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Abstract 

Although both the electromagnetic wave and the gravitational wave can be produced approximately from Maxwell-type equa­

tions, there are subtle differences in their respective exact equations. Since gravitational wave carries energy-momentum, the 

exact field equation of a gravitational wave must have a nonzero source term along its path, whereas a field equation for an 

electromagnetic wave does not. This explains that there is no weak wave solution of Einstein equation. Historically, neither 

Einstein & Rosen nor the Physical Review was aware that the nonexistence ofgravitational wave solutions is due to a violation 

of the principle of causality. It is pointed out that the criterion of Liu & Zhou on plane-waves is valid since the principle of 

causality requires the existence of weak limits. However, due to the influence of the popular but unverified assumption of the 

existence ofdynamic solutions, they made careless errors in their calculations and incorrectly concluded that their plane-waves 

have weak limits. It is shown that "plane-waves" of Liu & Zhou, is actually unbounded in amplitude, and have no weak limit. 

Therefore, Liu & Zhou provide additional evidence in supporting the nonexistence ofdynamic solutions. 
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1. Introduction 

In general relativity, a common mistake among theorists including Einstein [1] and Feynman [2], was assuming the existence 

ofdynamic solutions for the Einstein equation [3]. This question ofdynamic solutions was raised by Gullstrand [4] in his 1921 

report to the Nobel Committee, and Einstein was awarded the prize mainly for his theory on the photoelectric effects [5]. Due to 

prevailing conceptual errors such as ambiguity of coordinates that were pointed out by Whitehead [6], Fock [7], and Zhou [8], 

many theorists cannot reconcile the non-existence of dynamic solutions with the three accurate predictions, which is based on 

static solutions. It was not until 1995 that the nonexistence of dynamic solution is proven [9,10] and related issues are further 

addressed in 2000 [3] and in 2002 [11, 12]. In the proof that differs from previous considerations, physical requirements such as 

the principle ofcausality I) are crucial [3]. 

Nevertheless, some still do not accept this conclusion because they have mistaken non-static solutions 2) as valid dynamic 

solutions (see also Sections 4 & 5). For a linear field equation in physics, the existence of dynamic solutions is often true after 

static solutions are verified as valid. Formal linearization of Einstein equation also shows the existence of weak dynamic 

solutions. It turns out, however, such a linearization is mathematically valid only for the static cases [3]. In fact, all the existing 

''wave'' solutions are unbounded in amplitude and thus not valid in physics. Moreover, to explain the Hulse-Taylor binary pulsar 

experiment, it is necessary to modify Einstein's equation with an added source term, the gravitation energy-stress tensor (with an 

antigravity coupling), to accommodate the waves [9, 10] and to have a valid linearized equation. 

Currently, a gravitational wave is often explained in term of similarity with an electromagnetic wave because the linearized 

field equation for weak gravity is a set of Maxwell-type equations [13, 14]. However, there are subtle differences in physics 

between the electromagnetic wave whose sources are accelerated electric charges and the gravitational wave whose sources are 

energy-stress tensors. Since a wave carries energy-momentum, a gravitational wave should carry a source along, although an 

electromagnetic wave does not carry charges along. 

However, if such a source term of a gravitational wave is of the second order, this term would be absent from an equation 

for the frrst order approximation although such a term must be present in the full nonlinear equation [3]. This explains why the 

Einstein equation is incompatible with a wave solution of the linearized equation [9]. Moreover, for the case of a massive 

source, this linear equation can be derived directly from 3) Einstein's equivalence principle [3]. Thus, this field equation ofweak 

gravity for a massive source is more appropriately called the Maxwell-Newton Approximation (MNA) [9]. 

To demonstrate this physical interpretation, it is useful to analyze a "plane-wave" (although the nonexistence of a gravita­

tional plane-waves solution, which would presumably be an idealization of a wave from a distant source [15], has already been 

proven as due to the lack of a source term with an anti-gravity coupling [10]). In particular, Einstein's weak plane-wave solu­
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tion, obtained fonn the MaxwelI-Newton Approximation [16], can be used to iHustrate that a plane-wave solution would not 

have a weak limit. However, this is in conflict with the claim ofLiu & Zhou [17], which is based on explicit calculations. 

It will be shown that their claim is actualIy due to mathematical errors near the end. Their incorrect derivation is under­

standably influenced by the prevailing but invalid assumption that dynamic solutions exist for the 1915 Einstein's equation [3] __ 

the same influence that led to invalid analysis of the Einstein-Rosen [IS] cylindrical "wave" solution (see Appendix). This is 

another example illustrating that a bias belief could be decisive on the judgment of a theorist although this person may be 

otherwise excellent. On the other hand, this illustration of non-existence of a valid gravitational plane-wave solution is a simple 

but strong evidence for the conclusion that there is no dynamic solution for the 1915 Einstein equation [3, 9]. 

2. The Field Equations 

In physics, the existence of a wave is due to that a physical cause must propagate with a finite speed [19]. This implies also 

that a wave carries energy-momentum. Thus, the field equation for gravity must be able to accommodate the gravitational wave, 

which carries away gravitational energy-momentum. However, the Einstein equation of 1915 fails this [3]. 

In general relativity, the Einstein equation of 1915 [20, 21] for gravity of space-time metric g~v is 

1 
G~v ==R~v- '2 g~vR -K T (m)~v' (1) 

where G~v is the Einstein tensor, R~v is the Ricci curvature tensor, T(m)~v is the energy-stress tensor for massive matter, and 

K (= S1tKC-
2

, and K is the Newtonian coupling constant) is the coupling constant. Thus, 

1 
G~v == R~v - '2 gJJvR 0, or RJJv = 0, (1 ') 

would be the equation at vacuum. However, (1') also implies no gravitational wave to carry away energy-momentum 4). An 

incompatibility with radiation was first discovered by Einstein & Rosen [IS] in 1937. However, due to mathematical and 

conceptual errors, 't Hooft [22] still incorrectly believed their cylindrical wave as valid (see Section 4 and Appendix). 

A major problem is a mathematical error on the relationship between (1) and its "linearization" [3]. It was incorrectly be-

Iieved that the linear Maxwell-Newton Approximation [9] 

l~ _ 
(2a)"2 u-Bcr ~v - K T(m)JJv ' where 

and 

. K fl' 3 
3 

rJ,tv(x1, t) = - 2tr -; T~V[yl, (t - r)]d y, where r= L(x i _ yi)2. (2b) 
i=l 

always provides a first-order approximation for equation (1). This beliefwas verified for the static case only. 
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For a dynamic case, however, the relation that (2) as an approximation of (1) is no longer valid because there is no bounded 

dynamic solution 5) for Einstein equation (l) [3, 9]. A simple but convincing evidence for the absence of a bounded dynamic 

solution is, as shown by Hu, Zhang & Ting [23], that gravitational radiation calculated would depend on the approach used. (A 

similar problem in approximation schemes such as post-Newtonian approximation [4] is that their validity is also assumed only.) 

Note that while the Cauchy data can be arbitrary for (2a), but is restricted for Einstein equation (l) [13]. 

For a dynamic situation, (2) is actually an approximation ofthe 1995 update of the Einstein equation 6) [9], 

(3) 

where t{g)JlV is the energy-stress tensors for gravity 3) and is ofthe first order in K. Then, since VJlGJlV == 0, we have 

Vflt{g)J!V = 0 if (4) 

This equation (3) is based on the Hulse-Taylor experiment of binary pulsars and related physical requirements [9]. Thus, a 

gravitational radiation does carry energy-momentum, as physics requires. From (3), the equation in vacuum is 

(3') 

The gravitational energy-stress tensor t(g)JlV is non-zero when gravitational wave is present. Historically, a gravitational energy-

stress, defined by Einstein [13, 14], is a pseudo-tensor. However, the fact that the gravitational field exchanges energy with a 

particle requires such an energy-stress to be a tensor but not just a pseudo-tensor [9]. 

The Hulse-Taylor experiment requires that, for weak gravity, t{g)JlV be approximately equivalent to Einstein's pseudo-tensor 

[9]. Thus, although the exact form oft{g)JlV with an anti-gravity coupling is not known, the radiation of weak gravity 7) can be 

calculated with help ofthe Maxwell-Newton Approximation (2) [3]. 

3. The Question of Weak Limits for Liu & Zhou's Plane-Waves 

The analysis ofLiu & Zhou [17] is based on comparison with the approximate solutions of plane waves, 

(5) 

where 4t is a function ofu (= t x). This solution is obtained by Einstein [16] with the Maxwell-Newton Approximation (2a) 

without a source together with the linearized harmonic condition 8P y v 0.8
) Liu & Zhou [17] found that the plane waves ofp 

Bondi, Pirani, & Robinson [15] contain singularities and do not satisfy the harmonic condition. Peres, Ehlers, Kundt and others 
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studied solutions of the "PP" waves [24-26]. These solutions are free from singularities but do not contain Einstein's solutions 

as approximations as expected by Liu & Zhou [17]. 

Apparently, they believed the unverified assumption 9) that Eq. (1) has dynamic solutions if the sources are massive matter. 

Nevertheless, instead of their expected results, the opposite is correct. The physical reason is that (1 ') cannot have weak dy­

namic solutions, which must be bounded (in amplitude) [27] (see also Sections 4 & 5). In other words, their solutions of (1 ') 

and any wave solution of(2) cannot be compatible, and this is independent of a gauge condition. Some theorists might disregard 

the relevance of investigating plane-waves on the ground that that total energy is infinite. However, it has been proven that 

plane-wave idealizations are useful in understanding the local properties [10, 14]. 

The plane wave solution ofLiu & Zhou [17], which satisfies the harmonic gauge, is as follows: 

(6) 

where cp = cp(u) and 'V 'V(u). Moreover, F Fp + H, where. 

1· •
Fp == (If/ 2 + t/J 2 cosh22\j1) [cosh2\j1 (e2+ l + e-2+:c) +2sinh 2cp yz], (7)

2 

which is interpreted as the energy-flux function, and H satisfies the equation, 

(8) 

Obviously, H = 0 is a solution of (8), but Fp does not satisfy (8). Then Liu & Zhou claimed, "For the weak fields we have 1 » 

Icpl, 1 » I'VI, so that the weak field approximation ofthe metric (6.2) (Le. metric (6) here) is, 

(9) 

This is just the Einstein weak field solution of plane waves containing two polarizations. So, we can conclude that Einstein's 

solution is an approximation ofour exact solution, while our solution is the exact form ofEinstein's approximate solution." 

However, Fp is not negligible even if 1 » ICPI, I'VI > O. If one examines (7) closely, then it is clear that Fp is bounded only if 

the first packet factor is zero since the second factor contains r and :C, which can be infinitely large. Thus, such bounded ness 

is possible only if tit = ¢ = 0, i.e., ¢>(u) and '1/(u) are constants. In turn, this implies that there is no gravitational wave. As 

predicted, the plane-wave (6) is unbounded and invalid in physics. Mathematically, metric (6) does not have a weak wave limit 

since it is intrinsically unbounded. 

4. Gravitational Plane-Waves and Physical Requirements 
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While a solution of the Maxwell-Newton Approximation is bounded, unboundedness is a problem among all "plane waves" 

ofEq. (l ') [3] although there is no logarithmic divergent identified by Fock [28]. On the other hand, according to the principle 

of causality I), the amplitude of a wave metric component must be bounded since a wave is related to energy transfer. In addi­

tion, according to the Maxwell-Newton Approximation, the metric due to a weak or distant source must be bounded as required 

by Einstein's notion ofweak gravity. Therefore, the rejection of unbounded plane-waves by Liu & Zhou [17] isjustified. On the 

other hand, the violation of the principle of causality would be manifested as no bounded wave solutions. 

For example, the metric ofBondi et ala [15], claimed as a wave from a distant source, is 

where~, 13, aare functions ofu (= t 1;). It satisfies the differential equation (Le., their Eq. [2.8]), 

2~' =u(W 2 + at 2 sh2 2J3). (11) 

This metric was considered as valid since physical requirement was ignored due to the misinterpretation of Pauli [11,29] that is 

popular because the physical meaning ofcoordinates is not required. 

However, in spite of being claimed as a wave from a distant source, metric (10) is not bounded because of the factor u2 that 

grows anomaly large as time t goes by. It should be noted also that metric (10) is only a plane, but not a periodic function 
. 

because a smooth periodic function must be bounded. According to Eq. (2), a plane-wave with a finite source is always 

bounded, thus an unbounded plane-wave violates the principle of causality. 

Another well known "plane wave'~ is the metric considered by Misner, Thome & Wheeler [14] as follows: 

(12) 

where L L(u'), J3 = J3 (u'), u' = l' - x'. Then, the field equation becomes 

2 
d L +L(dP)2 =0. (13)
du,2 du' 

However, in spite oftheir claim, it has been shown [30] that this equation has no bounded plane wave solution. 

Another "plane wave", which is intrinsically unphysical, is the metric accepted by Penrose [31] as follows: 

where H = h··(u) X· X· (14)IJ 1:J 

where u = ct - Z, v = ct + z, x = Xl and y X2, hii(u) ~ 0, and hij = hjj. This metric satisfies the harmonic gauge. The cause of 

metric (14) can be an electromagnetic plane wave. Metric (14) satisfies 
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where (15) 

However, this does not mean that causality is satisfied although metric (14) is related to a dynamic source. 

The gravitational force is related to r Z 

tt = (112)awat. There are arbitrary non-physical parameters (the choice of origin) that 

are unrelated to the cause (a plane wave). Apparently, like others, Penrose [31] over-looked the physical requirements 1) in 

particular the principle of causality, which may not require a clear physical meaning of coordinates. Experimentally, being 

unbounded, metric (14) is also incompatible with the calculation of light bending and classical electrodynamics. 

These examples illustrate that there is no bounded wave solution for (1) although there is no logarithmic divergent [28]. 

Moreover, the principle of causality supports Einstein's notion of weak gravity [27]. Some theorists would consider the cylin­

drical symmetric metric of Einstein & Rosen [18] as a "wave" solution. A main reason is that they failed to understand physical 

principles such as the principle ofcausality adequately (see Appendix). Besides, one should note that this metric could only be a 

"standing wave" but not a solution ofa propagating wave, which can be locally idealized as a plane-wave. 

S. Discussions and Conclusions 

The approach of Liu & Zhou [17] on the question of gravitational plane waves is different from other earlier approaches at 

least in four major points. They are: 

1) Liu & Zhou implicitly reject a plane-wave with singularities; 

2) it is recognized that a plane wave should have a weak limit, and thus bounded ness is a necessary condition; 

3) the harmonic gauge is used; and 

4) based on the practical calculations, Zhou has a definite notion ofspace-time coordinates as in special relativity [8]. 

Zhou's conjecture is proven essentially correct since a frame of reference of a physical space must have the Euclidean-like 

structure, to) in spite of a non-Euclidean metric [11, 12, 32], 

Liu & Zhou [17] recognized that the amplitude of a plane-wave must be bounded and must have a weak limit since this is 

implied by the presumed validity of linearization of the exact equation 11). Moreover, Zhou advocated that coordinates must 

have physical meaning and he argued [331, "When we come to solve the field equation of moving matter, we must first define 

the geometrical configuration of matter, the symmetry of the configuration, its density distribution, pressure, and velocity of 

motion in space-time. All of them have to be expressed in terms of coordinates." On the other hand, some still unconditionally 

regarded any non-static solution 2) as a dynamic solution since the physical meaning of coordinates was ambiguous. Such 

ambiguity was the reason that Whitehead [6] and Fock [7] did not accept general relativity as valid in physics. 
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Apparently, Liu & Zhou were not aware of the problem of existence related to a dynamic solution, 11) and did not know the 

need that the Maxwell-Newton Approximation should be derived, independent of the Einstein equation, directly from Einstein's 

equivalence principle [12,27]. This Approximation is based on the theoretical framework ofgeneral relativity and, as a criterion 

12) • db II . 
• IS supporte y a expenments [3, 32]. Thus, the approach of Liu & Zhou [17] to use plane waves derived from the Max­

well-Newton Approximation as criterions for an exact plane wave has been recently justified. 

Moreover, the harmonic gauge has useful applications in problems such as tracking the planets and spacecraft [14] although 

the harmonic gauge is not always valid [34]. An example is that the metric of Einstein's uniformly rotating disk does not satisfy 

the harmonic gauge or its linearization [12, 35]. However, this is unrelated to Zhou's conjecture of the harmonic gauge [36] 

since in vacuum such metrics are not asymptotically flat. Moreover, as pointed out by Eddington [37}, the demand of a 

linearized harmonic gauge is intrinsic for the Maxwell-Newton Approximation. Thus, that the weak limit of a harmonic plane 

wave solution would be expected to reduce to a solution of the Maxwell-Newton Approximation. 

Although the Maxwell-Newton Approximation has been established as a criterion, it is also compatible with other solutions 

such as the isotropic and the Yilmaz solution [38]. Thus, the problem of physical gauge cannot be solved in the first order, and 

it remains to consider other means to establish a physical gauge. However, it is clear that a physical gauge must be compatible 

with the linearized harmonic gauge, in spite of that the Einstein equation must be modified for a dynamic situation. 13) Thus, the 

approach ofLiu & Zhou would be essentially valid for the physical gauge. 

Kramer et al. [26] pointed out that many theorists had relied on the plane waves to resolve the controversies about the exis­

tence ofgravitational radiation. This paper shows clearly that their analysis is inadequate. In relativity, the existence of gravita­

tional wave is a crucial test of the field equation. Understandably, the assumption of the existence of dynamic solutions 9) is a 

common error among theorists, including Einstein [1], Feynman [2] and other famous physicists [3]. Unfortunately, Liu & Zhou 

did not manage to be an exception although they had the opportunity. 

Some argued, different from Liu & Zhou, that only in a neighborhood of t-x plane rather than in the whole space, Eq. (9) 

serves as the weak limit ofLiu & Zhou's gravitational waves. 14) Nevertheless, metric (6) still has no weak limit and is invalid in 

physics. A reason for the latter is that the factors .; and r are due to choosing the two arbitrary parameters, a & b, as zeros in 

the factors (y - a) and (z - b) in a general form of metric (6). Since these parameters have no physical meaning, the principle of 

causality is violated. It follows that (6) has the same problem as metric (14) and thus is not a physical solution. This illustrates 

that, for an unbounded "plane-wave", a violation of the principle of causality is inevitable. Had they done their calculations 

carefully to the end, their work could have led to an earlier discovery ofthe non-existence of dynamic solutions. 
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At present, theorists believe Einstein's weak gravity assumption that if the source of gravity is weak, the amplitude will be 

small. Many also believe that, for any solution of Einstein's equation, it is always possible to change a gauge to the harmonic 

gaug thus follows that any non-static solution ofEinstein's equation should be reducible to a bounded solution (in fact, of 

the Maxwell-Newton Approximation) by changing some physical parameters and the gauge. Nevertheless, some (for example, 

Penrose [31]) would accept an unbounded solution that has no physical weak limit [3], as valid in physics. Some theorists just 

do not understand the physics in general relativity, in particular Einstein's equivalence principle adequately [3]. 

Currently, a major problem was that the existence ofgravitational wave solutions is based on faith instead ofevidences, and 

related theories [14, 39] are based on hand-waving arguments 16) that cannot be rigorously substantiated [3, 40]. For some 

theorists, a gravitational wave solution is a ''time dependent" metric without singularity, and other physical requirements such as 

Einstein's equivalence principle 17) and principle of causality are simply not considered. Liu & Zhou [17] are probably among 

the earliest! who recognize that physical requirements should be considered. For example, Bondi et al. [15] claimed that a non­

static solution with unbounded amplitude represents a "wave" from a distant source. Misner et at. [14] claimed, with invalid 

arguments, the existence ofbounded plane wave solutions. Penrose [31] ignored an obvious violation ofcausality. 

Recently, 't Hooft [22] claimed the "cylindrical waves" ofEinstein & Rosen [18] to be bounded propagating wave solutions 

in physics. 't Hooft did not see that this solution would violate the principle of causality (see Appendix). Historically, Einstein 

& Rosen 18) could be considered as the first to discover the non-existence of wave solution [41]. However, Physical Review 

found that the singularities they discovered are removable [42], but were unaware of that the nonexistence of gravitational wave 

solution is due to a violation of the principle ofcausality and thus also Einstein's notion ofweak gravity [3, 9,10]. 

A root of these problems is due to that physical space-time coordinates are ambiguous in Einstein's theory. (Such an ambi­

guity is a consequence of Einstein'S theoretical errors on measurements [40, 43].) The correct criticisms of Whitehead [6] and 

Zhou (8] were not accepted since they do not provide a solid theoretical foundation for general relativity to explain impressive 

observational confirmations. Although the physical meaning of the space-time coordinates has been clarified recently [II, 12, 

32], the existing conceptual problems still seem to grasp many theorists. Fortunately, the analysis on plane-waves initiated by 

Liu & Zhou [17] would give a simple illustration of the non-existence of the wave solution. It is hoped that this paper would 

give an added impetus for recognizing the severe problems in theories ofgravitational waves. 
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Appendix: Tbe Principle ofCausality and tbe Cylindrical Symmetric Metrics of Einstein and Rosen 

"To my mind there must be at the bottom of it all, not an equation, but an utterly simple idea. And to me that 

idea, when we finally discover it, will be so compelling, so inevitable, that we will say to one another, 'Oh, how 

beautiful. How could it have been otherwise?' tf -- J. A. Wheeler [44]. 

It seems, the principle of causality 10) would be qualified as Wheelers utterly simpJe idea. According to the principle of causal­

ity, a wave solution must be related to a dynamic source, and therefore is not just a time-dependent metric. A time-dependent 

solution can be obtained simply by a coordinate transformation [45]. Even in electrodynamics, satisfYing the vacuum equation 

can be insufficient. For instance, the electromagnetic potential solution Ao[exp(t - Z)2] (Ao is a constant), is invaJid in physics. 

Thus, a solution free of singularities may not be valid. 

A major problem in general relativity is that Einstein's equivalence principle has not been understood adequately [40, 43]. 

Consequently, physical principles are often neglected [12, 27]. For instance, the principle ofcausality was neglected such that a 

gravitational wave was not considered as related to a dynamic source [46]. Since the principle of causality was not understood 

adequately, solutions with arbitrary nonphysical parameters were accepted as valid [3]. 

Among the existing so-called wave solutions, not only Einstein's equivalence principle, but also others such as the principle 

of causality and the principle of relativistic causality [11] are not satisfied. Let us examine their cylindrical "waves" again. In 

cylindrical coordinates, p, q>, and z, the solution ofEinstein & Rosen [18] is 

ds2 exp(2y - 2'P)( dT2- dp2) - p2exp(_2'P)dq>2 - exp(2'P)d:r (AI) 

where T is the product of the velocity of light and the time coordinate, and yand \II are functions of p and T. They satisfy 

(A2) 

Rosen [27] consider the energy-stress tensor T I.lV that has cylindrical symmetry. He found that 

T'4S+t'4S=O, and Ti+ti=o (A3) 

where ~v is Einstein's gravitational pseudotensor, ti is momentum in the radial direction. 

10 
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However, Weber & Wheeler [47] argued that these results are meaningless since t",v is not a tensor. They further argued that 

the wave is unbounded 19) and therefore the energy is undefined. Moreover, they speculated that the energy flux is non-zero. 

They claimed, "We concluded that many of the otherwise apparently paradoxical properties of this cylindrical wave can be 

understood by taking into account the analogy between gravitational waves and electromagnetic waves, and the special demands 

ofthe equivalence principle, which rules out a special role for any particular frame ofreference.',2Q) 

Thus, a basic problem is that Weber & Wheeler believed the "covariance principle", but mistook it as the equivalence prin­

ciple. On the other hand "Zhou [8] correctly pointed out, "The concept that coordinates don't matter in the interpretation of 

Einstein's theory '" necessarily leads to mathematical results which can hardly have a physical interpretation and are therefore a 

mystification of the theory." Moreover, the fact is that the equivalence principle is applicable only to a physical space-time 

coordinate system, and this principle implies that a frame ofreference must have a Euclidean-like structure [11, 12]. 

Instead, Weber and Wheeler [47] believed, "all correct general statements about gravitational radiation must obviously be 

compatible with this problem (of cylindrical waves)." Apparently, they used the word "obvious" in a way to substitute a neces­

sary valid supporting reason for their opinions. They also did not supply any evidence for their claimed analogy between 

gravitational waves and electromagnetic waves. A condition for such an analogy is the Maxwell-Newton Approximation, but 

metric (AI) does not satisfy the linearized gauge harmonic conditions. Thus, their analysis is invalid. 

Note that metric (AI) cannot satisfy coordinate relativistic causality al). Weber and Wheeler agreed with Fierz's analysis, 

based on (A2), that y is a strictly positive where 'f'(p, T) ~ 0 for large p [47]. Thus, it is possible to see that there is no physical 

wave solution in a simpler way. Gravitational red shifts imply that gtt:::;; 1 [2]; and 

(A4a) 

are implied by coordinate relativistic causality [23]. Thus, according to these constraints, from metric (AI) one has 

exp(2y)::; 1 and exp (2y) ::; exp(2'¥). (A4b) 

Equation (A4) implies that gtt :::;; 1 and that y ::; O. However, this also means that the condition y > 0 cannot be met [3]. This 

shows again that there is no physical wave solution for G",v = O. Thus, invalidity of the gravitational "wave" solutions, raised by 

Rosen [48] and Scheidigger [49], can be verified after the physical meaning of space-time coordinates is clarified [11, 12]. 

Moreover, space contractions would imply exp(2'f') 1, and thus 'f' =0 and y = constant (Le., no wave). 

The relation (A3) reflects that the cylindrical metric (AI), being function of p and T, cannot really have a radiation propa­

gating in the p-direction, i.e., the metric being a function of(p - T). As seen from the following solution [47] 

11 
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'¥ =AJo(rop) cosrot +BNo(rop)sinrot, (ASa) 

where A and B are constants, such a "wave" represents essentially standing oscillations. (The Bessel function No (rop) is not well 

defined at p =0, but this can be fixed.) The second function y in the special case B = A, reduces to the expression 

Y= 	2"I A
2 
rop{Jo(rop)Jo'(rop) + No(rop)No'(rop) + rop[(Jo(rop)i + (Jo'(rop)i+ (No(rop»2 + (No'(rop»2] 

+ [Jo(rop)Jo'(rop) -	 No(rop)No'(rop)] cos2roT + [Jo(rop)No'(rop) + No(rop)Jo'(rop)] sin2roT} 

2 2 
-	 -A roT (ASb)

1l 

(ASb) implies that exp(2y) would become very small since y would tum negative and large as time goes by, while I 2'¥ I is 

bounded. (Note that there are typo-errors in their paper [47], T and rop should have been respectively t and rop/c.) This indicates 

a change of energy density. Nevertheless, Rosen finds that the pseudotensor that measures the density of gravitational energy 

and momentum in the cylindrical wave is everywhere zero. Thus, the solution of Rosen and Einstein actually supports that 

Einstein's pseudotensor for gravitational energy-momentum density is invalid [3]. 

Moreover, according (ASb) the function exp(2y) gets very large as T goes to negatively large. Thus, 't Hooft's [22] claim of 

boundedness, against Weber & Wheeler [47], is a mistake. Although exp(2y) approaches to zero as T gets positively large (thus 

gtt= &P= 0), this means, however, that the condition for weak gravity (IY}1vl « 1) would fail, independent of parameters such as 

the amplitude and the frequency. It follows that this metric violates the principle of causality, which requires that weak sources 

would give a weak gravity [3, 27]. Thus, there is another simple way to see that this metric is not valid in physics. 

For the case of a propagating cylindrical plane-wave with ~v = 0, one can consider a wave propagating in the z-direction. 

For instance, Au, Fang, & To [50] consider the metric as follows: 

(A6) 

where 

and 

M2 = exp(2fq,dp) where 

are respectively arbitrary functions of(ct - z) and of p. The function n\(ct - z) makes N2 a propagating wave. 

If solution (A6) were a physical solution, M should be a bounded function of p, i.e., 

exp(2fq,dp) < C]2 (A7) 

12 
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for some constant Ct. However, this also means that N is not bounded for small p. Moreover, if light velocity is not larger than 

its vacuum velocity c, one should have N2/L2 and N2/M2 $ 1. It thus follows that 

Hence, 

(A9) 

Thus, condition (A9) is also inconsistent with (A7). In short, solution (A6) is unbounded in contrast to as required by the 

principle ofcausality. Clearly, Au et at. also do not understand Einstein's equivalence principle [51]. 

ENDNOTES 

I) 	 The time-tested assumption that phenomena can be explained in terms of identifiable causes is caned the principle of 

causality [3, 11, 30]. This principle is the basis of relevance for all scientific investigations. This principle is commonly 

used in symmetry considerations. In general relativity, Einstein and subsequent theorists have used this principle implicitly 

on symmetry considerations [13, 14,21] such as for a circle in a uniformly rotating disk and the metric for a spherical sym­

metric mass distribution [20]. Other consequences are, for instance, that parameters unrelated to any physical cause in a so­

lution is not allowed and that a dynamic solution must be related to a dynamic source. However, this established principle is 

neglected in the consideration ofdynamic solutions [42]. 

2) 	 A solution may not be vaJid in physics unless all physical requirements are satisfied [3]. An example of an unphysical non­

static solution is metric (14), though accepted by Penrose [31] as valid, since it violates the principle of causality. Einstein 

[21] proposed that for the gravity of a weak source, the deviation from the flat metric must be very small (i.e., I »1 YIlY I). 

Thus, the notion of unbounded (in amplitude) non-static solutions is against Einstein's proposal if IYIlY I cannot become 

small even the source is reduced to weak. Moreover, according to Einstein, a metric with an irreducible singularity is inva­

lid, and thus the question of singularity is essentially unrelated to weak gravity. From Einstein's equation, it is possible to 

obtain mathematical "time-dependent" solutions, which are incompatible with the Maxwell-Newton Approximation. It turns 

out, however, such solutions are invalid in physics [3, 27, 30]. 

3) 	 Some believe that Einstein's equivalence principle cannot derive anything beyond the gravitational redshifts. This is due to 

that they have mistaken [12, 43] Einstein's 1911 preliminary application of the equivalence between acceleration and New­

tonian gravity as Einstein's equivalence principle proposed in 1921. Notably Misner et al. [9] claimed that gravitational en­

ergy-Momentum could not be located due to Einstein's equivalence principle. However, this is in disagreement with the fact 

13 
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that the field energy would be exchange with the energy of a particle [9]. Thus, this is another way that Misner et at. [14] 

misinterpreted 16) Einstein's equivalence principle [40, 43]. 

4) 	 One might argue that G~v = G(l)~v + G(2)~v is a sum of the first order terms and the second order terms. It has been shown 

that G(2)~v can be considered as equivalent to the gravitational energy-stress tensor [l3]. However, although G(2)j.lV includes 

the effects of gravitational radiation, G(2)~v is not the gravitational energy-stress tensor just as G(l)~v is not the energy-stress 

tensor of matter although VJ.lT(m) ~v = 0 would imply the exchange of energy between the source and the field. Moreover, it 

has been shown also that Gj.lV =0 is not possible ifa gravitational wave exists [3, 9]. 

5) Fock [28] is probably the earliest who found tha~ in harmonic coordinates, there are divergent logarithmic deviations from 

the radiation. The contradiction manifests that the assumption of boundedness is invalid. 

6) Eq. (3) would lead to the vacuum equation (3'), which looks superficially similar to the background equation in [9], 

1 
G(B) = R(B) _ - g(B) nCB) K..rfGW)

~v - ~v 2 ~v n. 1 ' ~v • 	 (35.16) 

This is based on the approach devised by Isaacson [52]. However, the terms in (35.16) are defined different from those in 

(3'). It should be noted also that this equation is derived from the Einstein equation (1), whereas Eq. (3) is modified from 

(1) such that its physical deficiency would be removed. A basic problem ofthis approach to (35.16) remains that it is neces­

sary to assume invalidly that bounded dynamic solutions exist for the 1915 Einstein equation. 

7) 	 For weak gravity, Kt(g)~v is ofthe fifth order in a post-Newtonian approximation, and the deceleration due to radiation is of 

the three and a half order in a post-Newtonian approximation [8] and the orbits of the binary pulsar can be calculated with 

the second-order post-Newtonian approximation by using equation (3) or "equivalently" the Einstein equation (1). It is in­

teresting to note [3] that the analysis of Damour and Taylor [53, 54] is essentially valid except that they have mistaken the 

Maxwell-Newton Approximation, which approximates Eq. (3), as an approximation ofthe Einstein equation. 

8) 	 As Wald 155] pointed o~ the linearized harmonic condition aJly)JV = 0, is a problem since it lead to the linearized conser­

vation law, n(m)j.lV = O. The necessary condition for linearization is only that aJly)JV is of second order. However, for a 

plane wave, this is not a problem since a plane wave being an idealization, has no source. 

9) Zhou [33] incorrectly believed, "Any problem of gravitation which has a solution in Newton's theory should also be 

solvable, but in a more profound way, according to Einstein." 

10) The existence of a Euclidean-like structure in the frame of reference is a necessary condition for a physical space [24, 29]. 

For example, the Schwarzschild solution in quasi-Minkowskian coordinates [l3; p.181] is the following: 

ds2 (1 - 2MKlp)c2d~ - [(1- 2MKlpr i - 1] p-2(xdx + ydy + zdz)2 - (dx2 + dyl + d~), (E1) 

14 
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where 

p2 == x2+ y. + .;. , x = p sine cos<p, y = p sine sin<p, and z = p cose. (E2) 

Coordinate transfonnation (E2) tells that the space coordinates satisfY the Pythagorean theorem. The Euclidean-like struc­

ture represents this fact, but avoids confusion with the notion ofa Euclidean subspace, detennined by the metric. Clearly, 

metric (E 1) and the Euclidean-like structure (E2) is complementary to each other in the Riemannian space. This structure is 

independent ofthe metric. These space-time coordinates forms not just a mathematical coordinate system since a light 

speed (ds2 =0) is defined in tenns ofdxldt, dy/dt, and dzldt [20, 21]. 

II) For a dynamic situation, the linearization is valid for the modified Einstein equation update (3) [3, 9]. Note that the exis­

tence ofdynamic solutions for the 1915 Einstein equation had been claimed by two Princeton professors, Christodoulou and 

Klainennan [56]. However, a close examination oftheir proofshows that they actually made all their proofs on an empty set 

[57] because they failed to show that the set of their dynamic solutions is non-empty. Moreover, their set of weak dynamic 

solutions, if non-empty, would be in conflict with the Maxwell-Newton Approximation. 

12) Although a solution of (2) gives too large a value for the perihelion of Mercury, it has found that the harmonic solution, 

which is compatible with the Maxwell-Newton Approximation, gives the same value [7] as the Schwarzschild solution. 

13) A dynamic metric solution is related to the dynamics of its source matter, and a dynamic source would generate gravita­

tional radiation [19]. For the perihelion of Mercury and the deflection of light, solutions of the test particles are calculated 

with a static metric. It was believed that the influence of a test particle to the metric could also be calculated with equation 

(1). However, as suspected by Gullstrand [4, 5] and conjectured by Hogarth [58], the opposite is correct. 

]4) 	However, Liu & Zhou [17] claim that plane-waves "should naturaiJy contain Einstein's solutions as weak field approxima­

tions", and beJieve a plane wave should be bounded as required by physics and Einstein's notion ofweak gravity. Their pa­

per was part ofLiu's thesis, but Zhou was 84 years old already. Therefore, Zhou probably provided only general guidance. 

15) Formally, there is an equation whose solution would transfonn a given gauge to the harmonic gauge. However, this is 

actually conditional. It has been discovered [34] that if the source is an electromagnetic wave, such an equation may not 

have any solution, which is bounded in amplitude. 

16) A good example of inadequate deliberations is Thorne's Theory ofgravitational wave detection for LIGO (Laser Interfer­

ometer Gravitational Wave Observatory). The theory is derived on the assumption [14, 39] that LlGO can be considered as 

built in a free fall system. However, the radius of earth is 6.3 x 103 km, but the expected gravitational wave length is only 

about] 5 km [14]. This means that the earth cannot be regarded as a test particle for gravitational waves. Thus, Thorne's 

theory, which is also incorrect, is just inapplicable to LIGO [59]. 

15 
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17) Pauli's [29] version of the principle of equivalence was mistakenly regarded as Einstein's principle, although Einstein 

strongly objected to this version as a misinterpretation [60]. For instance, Misner, Thorne, & Wheeler [14] falsely claimed 

that Einstein's equivalence principle is as follows: 

"In any and every local Lorentz frame, anywhere and anytime in the universe, all the (Nongravitational) laws of 

physics must take on their familiar special-relativistic form. Equivalently, there is no way, by experiments con­

fined to infinitestimally small regions of spacetime, to distinguish one local Lorentz frame in one region of 

spacetime frame any other local Lorentz frame in the same or any other region. " 

However, this is only an alternative version of Pauli's because the Einstein-Minkowski condition, which requires that the 

local space in a free fall must have a local Lorentz frame, is missing. A misinterpretation is often not free. In their eq. 

(40.14) [14; p. 1107], they got a physically incorrect conclusion on the local time of the earth in the solar system because 

they did not understand Einstein's equivalence principle and related theorems in Riemannian space [40]. Moreover, Ohanian 

&, Ruffini [61; p. 198] also ignored the Einstein-Minkowski condition and had the same problems as shown in their eq. (50). 

However, Liu [62], Straumann [63], Wald [55], and Weinberg [13] did not make the same mistake. Note that Ohanian, Ruf" 

fini, and Wheeler proclaimed themselves as non-believers of Einstein's principles [61]. 

18) Einstein concluded his talk on gravitational waves at Princeton University by saying [64] "If you ask me whether there are 

gravitational waves or not, I must answer that I do not know. But it is a highly interesting problem." 

19) Some interpreted this "unbounded ness" as being of the domain of the field. This disagreement with the earlier interpreta­

tion ofthe unbounded ness as being ofthe amplitude [3], is clearly incorrect if one examines Eq. (A5b) carefully. 

20) Here, Weber & Wheeler [47] have mistaken the "Covariance principle" as Einstein's equivalence principle. A consequence 

ofEinstein's equivalence principle is the Einstein-Minkowski condition [21, 43] that the local space of a particle under the 

influence ofonly gravity must be locally Minkowskian [1, 13], but Misner et al. [141, Ohanian & Ruffini [61], and Will [65] 

tailed to see this. A problem was that Einstein addressed only metrics without a crossing space-time element. This creates a 

false impression that the Einstein-Minkowski condition is trivial [43]. 

21) Validity of Coordinate Relativistic Causality is based on space contractions and the time dilation. These are clarified after 

the meaning ofa physical space-time coordinate system has been identified [11, 12,43]. 
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