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Abstract 

Einstein's 1911 preliminary application of the equivalence between acceleration and Newtonian uniform gravity to derive gravi­

18 tational redshifts was commonly but mistakenly regarded to be the same as Einstein's principle of equivalence, which has its founda­

19 tion in theorems of Riemannian geometry and special relativity. Consequently, limitations due to Newtonian gravity shown in such 

20 derivations were incorrectly believed as that Einstein's equivalence principle should not only be inadequate to derive the bending of 

21 light, but also have questionable validity itself. Moreover, in Einstein's theory of measurements, his instruments being in free fall 

22 states are incorrectly ignored. Consequently, there are theoretical errors and inconsistency, for example, as shown in the case of 

23 Einstein's uniformly rotating disk. However, after the theoretical errors are identified and rectified, the uniformly rotating disk 

24 would be an example that illustrates the importance of Einstein's equivalence principle and the inadequacy of Pauli's version. The 

25 crucial role of Einstein's equivalence principle in the time dilation and space contractions is thus illustrated. 
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1. Introduction 

2 It is generally agreed, as pointed out by Einstein [1], Eddington [2], Pauli [3], Weinberg [4], Misner, Thome & Wheeler [5], and 

3 Straumann [6] that Einstein's principle of equivalence is the theoretical foundation of general relativity. However, as Einstein [7] 

4 saw it, few understand the crucial role ofEinstein's equivalence principle in tenns of physics. On the other hand, Einstein insisted, 

throughout his life, on the fundamental importance ofthis principle to his general theory ofrelativity [7]. 

6 For instance, Einstein's equivalence principle [8] played a crucial role on Einstein's theory of measurements and his notion of 

7 curved space. However, Whitehead [9, p. 83] objected, 

8 "By identifYing the potential mass impetus of a kinematic element with a spatio-temporal measurement Einstein, in my opinion, 

9 leaves the whole antecedent theory of measurement in confusion, when it is confronted with the actual conditions ofour percep­

tual knowledge. The potential impetus shares in the contingency of appearances. It therefore follows that measurement on his 

11 theory lacks systematic uniformity and requires a knowledge ofthe actual contingent physical field before it is possible. " 

12 Einstein is universally accepted as a genius. However, a genius is often not without faults. Whitehead remarked, 

13 "But the worst homage we can pay to genius is to accept uncritically formulations oftruths which we owe to it. " 

14 From this remark, Whitehead ingeniously foresaw problems existing in current theory of general relativity. It is in this spirit of 

Whitehead that this paper on Einstein's theoretical errors on measurements and related problems is written. 

16 It has been shown that Whitehead's objection on Einstein's theory of measurements is well justified [10, 11]. His theory of 

17 measurements forced him [8] to propose an interim assumption, the so-called "covariance principle" that has also been proven to be 

18 over extended [12]. Fortunately, it is also found that his problematic theory of measurements is only due to Einstein's oversights 

19 rather than an intrinsic problem of general relativity [10-12]. In fact, it has been shown [11] that the theoretical framework of gen­

eral relativity has given a definite physical meaning to space-time coordinates. 

21 It will be shown that Einstein's theory ofmeasurements is inconsistent, but is not an integral part ofgeneral relativity. Moreover, 

22 it is fundamentally incorrect that Einstein's 1911 application of his earlier notion of equivalence be regarded the same as Einstein's 

23 principle ofequivalence of 1921. Einstein's uniformly rotating disk [1,8] will serve as an example. 

24 

2. Einstein's Equivalence Principle and its Preliminary. 

26 Einstein's equivalence principle states the equivalence between a uniformly accelerated system K' and a system K at rest that 

27 processes a gravitational field where all bodies are equally and unifonnly accelerated. However, although this principle fonnally 

28 stated in his book, "The Meaning ofRelativity", it has a long history starting from 1907 [4]. Unfortunately, this long history seems 

29 to have become a source ofmisunderstanding. The 1911 preliminary application of his notion ofequivalence incorporated Newto­

:;0 nian gravity only [8]. Then gravitational redshifts were derived, but a derivation of the light bending failed. Thus, many believed 

2 



3 

Einstein's equivalence principle alone could be used to derive the gravitational redshifts only and this preliminary application of 

2 equivalence has been mistaken as Einstein's equivalence principle. However, the problem may have arisen :from the preliminary 

3 application to Newtonian gravity rather than Einstein's equivalence principle itself [13]. 

4 Einstein regards that a consequence ofhis equivalence principle is the Einstein-Minkowski condition that the local space ofa par-

S ticle under gravity must be locally Minkowskian [I, 8], :from which he obtained the time dilation and space contractions. However, 

6 others often regarded this condition as non-essential [7], although Einstein's used this condition in his 1916 initial paper [8] on gen­

7 eral relativity and his book, "The Meaning ofRelativity" [1]. Apparently, many have missed this important point. 

8 HistoricaJly, the idea of equivalence between inertial mass and gravitational mass goes back as far as Galileo. Then mathemati­

9 cal theorems [14] show that the local space of a particle under the influence of gravity only is locally constant, but not necessarily 

10 Minkowskian. However, in special relativity, such a local space is Minkowskian. Thus, the Einstein-Minkowski condition is nec­

11 essary. In fact, the Einstein-Minkowski condition is the accurate new form of Einstein's Equivalence principle and this is what 

12 Einstein used in his subsequent calculations [15]. Although Einstein's equivalence principle is stated clearly, it is still unclear be­

13 cause a verified example for the Einstein-Minkowski condition has not been provided. 

14 Nevertheless, Pauli's "infinitesimal"- principle of equivalence [3] was commonly but mistakenly regarded as Einstein's principle, 

15 although Einstein strongly objected to this version as a misinterpretation [7]. Pauli's [3] version is as follows: 

16 "For every infinitely small world region (i. e. a world region which is so small that the space- and time-variation of gravity can 

17 be neglected in it) there always exists a coordinate system Ko (X}, X2, X3,)4) in which gravitation has no influence either in the 

18 motion ofparticles or any physical process." 

19 Thus, Pauli regards the equivalence principle as just the mathematical existence of locally constant spaces, which may not be locally 

20 Minkowskian. The main difference is that Einstein claimed that in a :free fall a natural process would generate the co-moving local 

21 Minkowski space. Moreover, in disagreement with mathematical theorems, Pauli incorrectly extended the removal ofuniform grav­

22 ity with a uniform acceleration to the removal ofgravity in general by means ofa coordinate transformation. 

23 Straurnann [6] claimed that Einstein's principle ofequivalence would be, "In any arbitrary gravitational field no local experiment 

24 can distinguish a :freely falling non-rotating system (local inertial system) :from a uniformly moving system in the absence of a gravi­

25 tational field." He recognized that the local space in a :free fall is locally Minkowskian, but failed to see that such a metric is not the 

26 same metric in the absence of a gravitational field. Similarly, Will [16] claimed, "Equivalence came :from the idea that life in a :free 

27 falling laboratory was equivalent to life without gravity. It also came :from the converse idea that a laboratory in distant empty 

28 space that was being accelerated by a rocket was equivalent to one at rest in a gravitational field." 

29 Pauli, Straumann, and Will overlooked (or disagreed with) Einstein's [8, p. 144] remark, "For it is clear that, e.g., the gravita­

30 tional field generated by a material point in its environment certainly cannot be 'transformed away' by any choice of the system of 
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coordinates..." Pauli's misunderstanding has far reaching consequences in theoretical physics since it leads to the acceptance of un­

2 physical solutions as valid in physics [17]. It was based on Pauli's version that Logunov and Mestvirishvili [18] showed that gen­

3 eral relativity would lead to inconsistency related to the radiation formula. Moreover, the local distance formula of Landau & Lif­

4 shitz [19] would give results in disagreement with observation and be even incompatible to their own claims [15]. 

Pauli's version is popular, in part, because it imposes no requirement on coordinates other than the proper metric signature. 

6 This is compatible with the situation that the space-time coordinates are ambiguous although Pauli's version does not provide the 

7 physics for the time dilation and space contractions [15]. However, both Einstein's equivalence principle and the principle of gen­

8 eral relativity require a clear meaning of coordinates, and thus cannot be rigorously defined [9, 20]. Whitehead [9] and Fock [20] 

9 regarded this ambiguity as intrinsic and thus rejected general relativity as a physical theory. 

However, the above objections of Whitehead and Fock pertain only to Einstein's oversights but are actually irrelevant to general 

11 relativity. It has been shown that the physical meaning of space-time coordinates has already been included in the theoretical 

12 framework of general relativity [10, 11] although Einstein overlooked this [1, 8]. The failed calculations ofFock [20] and Tolman 

13 [21] on the metric ofa uniform gravity are due to misconceptions that identified a frame of reference with a Euclidean subspace [15] 

14 although the metric of a rotating disk would show clearly that such an identification is incorrect [11, 22]. 

In Newtonian theory, one may define uniform gravity as "a homogeneous field is characterized by the fact that any part of it is 

16 representative of the whole [23]." However, an intrinsic difference from Newtonian theory is that the gravitational potential plays a 

17 crucial role in physics and gravity is generated from a space-time metric instead of a scalar potential. Unfortunately, in terms of a 

18 space-time metric, Einstein's notion of uniform gravity was not clearly illustrated. 

19 Historically, in the 1911 preliminary application of Einstein's notion of equivalence, the notion of curved space-time had not yet 

been proposed. Fock [20], who failed to obtain the space-time metric for a uniform gravity, actually based his calculation essen­

21 tially on a Newtonian notion of gravity and thus should not have concluded that Einstein's equivalence principle was at fault. 2
) 

22 Nevertheless, Fock has won many converts, including the Wheeler school [25]. Fortunately, a direct derivation of the Maxwell­

23 Newton Approximation, which is independent of Einstein's equation, shows that Fock was incorrect [13, 26]. 

24 Another problem was that Einstein and other theorists seemed to have concluded mistakenly that any metric representing a uni­

form gravity was static [20, 25]. Thus, uniform gravity, though intuitively simple in Einstein's equivalence principle, became theo­

26 retically complicated in general relativity. Moreover, a major problem was the ambiguity of space-time coordinates, which arose 

27 due to an inadequate application ofEinstein's equivalence principle in Einstein's theory ofmeasurements [10]. 

28 

29 3. Confusions and Criticisms on Einstein's Equivalence Principle 
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Because the physical meaning of the space-time coordinates had not been provided, Einstein's equivalence principle was often 

2 misunderstood, and consequently its crucial role in general relativity was overlooked. For instance, Synge [14] professed his mis­

3 givings about Einstein's equivalence principle as follows: 

4 " .. .1 have never been able to understand this principle ...Does it mean that the effects of a gravitational field are indistin­

guishable from the effects of an observer's acceleration? If so, it is false. In Einstein's theory, either there is a gravita­

6 tionaltield or there is none, according as the Riemann tensor does or does not vanish. This is an absolute property; it has 

7 nothing to do with any observer's world line ...The Principle of Equivalence performed the essential office of midwife at 

8 the birth ofgeneral relativity .. .1 suggest that the midwife be now buried with appropriate honours and the facts ofabsolute 

9 spacetime be faced." 

From these statements, it is clear that Synge does not fully understand the physics underlying Einstein's equivalence principle (see 

11 also § 6 & Appendix A). In fact, Einstein's equivalence principle states only that the effects of an accelerated frame are equivalent 

12 to a related uniform gravity [1, 8]. Furthermore, Einstein [27] stated that the gravity of the earth is not equivalent to an accelerated 

13 frame, although Bergmann [28] confused Einstein's equivalence principle with "Einstein's elevator". 

14 Moreover, a gravitational field need not be related to a non-vanishing curvature. As Einstein [7] explained to Laue, "What 

characterizes the existence ofa gravitational field, from the empirical standpoint, is the non-vanishing of the [lik (field strength), not 

16 the non-vanishing of the Riklm'" and no gravity is therefore just a special case of gravity. This view is crucial because it justifies 

17 that the geodesic equation is also the equation ofmotion ofa massive particle under the influence ofonly gravity. 

18 Nevertheless, misunderstandings continued. Thome [29] criticized Einstein's principle for ignoring tidal gravitational forces. 

19 However, Einstein had already clarified this issue in a letter to A. Rehtz [7]: 

"The equivalence principle does not assert that every gravitational field (e. g. , the one associated with the Earth) can be 

21 produced by acceleration of the coordinate system. It only asserts that the qualities of physical space, as they present 

22 themselves from an accelerated coordinate system, represent a special case ofthe gravitational field." 

23 Thus, Einstein's principle is proposed for a physical space, where all physical requirements are sufficiently satisfied. 

24 Nevertheless, Zel'dovich & Novikov [22] believed the equivalence principle meant only that a particle followed the geodesic. 

Landau & Lifshitz [19] incorrectly believed that, in an accelerated frame everybody (with different speeds) had the same acceleration. 

26 Wald [30] and Ohanian & Ruffini [25] regarded the equivalence principle as merely the equivalence of inertial mass and gravita­

27 tional mass. Thus, it is useful to clarify the theoretical foundations ofEinstein's equivalence principle. 

28 

29 4. The Physical Meaning of Space-time Coordinates 
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Einstein "showed" that it is necessary to abandon Euclidean geometry because, for a rotating reference system, the time intervals 

2 and spatial distances in non-Galilean systems cannot be determined (with his method ofmeasurement) by means ofa clock and rigid 

3 standard measuring rod. To clarify this, one must distinguish between the measurements based on coordinates and those based on 

4 the metric ofa space (see Appendix A). 

5 As shown by Weinberg [4], "For both Euclidean and non-Euclidean geometry the 'model' is provided by the theory of real num­

6 bers. " Descartes' analytic geometry shows that if a point is identified with a pair of real numbers (XI, X2) and the distances between 

7 two points (xJ, X2) and (Xh X2) is identified as d (x, X) = [(XI Xt)2 + [(X2 X2)2] 1/2, then all ofthe Euclid's postulates can be proved 

8 as theorems about real numbers. However. if a different metric d'(x, X) is defined, one obtains a non-Euclidean geometry in Des­

9 cartes' coordinates. Thus, the meaning of the coordinates in a non-Euclidean geometry is independent ofthe metric, since the coor­

10 dinates remain the same as in Euclidean geometry. 

11 In general relativity, the invariant line element is 
12 

13 ds 2 = gJi"dxJi dx" , (1) 

14 
15 where gpv is a general space-time metric in a Riemannian space. Since gpv is not a constant metric, one cannot hope to derive from 

16 (1) a simple distance formula as in Euclidean geometry where the spatial distance d (Ph P2) of two points PI and P2 is still 

(2) 

18 However, in a different way, the Euclidean-like structure (2), which deals with global distance between two points in a frame of ref­

19 erence, is necessarily preserved within the Riemannian space-time [11]. 2) 

20 To illustrate this, let us examine the Schwarzschild solution [1] ofRiemannian space (x, y, z, t), 3) 

21 (3) 

22 where 

23 x p sine coS<p, y = p sine simp, and z = p cosS. (4) 

24 In addition, Kis a coupling constant, and M is the total mass. Note that metric (3) alone does not tell what the frame of reference is. 

25 Then eq. (4) clarifies that the frame has a spherical coordinate system, and therefore has a Euclidean-like structure that satisfies the 

26 Pythagorean theorem. This illustrates that the Euclidean-like structure is included in Einstein's Riemannian space. However, in a 

27 free fall, its local spaces being locally Minkowskian is assumed only, but not proven [1, 8]. 

28 To understand Einstein's measurement, we must clarify what "measure" means in relation to Einstein's equivalence principle. 

29 In Einstein's theory. the measuring instruments are resting but in a free fall state [1, 8]. From Einstein's equivalence principle, time 

30 dilation and local space contraction are obtained. Based on such measurements that would create a problem of circular logic, Ein­

6 
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stein believed, "In the general theory of relativity, space and time cannot be defined in such a way that differences of the spatial c0­

2 ordinates can be directly measured by the unit measuring-rod, or differences in the time coordinates by a standard clock". 

3 Moreover, since his measuring rods at different points, though all are at rest, would be in different free fall states, this would be 

4 an impossible situation for measuring to an extended object. However, if the measuring instruments are attached to the frame of 

reference, since the measuring instruments and the coordinates being measured are under the same influence ofgravity, a Euclidean­

6 like structure emerges as if gravity did not exist [10, 11] 4). (For a more detailed discussion. see reference [12].) Moreover, the 

7 space contractions have a physical meaning only in terms o/the Euclidean-like structure [15] (also see Appendix A). 

8 

9 5. Uniformly Rotating Disk and Riemannian Space-Time 

Although Einstein initially conceived his theory by considering a linear acceleration, the exposition of his theory started by con­

11 sidering a rotation [8]. In a free fall ofEinstein's rotating disk, its local spaces are, in fact, (not just assumed) Minkowskian. Spe­

12 cifically, he considered a Galilean (inertial) system of reference K (x, y, z, t) and a system K' (x', y', z', t') in a uniform rotation 0 

13 relatively to K. The origins ofboth systems and their axes ofz and z· coincide. The flat metric ofK is, 

14 where x = r cos $, y = r sin $, (5) 

in the cylindrical coordinate system. For reason of symmetry 5), a circle around the origin in the x-y plane of K may at the same 

16 time be regarded as a circle in the x'-y' plane of K'. Einstein argued that if circle is measured from K', because ofLorentz contrac­

17 tion, the circumference would be greater than 2m' although the so measure radius r' = r. Moreover, Einstein claimed [8], 

18 "An observer at the common origin of co-ordinates would therefore see it lagging behind the clock beside him.... So, he 

19 will be obliged to define time in such a way that the rate ofa clock depends upon where the clock may be." 

Thus, Einstein defined a physical space-time coordinate system together with a metric that relates to local clock rates and local spa­

21 tial measurements.6
) In other words, a physical space-time coordinate system is not arbitrary. 

22 Let us compare his claims with his uniformly rotating disk. According to Einstein, the transformation to a uniformly rotating 

23 reference frame (x', y', z') 7) with angular velocity 0 has the form [15, 19, 22], 

24 

26 

or 

x x' cos nt - y' sin nt, 

r = r', z z', and 

y = x' sin nt + y' cos Ot, 

$=$'+nt 

and z z', (6a) 

(6b) 

27 

28 

Note that (6a) implies 

r' = r, x' = rcos $', and y' = r sin $', (7) 

7 



5 

10 

15 

20 

25 

2 

8 APRI-TH-PHY -005-02 

Thus, (7) together with z = z' means K' also has the Euclidean-like structure just as the frame for the Schwarzschild solution. 

Then a metric in terms ofthe coordinates in K'(x', y', z') can be obtained from 

3 dr = dr' , dz=dz', and dq, = dq,' + Odt (8) 

4 which are simply a consequence of{6b). The transformed metric in system K*{x' y', z', t) would have the following form, 

(9) 

6 The system K * (x', y', z', t) with metric (9) satisfies Pauli's version ofequivalence principle, but the light speed could be larger than 

7 c. However, according to Einstein, the issue of local clock rates is not clearly since "t" is related to local clocks resting at (x, y, z). 

8 Nevertheless, according to the local distance formula ofLandau & Liftshitz [19], the local distance in the q,'-direction is 

9 (lOa) 

and thus 

11 fds = {1 - 02~/c2tl/2r' kifd¢' 2m'(l - 02~/c2)-1/2 > 2m' (lOb) 

12 would be the circumference of the circle with radius r'. (Eq. (lOb) is inconsistent with the Euclidean-like structure eq. (7).) How­

13 ever, according to the "standard" arguments given by Ohanian and Ruffini [25], S) they would have claimed that there is no space 

14 contractions in the presence of gravity. Obviously, these theorists disagree with each other. Still, they are different from Einstein 

because they believed Pauli's version as adequate. The main difference between their arguments and Einstein's [1, 8] is that 

16 Einstein saw the need of assuming the validity of his equivalence principle [1, 8] that would make the Einstein-Minkowski condition 

17 applicable, while they ignore his principle. An advantage of this case is that the Einstein-Minkowski condition is certainly satisfied 

18 since the local space in free fall has a Minkowski metric. Thus, the validity ofthese claims can be checked. 

19 

6. Einstein's Equivalence Principle and Einstein's Notion of Local Time 

21 To see the meaning oflocal time and Einstein's equivalence principle for this case, one needs to find out what the local spaces 

22 are in free falls. In Einstein's calculations [1, 8] such local spaces being locally Minkowskian is assumed only. 

23 Consider a particle P resting at (r', q,', z') ofK*(r', q,', z', t). The local space ofP is (dr', dX, dz', dT) which has a Minkowski 

24 metric. In K, P has a position (r, q" z,) and its local space (dr, rdq" dz, dt) has the Minkowski metric in K. These two local spaces 

have a relative velocity m in the cp-direction in K. Since r' r, and z' = Z, we have dr' =dr, and dz' = dz. 

26 Then, the two local spaces relate to each other by the Lorentz transformation in special relativity as follows: 

27 rd. = [I (rO/c)2]-1/2 [dX + mdT], (Ila) 

28 and 

8 
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2 

3 

4 

or 

and 

edt = [1 - (rO/c)2J-112 [edT + (rO/c)dX]; . 

dX = [1 - (rO/C)2] -112 [rdcp - rOdt], 

(lIb) 

(lIc) 

(lId) 

6 From (1Ic) and (8), one obtains 

7 

8 and 

dX = [1 (rO/c)2]-1I2 rdcp' , (12a) 

9 (I2b) 

Eq. (12a) shows that, the local distance in the i/J'-direction is measured from a local space at a free fall, and therefore its is not 

11 measured in K'(x', y' z'). If the circumference ofa circle is measured to obtain (12), although the measuring rods are at rest, they 

12 must be in a different free fall state at each point, an impossible situation to execute. Thus, the local distance of Landau & Lifshitz 

13 [19] is not a local distance in K' as they claimed, and thus (12a) can be consistent with the Euclidean-like structure (7). 

14 In (12b) we have replace dcp with dcp' because a local clock at K' has dcp'= O. Now, it is clear that the term for space contrac­

tions in the cp'-direction can be generated by completing the square ofthe dtdcp' and the dt2 terms, i. e. , 

16 (13) 

17 This suggests a local time dt', and locally the metic is, 

18 (14) 

19 Then one would have 

where edt' = edt - (rO/c)rdcp'[1 - (rO/c)2]-I. (15) 

21 The local clock in K' is identified with dcp' = 0 and its rate is [1 - (rO/C)2]112 dt, and at r = 0, one has dt' = dt. Thus, eq. (15) is con­

22 sistent with the argument ofLandau & Lifshitz [19] that for a clock resting at the frame ofreference 

23 ds C dl', and (16) 

24 where XO is the time variable of the metric. 

For a clock rest at K', according to Einstein [1, 8], the observed clock rate is dT. Thus, ifobserved from K, we have 

26 (17) 

27 Eq. (17) is the same result as derived from (11 b) in special relativity with dX O. 

9 
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Thus, in terms ofthe final measurable results, metric (14) would be considered just as a midwife that identifies the space contrac­

2 tions and the time dilation clearly. Since (14) is derived from Einstein's equivalence principle, its crucial role is now clear. 

3 Then, metrics (1) and metric (14) relate each other with the following relations, 

4 dcp dcp' +adt, dr' = dr, dz' =dz (S) 

and 

6 cdt' =cdt - (rQ/c)rdcp'[1 (rflIc)2J-l. (15) 

7 Ifone believes that t' is a global variable, then one integrated them, and would get 

S cp = cp' + at, r' = r, z' = z (1 Sa) 

9 and 

(ISb) 

11 if(15) were integrable. However, (1Sb) is not valid in physics. A problem is that cp' ± 2it is the same position, but t and l' would not 

12 be the same. The physical reason is, as shown in (15), that dt' is related to different inertial systems at different rand 1, and thus (15) 

13 is not integrable.9
) (This would not be clear if the Einstein-Minkowski condition is not considered [11].) Moreover, if the metric 

14 has only diagonal elements, then it would be invariant under the exchange of cp'<-> -cp'. According to Synge [14; p. 309], this 

would mean no rotation. Thus, dt' should be considered as representing the local time only. 

16 Nevertheless, in this consideration, there is no need to exclude the possibility that the relations in eq. (S) are approximations since 

17 being approximately valid would not change the main physical conclusion. As long as Einstein's notion of a uniformly rotating disk 

IS is approximately valid, a space contraction and a time dilation would be obtained from the Lorentz transformation. 

19 In short, Einstein's theory ofmeasurement is inconsistent because Einstein incorrectly saw space contractions, which are obtained 

from a local space at free fall, as measured in the frame of reference. Since the Einstein-Minkowski condition is satisfied, to) Ein­

21 stein's notion oflocal time and local clocks are supported. 

22 

23 7. Discussions and Conclusions 

24 Currently, uniform gravity is actually understood in terms of Newtonian gravity. And uniform gravity is used as a local ap­

proximation for gravity. In fact, this was what Einstein [S] did in his 1911 derivation ofthe gravitational redshifts. Nevertheless, 

26 Einstein's arguments for such a derivation are essentially valid because the result is only a first order approximation. First, because 

27 of the Euclidean-like structure, for this situation a frame of reference of a curved space-time can be treated as if a Euclidean space. 

2S Second, since light normally travels much faster than the velocity of an accelerated frame, the potential for a uniform gravity could 

29 be considered as if static. Thus, the status ofEinstein's equivalence principle is further strengthened. 

10 
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However, raising such an approximation to the level of a physical principle, which results in the equivalence ofgravity and accel­

2 eration, is far more serious. As Einstein pointed out, this is misleading in physics [7], and in fact mathematically incorrect [8]. 

3 Related theorems in Riemannian space have shown that the local space of a "freely falling" particle is locally constant [14], but gen­

4 erally cannot be a constant metric even in a very small region. Einstein proposed that such a local metric must be locally Min­

kowskian (the Einstein-Minkowski condition), and claimed this to be a consequence of his equivalence principle [1, 8]. Since Ein­

6 stein used only the Einstein-Minkowski condition in his subsequent calculations, it is what his principle actually is. However, Ein­

7 stein did not illustrate it with examples. Thus, some theorists [15, 26] did not recognize the inadequacy of Pauli's version. 

8 Another major problem in Einstein's theory is that the space-time coordinates are ambiguous, and Einstein's "covariance prlnci­

9 pie" discontinuously separates special relativity from general relativity [12]. Because of this, Whitehead [9] rejected general rela­

tivity as a physical theory and Fock [20] rejected even both ofEinstein's principles. On the other hand, Einstein's predictions agree 

11 with observations very well and few of his peers had taken a critical look at his theory and analyzed it thoroughly. Moreover, be­

12 cause ofsuch ambiguity, theorists tried to make physical sense out ofjust the solutions ofEinstein's equation. However, as Einstein 

13 pointed out, mathematics may not be related to the physical reality [24]. Since Einstein's equivalence principle implies measurable 

14 time dilation and space contractions, a physical space is not just any Riemannian geometry [10, 11,32]. 

Currently, possible mathematical and/or physical restrictions on Einstein's theory are often inadvertently ignored [10, 11, 15,26]. 

16 This is because physical requirements often depend on the meaning of coordinates [26]. The root of such problems is that Einstein 

17 was unable to clarify the physical meaning of space-time coordinates of a curved space-time. 4) Following superficially the existing 

18 mathematical framework of Riemannian geometry embedded in a flat space, Einstein believed that the coordinates were defined in 

19 terms of the space-time metric. Thus, a problem of circular definition was created. Moreover, if a physical space-time were 

embedded in a high dimensional flat space, one must provide a physical meaning for such a space. 

21 It did not occur to Einstein or Dirac [33] that the definition ofspace-time coordinates is necessarily independent of the space-time 

22 metric. Weinberg [4] illustrated, however, a curved space need not be embedded in a higher dimensional flat space. In fact, the 

23 theoretical framework ofgeneral relativity makes this very unlikely since a frame of reference must have the Euclidean-like structure. 

24 In other words, in a physical space there are dual mutually complementary structures, the Euclidean-like structure and the space-time 

metric. Then, it would be possible to clarify the meaning ofEinstein's equivalence principle [10]. 

26 However, the meaning of Einstein's equivalence principle was commonly mistaken [34] to be the same as the preliminary appli­

27 cation ofequivalence with Newtonian gravity [8]. This is fundamentally incorrect since the gravitation potential is a scalar in New­

28 tonian theory, but is a second rank tensor in general relativity. A uniform gravity must be time-dependent because of Einstein's 

29 equivalence principle, but can be static in Newtonian theory. Moreover, the essence of Einstein's equivalence principle is the re­

11 
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suIting local metric in a free fall to be Minkowskian. However, many theorists focus their attention on uniform gravity as a local 

2 approximation. It is unfortunate that Einstein's equivalence principle, though correct, was not well understood. 

3 Einstein's equivalence principle implies that the time dilation and space contractions are measurable [1]. However, such meas­

4 urements seem to be trivial since Einstein addressed only the diagonal metrics or metrics without a crossing space-time element. 

This creates a false impression that the Einstein-Minkowski condition is trivial. lO) For instance, Synge [14], who is an excellent 

6 mathematician, failed to investigate the physics of Einstein's equivalence principle. 

7 Among the textbooks, only Landau & Lifshitz [19] first took the trouble of addressing the important issue of space contractions 

8 for the general case. Unfortunately, because their arguments are based on Pauli's version, the derivation of their formula for the 

9 local distance is not faultless [15]. There are problems such as implicit assumptions and that the physical meaning of the related 

local time is not clear. Note that almost all the textbooks in the West ignored their work [4-6, 21, 25-30, 33]. Moreover, theorists, 

11 who do not understand Einstein's notion oflocal time [I, 8], rejected the formula ofLandau & Lifshitz [19] totally. 9) 

12 In this paper, the metric for a uniformly rotating disk is derived rigorously with the Einstein-Minkowski condition. Then the 

13 physical meanings of the metric and the local time are clear. For the given assumptions of Einstein, validity of the metric is firmly 

14 established since such a calculation is based on special relativity. Concurrently, the arguments of Ohanian & Ruffini [25] for the 

space contractions 8) are proven invalid, but the calculated space contractions of Landau & Lifshitz [19] are valid for the case of the 

16 rotating disk. Thus, the crucial role of the Einstein-Minkowski condition in the space contractions is illustrated. More important, 

17 the errors in Einstein's theory on measurements are rectified. In general relativity, the local distance is measured in a free fall local 

18 space, although in the embedded space ofa spherical surface, the distance is measured by attachments. 

19 It is meaningful to make the importance of Einstein's equivalence principle be understood in this year of celebrating the birth of 

relativity. This would give added confidence to the metric for a uniform gravity to illustrate Einstein's equivalence principle such 

21 that one may understand more clearly, what Einstein'S notion of uniform gravity is. Although the time dependency is clear now, 11) 

22 it was difficult to see this intuitively right from the beginning. 

23 
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2 Appendix A: Some Remarks on General Relativity and Riemannian Space. 

3 In a physical Riemannian space, the Euclidean-like structure [10] deals with a distance between two points in the frame of refer­

4 ence, whereas the metric provides the invariance among space-time coordinate systems with different frames of reference. The met­

ric relates to the time dilation and space contractions that can be measured in a local space at free fall. These clarify a physical 

6 space having a very distinct geometry that is compatible with the experiment on light bending [1, 8]. 

7 In the initial development of Riemannian geometry, however, the metric was identified formally with the notion of distance in 

8 analogy as the case of the Euclidean space. Such geometry is often illustrated with the surface of a sphere, a subspace embedded in 

9 a flat space [33]. Then, the distance is determined by the flat space and can be measured with a static method. For a general case, 

however, the issue of measurement was not addressed, before Einstein's theory. 

11 In general relativity, the local distance represents the space contraction, which is measured in a free fall local space (see § 6). 

12 Thus, this is a dynamic measurement since the measuring instrument is in a free fall state under the influence of gravity, while the 

13 Euclidean-like structure determines the static distance between two points in a frame of reference. Einstein's error is that he has 

14 mistaken this dynamic local measurement as a static measurement. 12) Consequently, Einstein and subsequent theorists believed that 

a space-time metric could be regarded as defining a locally measured distance as in the case ofan embedded subspace [33]. 

16 However, there is no compelling reason in mathematics (or physics) to consider the indefinite metric gJlvas related to the locally 

17 measured distance. The structure of a Riemannian space allows that the notion of "global distance" function is defmed on the 

18 coordinates being used, but is independent ofthe metric. On the other hand, the notion ofa metric is necessarily defined in terms of 

19 the coordinates. Zhou [38] would probably be the first who was aware ofthe essence of such a new structure. 

This mathematical structure is clearer once Einstein's general relativity has been better understood [12]. Thus, in a sense, the 

21 development of general relativity clarifies the notion of Riemannian space further. The Euclidean-like structure is essentially 

22 independent ofthe transformation ofcoordinates. However, such a structure is necessary for defining light speeds. 

23 Einstein stated that the light speed is measured "in the sense of Euclidean geometry [1]. " Moreover, all Einstein's predictions 

24 are in terms ofthe Euclidean-like structure. For instance, a ray of light, traveling at a shortest distance A from the sun of mass M, 

will be deflected, in all by an amount [1, 8] MKl21tA. Moreover, the secular rotation of the elliptic orbit of the planet in the same 

26 sense as the revolution of the planet, amounting in radius per revolution to 241t3a2/(1 - e2)c~2. In addition to A, e the numerical 

27 eccentricity and a the semi-major axis ofthe planetary orbit in centimeters are defined in terms of the Euclidean-like structure, and T 

28 the period ofrevolution in seconds is defined in terms of the time ofa "quasi-Minkowskian space" [4]. 

13 
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A few years later, Whitehead with his own theory [39] and much later Fock [20] with the harmonic solution, obtained the same 

2 predictions. Unfortunately, both Whitehead and Fock saw the physics in terms ofphilosophy instead ofmeasurements, and failed to 

3 see that their desired space-time coordinates [10, 11] are due to Einstein's equivalence principle. 

4 Misner et al [5], as shown in their eq. (40. 14) [5; p. 1107], got a physically incorrect conclusion on the local time of the earth in 

the solar system because they did not understand Einstein's equivalence principle i) and related theorems in Riemannian space. 

6 Ohanian & Ruffini [25; p. 198] had the same problems as shown in their eq. (50). It should be noted, however, that Eddington [2], 

7 Liu [31], Straumann [6], Wald [30] and Weinberg [4] did not make the same mistake. 

8 

9 Appendix B: Morrison and General Relativity 

On April 22, P. Morrison closed his eyes forever, and thus ended our association of 15 years of our research in the field of gen-

II eral relativity that Einstein established with his accurate predictions. In these fifteen years, we had very fruitful research results. 

12 After solving the fundamental problem of the physical meaning of space coordinates, our efforts culminated to our joint paper, 

13 "Misunderstandings Related to Einstein's Principle of Equivalence and Einstein's Theoretical Errors on Measurements". In this 

14 paper, the physical meaning ofthe notion of local distance is clarified with Einstein's equivalence principle in terms ofmeasurements. 

The foundation of our association is the conviction, in agreement with Einstein, that Einstein's equivalence principle is funda­

16 mentally correct and is physically distinct from Pauli's version, although many theorists commonly, but mistakenly believe that Ein­

17 stein equivalence principle is not needed and/or not accurately valid. We follow the tradition of MIT starting from N. Rosen that 

18 general relativity is essentially correct, but there are fundamental problems to be resolved. For instance, like Einstein, Oppenheimer, 

19 Weinberg, Weisskopf, and Yilmaz, wejudged that the notion ofblack holes is far from settled. 

Morrison is famous for his exceptional ability to penetrate to the core of an issue and explain it clearly in terms of physics. In 

21 numerous occasions, I have benefited from our discussions. Although I may have started a discussion by explaining a certain issue, 

22 at the end I found his explanation to be better than mine. For instance, I explained to him why Einstein's "covariance principle" is 

23 invalid according to many physical facts as well as the observation of Zhou Pei-Yuan. I expected him to question me intensively, 

24 but he simply listened and asked only a few questions. Then he later remarked to me that the "covariance principle" is physically 

invalid because it disrupts the necessary physical continuity from special relativity to general relativity. 

26 Morrison would be very persistent in following an issue of interest to the very end. For example, I explained to him why the 

27 Nobel Committee was correct in questioning the existence ofa dynamic solution of the two-body problem. I have found that there 

28 is simply no dynamic solution, and the calculation ofthe radiation ofbinary pulsars is actually based on a modified Einstein equation. 

29 From then on, he questioned me from different views for almost two months. Finally, he stopped this questioning after I pointed out 

that such a solution would necessarily violate the principle of causality. Later, I understood that he went to Princeton University at 
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least twice to discuss the calculation of the binary pulsar with Professor J. H. Taylor who eventually told Professor Morrison that the 

2 credit ofthis calculation should go to T. Damour. 

3 Currently, many theorists have identified the 1911 preliminary application of equivalence between acceleration and Newtonian 

4 gravity as Einstein's equivalence principle formally proposed in 1921. This would add to the confusion created by Pauli's version 

and the incorrect explanation ofthe Wheeler school that later rejected Einstein's equivalence principle. In our discussion, Professor 

6 Morrison pointed out that this identification was probably incorrect since this preliminary application would lead to disagreements 

7 with results based on Einstein's equivalence principle. His remark was the starting point ofour joint paper that performs an essen­

8 tial rectification ofgeneral relativity. 

9 Professor Morrison was very modest in spite of his outstanding in theoretical understanding in physics. Once, he remarked that 

he would not be a good partner for such discussions because he had not written a paper on general relativity. I was totally unpre­

11 pared for such an remark. I replied, "Then, at least you are not wrong." Nevertheless, Professor Morrison did not find my off 

12 hand remark offensive. 

13 

14 Endnotes 

1) Misner, Thome, & Wheeler [5; p. 386] falsely claimed that Einstein'S equivalence principle is as follows: 

16 "In any and every local Lorentz frame, anywhere and anytime in the universe, all the (Nongravitational) laws ofphys­

17 ics must take on their familiar special-relativistic form. Equivalently, there is no way, by experiments confined to in­

18 finitestimally small regions of spacetime, to distinguish one local Lorentz frame in one region of spacetime frame any 

19 other local Lorentz frame in the same or any other region. " 

However, this is only an alternative version of Pauli's because the Einstein-Minkowski condition, which requires that the local 

21 space in a free fall must have a local Lorentz frame, is missing. 

22 2) An existence of the Euclidean-like structure, due to Einstein's equivalence principle, is necessary for a physical space [10, 11]. 

23 Experimentally, such a structure has been verified by the observed bending of light, which is bent in comparison with a "straight 

24 line" in the structure. So far as measurements are possible in principle, the Euclidean-like structure is operationally defined in 

terms of spatial measurements essentially the same as Einstein defined the frame of reference for special relativity [35]. Since the 

26 attached measuring instruments and the coordinates being measured are under the influence of the same gravity, a Euclidean-like 

27 structure emerges from such measurements as if gravity did not exist. However, such a coordinate system could be restricted due 

28 to physical considerations such as that the velocity of light in vacuum is the maximum ofparticle speeds. 

29 3) The Schwarzschild solution in quasi-Minkowskian coordinates [4; p. 181] is the following: 

ds2 = (l 2MKlp)c2dt2 ­ [(1 2MKlpr1 - 1] p-2(xdx + ydy + zdz)2 - (dxl + dr + dz2), (3') 

15 
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where 

2 x = p sine cosq>, y p sine sinq>, and z = p cose. (4) 

3 Coordinate transfonnation (4) tells that the space coordinates satisfy the Pythagorean theorem. The Euclidean-like structure 

4 represents this fact, but avoids confusion with the notion of a Euclidean subspace, determined by the metric. Clearly, metric (3 ') 

and the Euclidean-like structure (4) is complementary to each other in the Riemannian space. These space-time coordinates 

6 forms not just a mathematical coordinate system since a light speed (ds2= 0) is defined in terms ofdx/dt, dy/dt, and dzldt [8]. 

7 4) Currently, a common misunderstanding is that any Riemannian space with a proper signature would be a valid physical space 

8 [12]. Obviously, not every Riemannian space has a Euclidean-like structure. Moreover, even a Riemannian space with the 

9 Euclidean-like structure is not necessary a physical space [15]. In principle, a physical space must sufficiently satisfy all the 

physical requirements including Einstein's equivalence principle [10]. In practice, however, the physical requirements would be 

11 understood better as physics progresses. In physics, things are not always defined perfectly from the outset, as they might be as in 

12 mathematics [10]. Moreover, as Einstein [36] once remarked, "If you want to find out anything from the theoretical physicists 

13 about the methods they use, I advise you stick closely to one principle: don't listen to their words, fix your attention on their 

14 deeds." Following his advice, it is found that, from his metric solutions, the space coordinates are characterized by 

i. the Euclidean-like distance function d(P., P2) = [(Xl X2i + (YI Y2)2 + (Zl ­ Z2)2] 112, and 

16 ii. the frame of reference chosen before a solution is obtained, and 

17 iii. the time coordinate related to local clock rates through orthogonality to the space coordinates. 

18 The coordinates are independent of the gravity, and Einstein's predictions are related to the Euclidean-like distance instead of the 

19 metric distance. Thus, Einstein's coordinate system has very specific physical implications. It thus follows that physical co­

variance is limited to what the principle ofgeneral relativity allows [12]. To define a curved space as having a non-zero curva­

21 ture tensor is inadequate. In this paper, a curved space is defmed as that some geodesics in the frame are curves. 

22 5) The time-tested assumption [26] that phenomena can be explained in terms of identifiable causes is called the principle ofcau­

23 sality. In general relativity, Einstein and subsequent theorists have used this principle implicitly on considerations of symmetry 

24 [1-7]. Thus, the physical meaning of space coordinates has been used right at the beginning [10, 11]. 

6) According to Einstein [1], in principle, it should be possible to place instruments locally in a physical coordinate system to do 

26 measurements. However, such a requirement would put restrictions on a physical coordinate system. For example, the coordi­

27 nate system K' is restricted by (c2 - (l2r'2) > 0 since no particle (and thus no clock) should have a speed larger than c. 

28 7) A frame ofreference is physical realizable if its coordinates are part ofthe coordinate system of a physical space, or equivalently 

29 physical measurements can be performed in such a frame. 

8) The "standard" arguments given by Ohanian and Ruffini [25; p. 164] is as follows: 

16 
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". .. and the spacetime interval becomes ds2 = gJ.l.v dxJ.l. dxv. This expression determines the spacestime distances. 

2 For example, a coordinate displacement dxl along the x-axis has a length ...J(-gIl) dxl, that is, the measured distance 

3 differs from dxl by a factor ...J(-gl1)' Likewise, a coordinate time (t time) displacement dx° has a duration...J&oo dx° 

4 when measured by the proper time of a clock at rest. " 

They (including Landau & Lifshitz [19]) failed to recognize that a local differential distance is measured from a local space at free 

6 fall; whereas the distance d (Ph P2) of two points in a frame has decided already by the Euclidean-like structure. 

7 9) In general, if a metric has a non-zero irreducible space-time cross element, we can synchronize clocks along any open curve, but 

8 it is not possible to synchronize all the local clocks along a closed contour [19,31]. Thus, (15) is not integrable. However, the 

9 validity of (14) is based only on the Einstein-Minkowski condition (Le., special relativity for the case of the uniformly rotating 

disk). Nevertheless, some theorists have mistakenly claimed (14) as invalid because (15) is not integrable. 

11 10) As point out by Straumann [6; p. 83], "Briefly, we may say that gravity can be locally transformed away. This is a well known 

12 fact to anyone who has watched space flight on television. " 

13 11) For a system K(x, y, Z, t) uniformly accelerated with a in the x-direction to an inertial system K'(x', y', z', t'), the metric is, 

14 (El) 

where 

16 U(x, t) = (at'i/2 = a[x'(t') - x], then dU = - a dx + av dt , (E2) 

17 where v(t'} = at' and x'(t'} = x + at']12 [21]. Here vet') and x'(t') are calculated with x being fixed [37]. Moreover, it is clear 

18 that this metric provides a uniform gravity since au/ax -a. However, a constant acceleration should not lead to a speed larger 

19 than c. Thus, it is necessary to have the restriction, c2/2 > U(x, t) = (at'i/2. It should be noted also that dt in (El) is a local 

coordinate of local time. 9) Fock [20], however, assumed incorrectly the metric is of the static form, ds2 = g tt<:x) c2dr- dr 

21 df - d~, with a Euclidean subspace. 

22 12) Perhaps, this error arises from confusing mathematics and physics. This confusion is due to that the mathematically defined local 

23 distance would be measured physically only in a free fall local space in a different dynamic situation. 

24 
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9 Resume 

10 L'application preliminaire d'Einstein en 1911, de l'equivalence entre l'acceleration et la gravite uniforme newtonienne pour 
11 deriver "redshifts" gravitationnels etait considere ordinairement et aussi par erreur, pareil comme Ie principe d'equivalence d'Einstein, 
12 qui a sa fondation dans les theoremes de geometrie et de Ia relativite speciale de Riemannian. Par consequent, les limitations en rai­
13 son de la gravite newtonienne montrees dans telles derivations ont ete inexactement crues comme ce principe d'equivalence 
14 d'Einstein doit ~tre inadequat pour deriver Ie courber de lumiere, et aussi avoir la validite discutable lui-m~me. De plus, dans la 
IS theorie de measures d'Einstein, ses instruments dans les etats de chute libres sont inexactement negliges. Par consequent, il y a des 
16 erreurs et l'inconsistance theoriques, par exempIe, selon Ie cas de disque uniformement toumant d'Einstein. Cependant, apres les er­
17 reurs theoriques sont identifies et sont rectifies, Ie disque uniformement tournant serait un exemple qui illustre I'importance de prin­
18 cipe d'equivalence d'Einstein et l'insuffisance de version de Pauli. Le rOle crucial de principe d'equivalence d'Einstein dans la dilata­
19 don de temps et les contractions spatials est ainsi illustre. 
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