe!' of such bcsonz (ignoring the case of pseudo-Goldstone hosons) is the 

difference in the number of generators of the original and the final isospin symmetry group 

of the Lagrangian. 

3. The discussion of the Higg& mechani&m [12] ~ay now be given. For definiteness, 

we consider the Georgi-Glashow model [13] with 50(3) isospin gauge symmetry where the 

iso-triplet of the real scalar fi~lds transforms according to the adjoint representation. The 

gauged Lagrangian is written as 

.c = (V-4»G(V+4»G - ~(Vi4»)G(Vi4»G - V(4)) + ~[FG+_FG+_ +2FG_iFG +i - F G 
12F G12 ), 

. (19) 

where the the components of the gauge field are (A+ = A_ = (AO + A3)/v'2, A- = A+ = 

(AO - A3)/v'2, At, ..4.2 ), Fel PI' = 8pAelv - 8vAG." + gfelbcA"pAC., , and 1) indicates a gauge 

covariant derivative. The Lagrangian density is ga.uge invariant and through a continuous 

application of gauge transformations, ignoring the case when solitdns are present, we may 
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bring, at &nyspace-time point, the scalar multiplet to the form (0,0, q" =t/» t e.g., we will 

work in the unitary gauge. The potential then takes the form, V(q,) = ()./4)(t/J2 _m2/).)2. 

When the gauge coupling 9 is vanishing, the gauge field is decoupled from the scalar 

field and also the self coupling among the components of the iso-multiplet of the gauge 

field are absent. Each isospin component A G '" of the gauge field can be quantized in­

dependently, in the light-front frame, like a free electromagnetic field following the Dirac 

method. The scalar field Lagrangian may be quantized independently and in the broken 

symmetry phase the constraint (12) at the tree level for describing the ground state re­

quires ",2 = m 2/). where 4> = '" + V'.. On examining the quadratic term in V' we find that 

this fiel~ becomes massive with the mass square given by 2m2 • When the gauge coupling 

9 is made nonvanishing we find that some of the iso-components of the gauge field acquire 

masses. The quadratic terms in the gauge field arise from the terms involving the gauge 

covariant derivatives. We find that each one of the gauge fields AI ", and A2 ", acquires a 

mass while AS", remoins massless. The last one may be identified with the photon field. 

I! we regard 9 as an electric charge, the photon may be shown to couple with the charged 

massive vector boson fields defined by, (Al", ± iA2",)/,;2, while the massive Higgs field cp 

remains neutral. The would-be-Goldstone bosons are used up to give rise to the longitu­

dinal modes of the two massive vector bosons. The surviving 50(2) or U(1) symmetry is 

related to the fact that in the gauge adopted above we still are left with a symmetry with 

respect to the rotation in (1,2) isospace. The Higgs mechanism for other gauge groups 

ma.y be similarly described and even in other choices of the gauge. 
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