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Abstract 

Hadron diffusion equations with energy-dependent interaction mean free paths and inelas­
ticities are solved using the Mellin transform. Instead of using operators on the finite d ifference 
terms, the Mellin transformed equations are Taylor expanded into a first order partial differen­
tial equation in atmospheric depth t and in the transform parameter s. Then, these equations 
are solved by the method of characteristics. The hadron fluxes (nucleon and meson ) in real 
space is evaluated by the method of residues. For the case of a regularized power law primary 
spectr um these hadron fluxes are given by s imple residues and one, ne ve r before mentioned , es ­
sential singularities. A compar ison of our so lu tions with the nucleon flux measured at sea leve l 
and with the hadron fluxes measured at t = 840g/cm2 and at sea le ve l are made. The agrement 
between them is in general very good, greater than 90%. In order to check the accuracy of 
our calculat ions, a comparison between our so lution and the simu lated nucleon cascades is also 
made. 
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1 Introduction 

Cosmic ray propagation in the earth's atmosphere are governed by integro-differential equations in 
the atmospheric depth t and energy E. Several approaches are used to solve these equations such 
as analytical and numerical methods[ 1]. Also t1:lis propagation can be calculated using simulation 
techniques such as Monte Carlo[2]. In our case we think that analytical calculations are still worth 
pursing because they are useful for qualitative understanding, to check Monte Carlo results and 
to give the relations among the different fluxes of particles accurately. Hadron fluxes playa very 
important role in the deriving the leptons fluxes at different atmospheric depths, in the under­
standing of the emulsion chamber data at mountain altitudes and in the analysing some exotic 
events (Halo Events, Centauro Events) detected at Mt. Chacaltaya by the Brazil-Japan Emulsion 
Chamber Collaboration. Due to the complex structure these integra-differential equations are often 
solved formally in operator forms either in real space[3] or in integral transform space [4, 5, 6, 7]. 
However, according to these analytical theories, the calculated fluxes in real space are often evalu­
ated with very limited considerations on interaction mean free paths, >..(E) inelasticities coefficients 
K(E) and energy distribution of secondary hadrons ~(E, E'). Here we consider interactions with 
energy dependent of these parameters and distributions. 'vVe follow the use of Mellin transform to 
solve the governing nucleon equation. Instead of using operators on the finite difference terms, we 
Taylor expand the Mellin transformed nucleon cascade equation to a first order partial differential 
equation in atmospheric depth and transform parameter s. This equation is solved by the method 
of characteristics to give the characteristics of t~e partial differential eq uation and the transform of 
the flux which remains in a separable form of its variables. By inverting the transform, the nucleon 
flux in real space is solved as a function of the incident spectrum at the top of the atmosphere. 
Contrary to the customary non-analytic power law flux that does not have a Mellin transform , 
the boundary condition at the top of the atmosphere is represented by a regularized power law 
which is analytic over the entire energy range . In the past, the non-analytic incident fiux transform 
was used as the boundary condition to calculate the nucleon flux. This flux is now recalculated 
adequately. For the case of power spectrum incident flux, the nucleon flux is given by the residues 
of two simple singularities (s - ,) = 0 and (s + 1) = 0 and one, never before mentioned, essential 
singularity (5 - so) = O. The (s + 1) = 0 simple singularity comes from the regularization of the 
incident spectrum at low energies. The method is also extended to treat charged pion cascade. 

Our solutions allow us to investigate the effects of primary spectrum deviations from the power 
law form, the problem of the differents bending points of this spectrum (knee and ankle regions) and 
the energy dependence of the Z-factors (broken of the scaling law for the hadronic interactions). 

This paper is divided as follow. In section 2 we derive the Mellin transformed equations for the 
nucleon and for the charged pion cases using an energy-dependent nucleon and pion interaction and 
inelasticity coefficients. We also consider a gro\"ing energy dependence for the secondary pion pro­
duction spectra from hadron-air interactions. In section 3 we study the method of characteristics 
for both nucleon and pion cases. In section 4 we perform the calculus of residues, of the equations 
obtained previosly, by inverting the Mellin transform, getting such as the simple as the essential 
singularities. In section 5 we present some numerical results and we make a comparison of our 
differential nucleon flux with the experimental data measured at sea level. We also make a compar­
ison of our calculations with the hadron fluxes measured at the atmospheric depth t = 840gjcm2 

(EASTOP Experiment) and at sea level (Kascade Experiment). Finally in 6, we discuss and make 
some comment in our main results. 
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2 The Hadron Diffusion in the Atmosphere 

2.1 The Nucleon Case 

From considerations of different fundamental physical processes, the number density flux of nucleon 
N(E, t) per energy interval 6E centered at energy E at a given atmospheric depth t is described 
by 

aN(£, t) = _ N(E, t) e (Xl ( )o(E _ E') N (E', t) dE'd (1)at )"(E) + Jo JE U T) T) )"(E') T) 

where )"(E) is the energy dependent mean free path, T)(E') = E/E' < 1 is the elasticity, u(T)) is the 
elasticity distribution. Modelling the mean free path by a power index (3, Eq.(1) reads 

(2) 

(3) 

where B is the normalization energy of mean free path . Instead of introducing mapping operators 
to the two terms on the right side of Eq. 3 to solve it formally in real space[3], we proceed to use 
the Mellin transform defined by 

(4) 

(5) 

where the energy E is normalized to some reference energy A , so that the transform does not carry 
dimension of energy to power s. Now, Eq.(3) in the transform space reads 

aN(8, t) 
at 

(6) 

With f( as the normalization energy of elasticity, we use the following average model of elasticity 
to power 8 

(7) 

where 80 = -1/0. For a uniform elasticity distribution, we have K, = 0, 0 = 1, and 80 == -1. In 
particular, taking 8 = 1 gives the average elasticity 

(8) 
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The equation of the flux transform then becomes 

(9) 

We note that should the energy E in the Mellin transform not be normalized to some reference 
energy A, then IV(s, t), IV (5 + (3, t), IV(s + (3 + fi,S, t) would have different dimensions in energy 
which would conceal the effects of mean free path and elasticity. Here, in Eq. (6), they have the 
same dimension of N(E, 0). The mean free path factor (AI B)/3 and the elasticity factor (AI K)""s 
are working as the weighting factors among different transforms. 

We observe that the nucleon cascade equation, Eq. (1), has two competing terms on the right 
side. The first term is the diffusion term that drains the flux N (E, t) 6, E at E to lower energies 
E'. The second term is the attenuation term that fills the flux at E by higher energies E'. Since 
the mean free path scaled by Eq. (2) vanishes as E I B goes to infinity with (3 > 0, the first term 
would dominate the equation and the spatial gradient of the flux would be very negative at high 
energies. As for the elasticity rJ = EIE' < 1, it goes to zero at a given EasE' goes to infinity. 
For the average elasticity < rJ > of Eq. (8) to have the same limit at a given E as E' I J( becomes 
infinite, fi, has to be negative. 

2.2 The Charged Pion Case 

As for the charged pion number density flux II(E, t) per energy interval f:::.E centered at energy E 
at a given atmospheric depth t, it is described by 

8II(E, t) 
at - ~~~;; + fal lOO (1 - b )u(rJ)8(E - ."E') ~~~i,t; dE'drJ 

roo ifJ(E' E) II(E', t) dE' + roo ifJ(E' E) N(E', t) dE' (10)
+ )E ' )..n(E') )E ' )"(E') 

where )..n(E) is the energy dependent pion collision mean free path, b is the charge exchange 
probability of the incident pion, and ifJ(E', E)dS is the probability of number of pions produced at 
energy E in the interval dE due to incident pion or nucleon of energy E'. Modelling the mean free 
path by a power index (3 (the same of the nucleon case), 

(11 ) 


oII(E, t) _~( E lII(E, t) + ~ r\l _b)( E )i3( ~ )i3+ 1u (rJ)II( E, t)drJ
at )..71" B )..71" )0 B rJ rJ 

+~ roo ifJ(E',E)(E' tII(E',t)dE' + _1 roo ifJ(E',E)(E' )i3N(E',t)dE'. (12) 
)..7I")E B )..N)E B 

We model the pion production by[3] 


, E' 0 E' )0 1 E]d 1 
 (13)ifJ(E ,E) = D(An) [1- (An E' E' 

where An is the pion production normalization energy, D = (d + 1) / 3, d = 4 , and (x, (X' « 1. The 
charged pion flux, Eq.(12), in the transform space reads 

1 1 A ­= - - fr (s + (3, t) + - (1 - b) ( K )"'S a(s)II (s + (3 + fi,S, t) + 
)..71" )..71" 
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1 A I ­_(_)CX-CX S¢(s)II(s + (3 + a - a' s, t) + 
An An 
1 A II ­_(_)CX-CX S¢(s)N(s + (3 + a - a s, t), (14)

AN An 
/1

¢(s) D J yS-1(1 - y)ddy, ( 15) 
o 

y = (~)CXI E . (16)
An E' 

Method of Characteristics 

To solve Eq.(9)and Eq.(14), we note that both /3 and I'\, are much less than s, so that one way to 
solve this equation is by iterations. Some researchers define two operators in the transform space 
to represent the two finite difference terms on the right side of Eq.(9) and four to Eq.(14), and to 
solve it formally by operators [3]. Following the property (3, I'\, « s, we choose to Taylor expand 
the two terms about N(s, t) and four terms about IT(s, t) to get a first order differential equations, 
that read 

A oi!(s, t) (A )f3[ _ ()(6 )]ON(s, t) A f3 ­
I 

-(B) [l-A(s)]N(s,t) (17)N ot + B {3 A s + I'\,S OS 

where A (s) = ( A )"'S a (s) = ( A )"S ~ 1 (18)
K K 0 (s - so) 

This partial differential equation is equivalent to the following set of ordinary differential equa­
tions with (s, t, ij) as the coordinates of a point in the functional space parameterized to ~ [8] 

dt ds dN _ d (19)
(AjB)f3L6 - A(s)({3 + I'\,s)] (AjB)f3[l - A(s)]N - ~ 

This method of characteristics in solving first order partial differential equations was used in su­
perradiant free electron lasers [9, 10]. Solving for the equality between dt and ds, 

ds 
(20)

(AI B)f3[;3 - A(s)({3 + I'\,s)] 

we get a trajectory between the variables t and s through the parameter ~, t = t( s, (3, 1'\,), which is 
the characteristics of the partial differential equation, Eq.(17). To get the transform of the flux, we 
could solve the equality of dN with d~, or with ds, or with dt. Since the boundary condition of N 
is given in terms of 5 at t = 0, we choose to solve with dt to get 

dt dN 
AN (AIB)f3[l - A(s)]N 

In( N(s, t)) = -J-l(s)_t (21 )
N(s,O) AN 

where J-l(s) = (~)f3[1 - A(s)]. 

The factor (AIB)f3 in Eqs.(20, 21) represents the relative weight of mean free path to elasticity 
effect. 
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For the pion case, Taylor expanding Eq.(14) and denoting A(s) = (Aj K)/'Csa(s), with K, = ex'-o: 
the partial differential equation reads ' 

'\r ( ;)-jJ OIT~:, t) + {,6 _ (1 - b )A( s) (,6 -r K,s) - (~ )0-0'S(,6 + 0: _ 0:' S)¢( s)} oIT( s, t) = 
Arr as 

-{[I - (1 - b)A(s) - (:rr )O-OIS¢(S)]IT(s, t) - ;: (:rr r~-OIS¢(s)[V(s, t)}. (22) 

The corresponding set of ordinary differential equations is 

( A) _jJ ds 
B dt 

1 [ 
~ ,6 -
~ 

(1 - b)A(s)(,6 + K,s) - A 1(-A )0-0 S(,6 + 0: -rr 0:' s)¢(s)], (23) 

(A )-,6 dII 
B dt 

1[-, 1 ­
/\n 

A 1 - 1 A 1 -(1 - b)A(s) - (_)0-0 S¢(s)]II + _(_)0-0 S¢(s)N
Arr AN Arr 

II(s) - Q(s)­
---II+-N. 

An AN 
(24) 

As for the boundary condition, the incident flux at t = 0 is often taken to have a power scaling 
in energy E of the form 

N(E 0) = JV, (E)-("Y,l) = JV, (EjB)-CY+l) (25), 0 G 0 GjB 

where Gis the normalization energy of the incident flux. The coefficient No corresponds to the 
flux at energy E = G. We note that this incident flux is singular at E = O. Taking the Mellin 
transform, we have 

(26) 

where E-m goes to zero and EM goes to infiuity. We note that this transform is not analytic 
due to the divergence either at the lower limit or at the upper limit because of the singularity 
in the incident flux. Truncating the spectrum at E-m and El'v[ is not desirable since it generates 
discontinuities on derivative with respect to energy. Traditionally, in the circulating literatures, 

(27) 


is often taken as the transform simply because it renders the correct N(E, 0) when substituted into 
Eq.(5). Nevertheless, this does not warrant that N(s,O) of Eq.(27) is the transform of N(E,O) of 
Eq.(25) according to Eq.(4). 

In order to overcome the nonexistence of the transform, we take the incident flux at t = 0 be 

(28) 

which levels off to No at E = 0 but goes to the power scaling at high energies with E » C. 'With 
this flux, the transform is analytic and it reads [11] 

N(s,O) = No(~)-(S+l) B(8 + 1" _ 8) = No(~)-(S+l) f(8 ~(~:(~)- s) (29) 

where B(x, y) = f(x)f(y)jf(x + y) is the beta function. 
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4 The Calculus of Residues 

Taking the inversion, the nucleon flux in real space is expressed as 

The flux is written in such a way that it contains explicitly the factor (E IG)-b+ 1) in front of the 
integral. This factor gives the b + 1) slope on a logarithmic plot. The integral gives the amplitude 
of the residues. The integration contour is a straight line parallel to the vertical imaginary axis 
cutt ing the horizontal real axis at Re(s) > 0 such that all the singularities lie to the left of the 
contour. Customarily, there are two ways to evaluate this integral. The first one is the saddle point 
method[12] by writing the whole integrant into an analytic function F(s ) to the exponent reading 
JeF(s) ds. Making use of the liberty in positioning the integration contour, Re(s) is chosen such 
that F(s ) is stationary at (Re(s),O) to evaluate approximately the integral on this saddle point. 
The second one is the residue method where the simple pole 5 = I is picked up by using the Cauchy 
theorem. Unfortunately, there is the singularity s = So in A(5). The function F ( s) is, therefore, 
not analytic. This introduces an essential pole to the residue method and makes these evaluations 
incomplete. 

For this fundamental reason, we choose to evaluate Eq.(30) by the method of residues including 
the essential one. We note that the Gamma function r( z) is analytic over the half plane of Re( z) > 0 
but has simple poles at z = -f where £ is a positive integer. According to Eq. (15) , there are two 

rgroups of simple singularities. The first group i at 5 = 1+£, and the second group is at s = -1- f 
that comes from Our regularization of the incident flux at t = O. These two residues are given by 

Resb) = No (E )-b+ 1) cf (_l)e (E )-efb + f + 1) e-J.LbH)t/ '\ N} 

G e=o £! G fb + 1) 


No(~)-b+1)Fl (E, t) (31 ) 

No(E)-b+1) {(E)C"Y+1) f (-1/ ( E)+efb + f + 1) e-J.L(-e-1)t/'\N}Res(-l) 

G G e=o £' G fb + 1) 


No( Z)-h+ 1) F2 (E, t) (32) 

We notice that the series in Eq.(31 ) is a convergent series in energy when (EIG) > 1 due to the 
(EI G)-e factor under which the residue is well defined, and contrary outside this energy range. 
On the other hand, the residue in Eq.(32) is --/ell defined when (EIG) < 1 due to the (EIG)H 
and (EIGrf +1 factors. The nucleon flux over the entire energy range is consisted of Res(-l) for 
(EIG) < 1 and Resb) for (EIG) > l. 

By expanding the exponential function in power series, the essentia l residue is described by 

Res(so) 

(33) 
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~e define two ~u~ctions G(s) = [(Gj E)(Aj K)nKJs = gS and V(s) = f(s+ l)rb-s)jrb+ 1) where 
he first one ongInates from elas.ticity and the second one represents the incident power spectrum 

~t the top of th~ atmosphere. Smce G(s) is analytic in the neighborhood of s = So, we expand it 
III a Laurent senes about s = So so that Res(so) becomes 

Res(so) = 	 No.(E)-b+1) {(E)"'Ie-(AIB)fJtIAN 

27r~ G G 


~ ~ ~_1 A f3 tIn (m) J V(s)
f:o~on!m!((B) ANJ) G (so) (s_so)n-m ds }. (34) 

By taking (n - m) = +1 terms, we pick up the contributions to the essential residue so that 

E ERes(so) = No( G) -b+1) {( G )"'I-so e-(AI B)a tlAN V (so) 

t[( A)"'so((A)f3_ ~)J f 2- 1 [Z2(n)r_ 1 } (35)
K B AN 6 n=l n! (n - I)! 4 

where Z2(n)j4 = (Aj K)KSO (Aj B)f3 (tj AN)(lj6)(ln g). For E < G, In 9 is positive, and the essential 
resid ue reads 

Res(so) 

(36) 

For E > G, lng is negative , and the summation is over an alternating series with the flux given by 

Res(so) = N ( E )-("'1+ 1) {( E )"'1- 8 0 e-(AI B)fJ tlAN V (so)o G G 

[( ;)"'SO(( ~)f3 A~V ~)J Z~n) J1 (Z(n)) 	 (37) 

where the argument Z2 (n) j 4 is now calculated by I(In g) I and J1(Z) is the Bessel function of order 
one. Due to the (EjG)"'I-sO factor where So < 0, Res(so) is well defined for (EjG) < l. For 
(EjG) > 1, the factor (EjG)"'I-sO makes Res(so) a rapidly increasing function of E. This, by itself, 
does not make Res(so) nonanalytic in the domain (EjG) > 1. However, for an increasing flux in 
energ:y E, the integrated flux would be divergent at any given energy E which makes it nonanalytic. 
For this reason, the essential residue is defined in (EjG) < 1 only. 

The Bessel function solutions of the essential resid ue make contact with the single nucleon case, 
and provide analytic understanding of the qualitative behavior of the essential residue. Nevertheless , 
these analytic solutions in closed form are derived by isolating the incident spectrum function V(s) 
from the elasticity function G(s). When taking the residue, V(s) is evaluated at So. This amounts 
to a simplification that over estimates the flux. To evaluate the residue correctly, we need to absorb 
V(s) into G(s) by writing G(s) = [(Gj E)(Aj K)nll:JsV(s) = gSV(s). Expanding this redefined G(s) 
in a Laurent series about s = So, and taking (n - m) = +1 terms, the essential residue and the 
nucleon flux read 

t 
Res(so) = NO(E)-b+l){(E)"'Ie-(AIB)fJtIAN ~ 2- 1 ((A)f3_ ~rGn-l(so)}

G G ~ n! (n - 1)1 B AN 6 

No(~ )-("'1+ 1) F.3(E, t) 	 (38) 
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N(E, t) = Res(-l) + Res(so) = NO(~)-h+l)[F2(E, t) + F3(E, t)], E<G (39) 

N(E, t) = Resh) = No(E )-h+1)[FdE, t)], E > G 	 ( 40) 
G 

For the calculus of the charged pion residues we will use the same procedure as the nucleon 
case. The pion prod uction function with d = 4 can be integrated to give 

, ~ n 4 1
<[!(s) = D L...(-1) Cn ( ).

n=O S + n 

With the boundary condition IT(s, 0) = 0, and using Eq.(21) for N(s, t), the solution of Eq.(24) is 

given by 

Q(S)jAN {~-(A/B){i(l-A(s))t/).N _ e-(A/ B)On(S)t/A"}N(s 0)IT(s, t) 
[II (s) j A 71" - (1 - A (s) )JAN J ' 


Z(s)(s - so){e-(A/B)O(l-A(S))t/AN - e-(A/B)On(S)t/A"}lV(s,O). (42) 


We have written (Q(s)jAN)j[II(s)jA71" - (1 - A(S))jANJ = Z(s)(s - so) so that the (s - so) 
dependence. where So i- -1, appears explicitly, and Z (s) is an analytic function of s that contains 
no singularities . The charged pion flux in real space is given by the inverse transform 

II(E, t) _ 	 _1_. I(E ) - ( s+ 1) IT(s, t) ds 

27n. A 


No(E)-h+l) /(Ep-sZ(s)[(s + l)fh - s) (s _ so)e-( /l / B j/l l-A(s) II/ A,y ci5 

27r~ G G f h + 1) 

_ 	No(E)_h+l) /(E)1-SZ(5/(5 + 1)[(,- 5) (5 - 50) 

27r~ G G f h + 1) 

e(A/ B)o (A / Ard" -0' s .p(5 )t/ A" e - (A / B)O [1- (1':"b )A(5) It/ A" cis. 	 (43) 

The first integral has two simple poles s =- -1 - £. and 5 = , + £. from the incident regularized 
power spectrum, and an essential pole 5 = 50 on the exponent. The second integral contains the 
same 5 = 50 essential pole plus five more essential poles 5 = -n with n = 0,1,2,3,4, and the 
5 = , + £. simple pole. The 5 = -1 - esimple pole is practically absorbed by the 5 = -n essential 
poles. Evaluating the residues, the charged pion fluxes for E < G and E > G are respectively given 
by 

II(E, t) 	 Re5(-1) + Re5(so) + Re5( -n) 

No( G 
E 

)-h+1) [II2(E, t) + II30(E, t) + II3n(E, t)] E < G , (44) 

II(E , t) 	 Re5h) = No(~)-h+l)[II1(E, t)] E> G. (45) 

The functions in Eqs.(44,45) are defined as follows 

IIl(E , t) = ~(-l)e(E)_eZ( -l e)fh +£.+l)( +e- )t:o e! G ' fh +1)' So 
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fe-tA l B).i3(l-Ab+e))t/AN _ e-(A/ B).i3 Pb+e)t/A",j, (46) 

II2 (E,t) (E)b+ I)'f(-1)f(E)+fZ(_e_1)fh'+f+1)(_f_1_) 
G e=o f! G f h' + 1) So 

[e-(A/B).i3 (l-A( -e-I))t/AN _ e-(A/ B).i3 P( -e-I)t/A",]. 
(47) 

As for the essential residue s = So, recalling G(s) = [(G/ E)(A/Ktll:]SV(s) = gSV(s) , we define 
two functions H(s) = Z(s)G(s) and K(s) = Y(s)Z(s)G(s) where Y(s) = e(A/B).i3Q(S )t/ A",. With 
these functions, we get 

(48) 

Other essential residues s = -n can be obtained in a similar manner by defining the Corre­
sponding Y(s). 

5 Numerical Results 

For the case of a power spectrum incident flux , we notice that the traditional calculation with the 
incorrect transform of the boundary condition, Eq.(27), gives 

(49) 

We have used superscript (,,,) to distinguish the corresponding parameters of Eqs .(35) calculated 
with Eq.(29). It is noted numerically that F(E , t) goes asymptotically to F*(E, t) at high energies 
compatible to Eq.(28) which goes to Eq.(25) at high energy limit . Nevertheless, F(E, t) and F*(E, t) 
are measured in units of No and No respectively, and these two units are very different. We recall 
that Eq.(25) diverges at E = 0 and No = N *(G ,O) is the flux at E = G. The normalization energy 
G in the divergent incident power spectrum, Eq.(25 ), can always be chosen arbitrarily because the 
coefficient No can be defined with respect to G according to No = N*(G, 0). On the other hand, 
Eq.(28) is regular at E = 0 with No = N (O,O). In this spectrum, G can no longer be arbitrary 
since it defines the energy where the spectrum begins to level off at low energies. At E = G, we 
have 2- b +1)No = N(G,O). 

To do numerical calculations of residues and consequently differential nucleon fluxes at sea level , 
we take B = 20GeV, K = 1000GeV and G = 1GeV. We also take k = -0.04 and r5 = 1.5, which 
means a growing nucleon inelasticity coefficients between 0.53 and 0.65, with the energy ranges 
from 100GeV to 40TeV. In order to compare this calculation with experimental data we use for 
the nucleon mean free path in the atmosphere AN = 96.40g/ cm2 and f3 = 0.027 [13] which are 
parametrized in the Eq.(2), and for the power index of the primary sprectrum we used I = 1.62 
[14]. Figure 1 shows the comparison of our calculations with the differential nucleon flux measured 
at sea level[15, 16]' t = 1030g/ cm2 . We see that when the mean inelasticity 1- < 1J > (Eq. (8)) 
is in the range mentioned above our solutions fit very well the experimental data. 

In order to calculate the differential hadron flux we need to take in addition some parameters 
which describe the pion production in this energy range . Taking into account the isospin symmetry 
we use then b = 1/ 3, which appears in the Eq.(lO) . We use the values d = 4 and D = (d+l )/3 = 5/3 
for the parametrization of the energy distribution of secondary pions from hadron-air interactions , 



10CBPF-NF-005/05 

Eq.(13). Considering the same energy dependence for nucleon and pion interaction lengths we use 
Arr/ AN = l.4 [17]. We call the attention that we are using the same growing with the energy for 
both nucleon and pion inelasticity coefficients. In Figure 2, our calculations for the hadronic fluxes 
are compared with the experimental ones obtained from the (a) EASTOP [18] and (b) KASKADE 
[19] collaborations at t = 840g / cm2 and t = 1030g/cm2, respectively. We see that our calculations 
reproduce quite well the experimental data when these coefficients are taken between 0.53 and 0.65 
as in the nucleon case. This results confirm a'1 estimative made in a recent work [20] where the 
mean nucleon inelasticity coefficient was taken constant, but showing a crescent trend. 

6 Conclusions 

To conclude, we have reconsidered the use of analytic methods to establish the physics of cosmic 
ray cascades. We have introduced the method of characteristics to solve the partial differential 
equation of the transformed flux with energy dependent mean free path and elasticity distribution. 
Special attention is given to the analyticity of the incident spectrum at the top of the atmosphere 
which enters as the boundary condition. According to this method, the flux transform remains 
in a separable form of its variables. The nucleon flux in real space is evaluated by the method of 
residues. For the case of a regularized power law incident spectrum, the flux is given by the simple 
residues (8 - ,) = 0 and (8 + 1) = 0, and the essential residue (8 - so) = O. Interpretation of the 
characteristics of the partial differential equation of the flux transform is proposed in a manner 
analogous to the functional analysis of Landau and Rumer [21]. This method is also extented 
to evaluate charged pion flux. In this case, the differential pion flux is given by simple residues 
(s - f) = 0 and (s + 1) = 0 and the essential rssidues s = So and s = -n with n = 0, 1,2,3,4. The 
(s + 1) = 0 simple residue comes from the regularization of the incident primary nucleon spectrum 
at low energies, and the essential ones appears as a consequence of the analytical treatment used 
here and we would like to stress that they were never been considered. We also have shown, in 
the last section, that our solutions describe very well the experimental fluxes both for nucleons and 
hadrons. Finally, we would like to mention that this method allow us to include, besides the energy 
dependence of the hadron interaction lengths, the energy dependence of the inelasticity coefficients 
and the breaking of the scaling law for the hadronic interacions. Thus, this approach becomes a 
very powerful instrument for modelling cascade theory in a very broad energy range. 
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