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Abstract 

We study how different parametrizations of the 

Thirring model behave under finite chiral rotations 

with the t-function regularizati~n for the fermion 

determinant. We show that in some cases the contri ­

bution from-the chiral Jacobian may change the sagn 

of the factor which multiplies the 
. 

quadratic term 
. 

in the auxiliary field leading to an exponentially 

divergent theory. We also propose how this problem 

could be remedied by exploiting the invariance of 

the theory 	under finite renormalizations. 

PACS numbers: 03.70 + k - 11.10. Gh - 11.10 Lm 

Keywords: 	 Thirring model; Fermion determinant; Chiral rotations 

t-function method. 



CBPF-NF-004/s7 

-1­

Since Fujikawa's discovery(1) that the chiral anomalies 

can be obtained by examining the change in the -fermionic 

functional measure under chiral rotations, there has been 

an increasing interest in the evaluation of the Jacobians 

associated with these transformations in the pa~h integral 

framework. Recently Gamboa-Saravl, Muschietti, Schaposnik 

and Solomin (G-SMSS) proposed~2),(3) a very elegant 

method based on the t-function regularization(4) and 

Seeley's expansion coefficients(S), which permits to 

extend in a natural way the evaluation of chiral Jacobians 

to theories which contain non-hermitian operators. They 

have shown(6) that their method is equivalent to Fujikawa's 

for the case of hermitian operators but yields different 

results when non-hermitian operators are presentQ.The 

question as to which method is correct has not been 

settled yet and further investigation is necessary. 

Both approaches mentioned above have one thing in 

common, they require an action which is quadratic in the 

fermionic fields. If there are quartic fermionic 

terms it is usual to reduce them to quadratic terms 

using auxiliary fields. However, it is well known that 

for some models, like the Thirring model(7) for example, 

this reduction can be performed in several ways. Some 

ways lead to hermitian Dirac operators while others 

lead to non-hermitian ones. We made ~se of the G-SMSS 

method which treats on an equal foot hermitian and 

non-hermitian operators to study· how the different 
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par am e t r i z a t ion S 0 f the Thi r ri n g mod e1 be h a v (-; un derehira 1 

rotations. We are going to show that some parametr~zations 

apparently lead to ill defined theories whose Euclidian 

action becomes unbounded for some choices of the chiral 

rotation parameter. We nlso show this problem can probably 

be cured by performing a finit~ renormalization. 

The Thirrtng model is described in two dimensional 

Euclidian space hy the Laarangian 

where p = 1,2 , ~ - y a and we choose n representation
f1 - II II 

in which the Y matrices are hermitian, namely Y1 = 01'
ll 

Y2 = °2' YS = °3 and £12 = 1. 

In Euclidian space 

(2) 

hence if M is any 2x2 matrix then 

(3) 

where detM stands for the determinant of M.Ttle identity 

(3) and the Pauli matrices property that det 0. = -1 may
1 

be used to rewrite the four fermion terms in several 

ways, for example 



~ - 22 (lVY 11 lV ) = 

f 
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2 
= ~[(~lV)2_(~}Y5lV)2], 

(4) 

where g,2 = 2g2. If we substitute the four-fermion term 

in (1) by the second term in (4) we obtain the well 

known equivalence betw~en the Thirring model and the 
j

N=1 Gross Neveu' model. Each term in (4) leads to a 	 ! 
j 

different parametrization of the Thirring model. After 	
! 
i 
Ireducing the quartic terms in the resulting Lagrangians 	 I 
tusing the identity 

I 
! 
L(5) 
~ 
I 
I 

I 
I 

we obtain respectively I 

I 
I 
! 

L, = lV(ia+gA)lJ1+~A~ - lV0 1lV + lA2 	 (6a)
2 it 	 ~ 

I 
- , 2 	 I 

= lV(il+igo)lV+~2 
- lV02 lV +2° 	 (6b)~ 	 I 

f 
I 

I- 1 2 	 t(6c)l3 = lV(iZ+9YsX)lV+~X2 
- $03$+2X 

-("Z " ) 1 2 1 2 - , 2 1 2 
~ = $ 1 +lQO+gysX lV+'20 +"2 X - lVD 4$+ 2 ° + 2 X 	 (6d) 
4 

where A ,0, X are auxiliary fields and we have 
11 ' 

suppressed the prime in g. Notice that only 0, and 03 
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are hermitian. 

Now the fermionic part of the generating functional 

has the structure 

(7) 


A local chiral rotation over the fermionic fields is 

defined as 

(8) 


where' r is a real parameter (O,~r~l) which is used b9 

G-SMSS to compose finite chiral rotations from 

infinitesimal ones by . iteration{3). We define 

(9) 


-II,. ­

Following Ref. (3) the symbol of the operator Or is 

O(D r ) = -~+ao 


and the' Seeley I s coefficients necessary for d = 2( 1+1) 


are 


b_1(x,~,A) = _(g+A)-1, b_2(x,~,A)=-b_1aob_1 (10) 


G-SMSS have shown that the Jacobian J associated with 

(8) is 
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.lnJ = 

( 1 1 ) 

We calculated Tr[b_3(x'~'A)Y5] for = A+Y5B+P+}5~aO 
where A, B, P ,Q may depend on x , rand a. The 

L 1J II II 

result which is general enough for our purpose is 

(12) 

To illustrate these ideas let us evaluate the 

Jacobian for L2 (6b). In this case 

= i~-irY5~a+igcrcosh(2ra)+ 
( 13) 

Ifrom which we read 

A = igocosh2ra, B = igcrsinh2ra, P = 0, Q
lI 

=-ira () ~ 
ll t-" II . I 

I 
I 

(14 ) 
I 

Substituting (14) into (12) and the result into (11) ! 

we obtain 

212 ~ 12 2.lnJ = -Jd .x '20 (x) 21T ( cos h4a ( x ) - 1 ) + 21T Jd x a ( x ) a a ( x) ) 

(15) 



I 

/ 
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and the. chiral-rotated generating functional 

SZ2 = J $ iii.'il1\ll!)o exp{ - Jd 2 x[iii( i~+igo /Y Cl)1\I + 

1 2 . 2 1 2 
+ 2(1+¥n(COsh4a-1))o -2naa a]} (16) 

'~ 

If we integrate over a 

2 

2[1+ ¥n(COsh4a-1)] 

1 ... 2 ]}--aa a ( 17) .
2n ' 

2y a 
but equation (3) implies that (~ e 5 ~)2=(~~)2 and 

so the effect of the chiral rotation amounts to a 

finite renormalization of the charge g2 if a is 

constant. 

Using expressions (11) and (12) W~ may easily 

repeat the exercise for the Lagrangians (6a), (6c), 

(6d) and we arrive at the following generating f
j 

ifunctionals 
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(19) 

1 2 2 1 2 2 
+ 2(1+~(COSh4a-1»a +2(1- ~(COSh4a-1»x 

(20) 


In deriving expressions (16), (18) through (20) we 

·have not neglected any total derivative. The results 

were written as they were obtained from expression 

(11). Several comments are in order. 


E x ami n i n g ex pres s ion (1 8 ) for ~r~ we rea lize t hat 


unless the term proportional to £~v F~v - £~va~Av is 

neglected the theory is not invariant under global 

chiral rotations (a = constant). Apparently the 

invariance of the Thirring model under global chiral 

rotations holds only in the trivial topological 

sector where one may safely neglect total derivatives. 

G-SMSS made some comments along these lines 

although they have not mentioned the term 

proportional to £ F ,\. . ~v ~v 

Expressions (19) and (20) for. Z3 and Z4 respectively 
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are .singular for some ch"oices of the chiral parame.ters. 

Indeed, for any value of g2)0 it is possible to find 

0.0 such that 

(21) 

If ex ) 0.0 the factor which multiplies X2 changes sign 

and the theory becomes exponentially divergent. 

However this problem may be remedied, the Thirring model 

requires renormalization and one must add counter 

terms to the Lagrangian. By choosing correctly the X 

field counter term (-x2) one may ca~cel the unwanted 

(_g2/ 2n)(coSh40.-1) rendering the theory finite. An 

analogous observation holds for Z2 where one may also 

eliminate the term proportional to 0 
2 which comes 

from the Jacobian (see (16» by means of finite 

renormal'ization. If ex was allowed to be imaginary 
2cosh40.~cos4ex and the factor which multiplies 0 

might also change sign whenever g2/2n ~1. The 

necessity for this renormalization is not trivial. 

Usually counter terms are calculated order by order 

in perturbation theory assuming that g is small. 

Our calculations, on the other hand,~re non 

perturbatlve,holding for all values.of g,eVen for those 

values for which the perturbative series does not 

converge at all. 

Our calculations are easily generalized for the 

http:values.of
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chiral Gross-Neveu model(7) (L = i~a~~a+(g2/2)[(~a~a)2 
a a - ( ~ Y5~)

2 J,a = 1, ... ,N). After reducing the quartic 

terms using au~iliary fields the N components of ~ 

decouple and one obtains the product of N terms 

identical to Z4. Hence, the Jacobian is J~ and the 

factor which multiplies x2 becomes (1/2)[1-(g2N/2n ) 

(cosh4a-1)] which may change sign if we choose a 

conveniently. 

In summary, we have studied carefully how different 

parametrizations of the Thirring model behave under chiral 

rotations using the ,-function regularization. We 

showed that all parametrizations yields a non-trivial 

Jacobian. The standard parametrization (6a) apparently 

-is invariant under global chiral rotations only if one 

neglect total deerivatives. other parametrizations on 

the other hand are invariant provided that one performs 

a finite renormalization after the chiral rotation. 

We have seen that for (6c) and (6d) ill defined theories 

may result if this renormalization is not performed. 

Finally this interesting result was obtained using the 

Lagrangian (6c) whose Dirac operator iZ+gysX is 

hermitian and in this case the G-SMSS method is 

equivalent to other approaches. 
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