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Abstract 

Einstein's equivalence principle was first presented in terms of the equivalence of uniform grav­

ity and an accelerated frame of reference. Nevertheless, attempts to present the initial form of 

Einstein's equivalence principle in terms of a space-time metric had failed, and Pauli's version 

has become the substitution of Einstein's principle. However, it is found that previous failures 

and the substitution are due to misinterpretation of general relativity. Moreover, in Einstein's 

physical space, the frame of reference necessarily has dual structures, a Riemannian metric and 

the Euclidean-like structure that emerges from a measuring method complimentary to Einstein's. 

This leads to recognizing the uniqueness of the physical gravitational gauge for a given frame of 

reference. Then, the space-time metric of an accelerated frame is calculated to confirm Einstein's 

equivalence principle. Concurrently, the crucial role of Einstein's equivalence principle in general 

relativity and Einstein's predictions is further clarified. It is pointed out also that Paulis version 

is the root of theoretical inconsistency and disagreements with observations. Based on existing 

evidences, it is predicted that the Schwarzschild solution would be rejected by an experiment on 

local light speeds. 
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1. INTRODUCTION 

It is generally agreed, as pointed out by Einstein [1J, Eddington [2], Pauli [3], Weinberg 

[4), Misner, Thorne and Wheeler [5], Straumann [6], and Yu [7), that Einstein's equiva­

lence principle is the theoretical foundation of general relativity. However, a surprising fact 

is, as Einstein [8] saw it, that few like Eddington [21 understand the crucial role of Ein­

stein's equivalence principle in terms of physics adequately. Einstein insisted, throughout 

his life, on the fundamental importance of this principle to his general theory of relativity [8]. 

However, Einstein's insistence on this point has created a puzzle for many (8) because of in­

adequate understanding of the physics particularly in connection with Einstein's predictions 

(see Sections 2 and 3). 

This is confirmed, for instance, by the (invalid) calculations of Tolman [9] and Fock 

[10] (see Section 4). In addition, Einstein's theory is often misunderstood, misinterpreted 

and then unjustifiably criticized by his followers. For instance, Synge [11] professed his 

misunderstandings on Einstein's equivalence principle as follows: 

" .. .1 have never been able to understand this principle .... Does it mean that the ef­

fects of a gravitational field are indistinguishable from the effects of an observer's 

acceleration? If so, it is false. In Einstein's theory, either there is a gravitational 

field or there is none, according as the Riemann tensor does or does not vanish. 

This is an absolute property; it has nothing to do with any observer's world 

line .... The Principle of Equivalence performed the essential office of midwife at 

the birth of general relativity ... .! suggest that the midwife be now buried with 

appropriate honours and the facts of absolute spacetime be faced." 

However, Einstein's equivalence principle states only that the effects of an accelerated frame 

are equivalent to a related uniform gravity [1,12]. Therefore, a gravitational field need 

not relate to a non-vanishing curvature, nor be equivalent to the effects of an observers 

acceleration. Nevertheless, Bergmann [13] misleadingly illustrates Einstein's equivalence 

principle with "Einstein's elevator" in the gravity of the earth that Einstein [14] stated as 

not equivalent to an accelerated frame. Perhaps, this is where Synge picked up part of his 

misinterpretation since Einstein wrote a very impressive "Forward" for Bergmann's book. 

Moreover, Einstein [8J explained to Laue, "What characterizes the existence of a gravita­

tional field, from the empirical standpoint, is the non-vanishing of the rik (field strength), 

2 



not the non-vanishing of the ~klm'" and no gravity is a special case of gravity. This view 

is crucial because it justifies Einstein's to conclusion that the geodesic equation is also the 

equation of motion of a massive particle under the influence of only gravity. 

Currently, misunderstanding persists among relativists. For instance, Thorne [15] criti­

cized Einstein's principle as follows: 

"In deducing his principle of equivalence, Einstein ignored tidal gravitation 

forces; he pretended they do not exist. Einstein justified ignoring tidal forces by 

imagining that you are (and your reference frame) are very smalL" 

The notion that gravity in every infinitely small world region can be removed by a coordinate 

transformationl ) actually came from Pauli [3] and Einstein objected this as a misinterpre .. 

tation [8]. Moreover, Einstein in his letter to A. Rehtz [16] wrote: 

"The equivalence principle does not assert that every gravitational field (e.g., the 

one associated with the Earth) can be produced by acceleration of the coordinate 

system. It only asserts that the qualities of physical space, as they present 

themselves from an accelerated coordinate system, represent a special case of 

the gravitational field." 

Here, Einstein has made clear that his principle is proposed for a physical space, where 

all physical requirements are sufficiently satisfied. Moreover, a similar explanation on the 

gravity of the earth has been provided in his popular book, "Relativity" [14]. 

Einstein explained the initial form of his equivalence principle in terms of the uniform 

gravity and acceleration clearly in 1911 and in 1916 [12]. Einstein assumed that the mechan­

ical equivalence of an inertial system K(x, y, z) under a uniform gravitational field, which 

generates a gravitational acceleration "y (but, system K is free from acceleration), and a sys­

tem K'(x', y', z'} accelerated by "y in the opposite direction, can be extended to other physical 

processes. Based on this assumed equivalence, Einstein [12] derived the gravitational red 

shifts. He found also that his equivalence principle is compatible with the Doppler effects 

and even the notion of photon. Thus, the equivalence principle has been firmly established 

on the ground of universality of physics, although the formula for light speeds under gravity 

needed improvement. This is independent of the need of a Riemannian space2), which is 

additionally based on the principle of general relativity and special relativity [1]. 
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A connection between gravity and a curved Riemannian space was established in 1915 [17]. 

However, a space-time metric that corresponds to a uniformly accelerated frame of reference 

remains to be clarified (see Section 4). This incompleteness contributed to a speculation 

that the deficiency is intrinsic and thus added difficulty in understanding Einstein's theory. 

Moreover, such speculation is supported by the invalid calculations of both Tolman [9] and 

Fock [10] (see Sections 3 and 4) that failed in relating the accelerated frame to a metric of 

uniform gravity, as Einstein's principle requires. 

Recently, such a speculation has been proven incorrect because the field equation is 

intimately related to Einstein's equivalence principle. The Maxwell-Newton Approximation 

[18-20] (the same as the linearized field equation for weak gravity due to massive matter) 

that produced an accurate bending of light has been derived with Einstein's equivalence 

principle together with the notion of a curved space, if Newtonian theory is taken as a form 

of first order approximation 3). Thus, Einstein's equivalence principle is fully compatible 

with the notion of a curved Riemannian space-time. 

However, the question of how the curved space is related to an accelerated frame remains 

a puzzle. In this paper, it will be shown that failures of Tolman and Fock are due to the 

conceptual error that identified a frame of reference with only a Euclidean subspace. This 

conceptual error is related to the fact that the physical meaning of space-time coordinates 

was not clear in general relativity (see Sections 2 and 3), and for such a deficiency White­

head [21] rejected general relativity as a physical theory. This deficiency has far reaching 

consequences, namely: 1) it leads to the substitution of Einstein's equivalence principle with 

Pauli's version which requires merely the proper signature of the metric; and 2) it also leads 

to the substitution of the principle of general relativity with the mathematical covariance. 

These substitutions, which have no support by any observational evidence, seemed theoreti­

cally necessary because both principles of Einstein require a clear meaning of the space-time 

coordinates. 

Unfortunately, Pauli's version leads to acceptance of unphysical solutions [22], theoretical 

inconsistency [23,24], and disagreements with special relativity and related observations 

[12,20]. Moreover, these substitutions necessarily lead to the incorrect misinterpretations [8], 

and the invalid belief that space-time coordinates have no physical meaning [25]. Based on 

such a belief, most theoretical inconsistency could be ignored simply because any calculation 

is necessarily based on a coordinate system. However, such a belief has a fatal fault, in 
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addition to be in disagreement with physical principles [20,26], because it contradicts with 

the obvious fact, the existence of non-scalar physical quantities such as vectors [27]. 

Nevertheless, Einstein's predictions can be reproduced mathematically without consid­

ering Einstein's equivalence principle directly and explicitly [1]. Because of currently in­

adequate understanding of the physics in Einstein's theory (see Section 2), some theorists 

therefore believed that Einstein's assumption of satisfying Einstein's equivalence principle 

seemed non-essential for Einstein's predictions [8,28,29]. Moreover, some theorists were 

happy with the new mathematical freedom because physical requirements other than the 

metric signature could be ignored. Pauli's version is very popular among advocates of black 

holes [15,30,31] whose justification seems to need Pauli's version (see Section 5). 

In this paper, after addressing the related conceptual problems, an appropriate metric 

form for an accelerated frame will be derived (see Section 4). To this end, let us first identify 

the existing misconceptions. 

2. THE PHYSICAL MEANING OF SPACE-TIME COORDINATES, AND EIN.. 

STEIN'S EQUIVALENCE PRINCIPLE 

Einstein showed that in general relativity it is necessary to abandon Euclidean geometry 

because, for a rotating reference system, the time intervals and spatial distances in non­

Galilean systems cannot just be determined by means of a clock and rigid standard measuring 

rod. However, this does not mean the abandonment of the Euclidean-like structure of space 

coordinates. To clarify this, one must distinguish the coordinates and the metric function 

of a mathematical space4). 

As shown by Weinberg [4], "For both Euclidean and non-Euclidean geometry the 'model' 

is provided by the theory of real numbers." Descartes analytic geometry shows that if a 

point is identified with a pair of real numbers (Xl, X2) and the distances between two points 

(x}, X2) and (XI, X2) is identified as d(x, X) = [(Xl - Xt}2 + [(X2 - X2)2]l/2, then all of the 

Euclids postulates can be proved as theorems about real numbers. However, if a different 

metric d'(x, X) is defined, one obtains a non-Euclidean geometry in Descartes' coordinates. 

Thus, the meaning of the coordinates in a non-Euclidean geometry can be independent of the 

metric. However, if a non-Euclidean geometry such as the surface of a sphere is embedded 

in a Euclidean geometry of higher dimension, then the meaning of the coordinates of the 
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non-Euclidean geometry is determined by the higher dimensional space. In short, one must 

determine what is the meaning of coordinates for a curved space, if they are independent of 

the metric. 

In general relativity, the invariant line element is 

(1) 


where 9p.1I is a general space-time metric in a Riemannian space. Since 9p.1I is not a con­

stant metric, one cannot hope to derive from (1) a simple distance formula as in Euclidean 

geometry that the spatial distance d(Pt, P2 ) of two points PI and P2 is still 

(2) 

However, in a different way, the Euclidean-like structure (2) is necessarily preserved within 

the Riemannian geometry. 

To illustrate this, let us examine the Schwarzschild solution [I} of Riemannian space (x, 

y, z, t), 

(3) 

x = p sinO cos</>, y = p sinO sin</>, z = p cosO, and p2 = x2+ y2 + z2, (4) 

where /"i, is a coupling constant, and M is the total mass. Since the metric is defined in 

terms of p, 0, and 4>, the Riemannian space is actually defined in terms of the Euclidean 

characteristics (4). This illustrated that this Euclidean-like structure (x, y, z) is included 

in Einstein's Riemannian space. Moreover, since Einstein [12] defined the velocity of light 

"in the sense of Euclidean geometry" , the Euclidean-like structure is also supported by the 

observed light deflection. The subspace (x, y, z) is called the frame of reference. Thus, 

Einstein's notion of Riemannian space-time has a frame of reference with the Euclidean-like 

structure. 

To understand the Euclidean subspace (x, y, z) in terms of physical measurements, we 

must first clarify what measure means in relation to Einstein's equivalence principle. In 

Einstein's theory, the measuring instruments are resting but in a free fall state [1]. From 

Einstein's equivalence principle, time dilation and space contraction are obtained. Based on 

such measurements, Einstein believed, "In the general theory of relativity, space and time 

cannot be defined in such a way that differences of the spatial coordinates can be directly 
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measured by the unit measuring-rod, or differences in the time coordinates by a standard 

clock." However, if the measuring instruments are resting and are attached to the frame of 

reference, since the measuring instruments and the coordinates being measured are under 

the same influence of gravity, a Euclidean-like structure emerges as if gravity did not exist. 

Thus, the Euclidean-like structure is an integral part of general relativity (see also Section 

3). 

To make a useful distinction, such a class shall be called the Einstein Spaces named after 

its creator. However, an Einstein space would be a physical space that models reality only 

if Einstein's equivalence principle is satisfied. The frame of reference plays a crucial role 

in the theory of general relativity, as pointed out by Fock [10], in particular to Einstein's 

equivalence principle, but Fock incorrectly identified the frame of reference with a Euclidean 

subspace that is related to the metric. Nevertheless, as pointed out by Whitehead [20], 

Einstein was unable to define the coordinates in general relativity precisely. This is perhaps 

a main reason that leads to the popular acceptance of Pauli's version of the equivalence 

principle. Pauli [3] regards the equivalence principle essentially as just the existence of local 

Minkowski spaces as follows: 

"For every infinitely small world region (i.e. a world region which is so small that 

the space- and time-variation of gravity can be neglected in it) there always exists 

a coordinate system KO(Xb X 2 , X 3 , X 4 ) in which gravitation has no influence 

either in the motion of particles or any physical process." 

Einstein strongly objected Pauli's version as reported in details by Norton [8]. The notion 

of acceleration with respect to a frame of reference is essential in Einstein's equivalence 

principle [10]. It has been shown that static acceleration may not exist for a non-constant 

metric, and this situation leads to inconsistent in physics [19]. 

Since other related physical considerations are ignored, Pauli's version is actually only 

a mathematical statement of the Lorentz manifold [11]. A noted difference from Pauli's 

version is that Einstein requires additionally: i) "the special theory of relativity applies to 

the case of the absence of a gravitational field [12, p.115]"; ii) "he will be obliged to define 

time in such a way that the rate of a clock depends upon where the clock may be [2, p.116]"; 

and iii) a local Minkowski space is obtained by choosing the acceleration. Einstein [12, 

p.118] wrote, " ... we must choose the acceleration of the infinitely small ('local') system 
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of coordinates so that no gravitational field occurs; this is possible for an infinitely small 

region." Thus, Einstein's equivalence principle requires a clear physical meaning of the 

space-time coordinates, which define acceleration and a frame of reference. For Einstein's 

equivalence principle, special relativity is naturally a special case, but this is not the case 

for Pauli's version. 

Many believed incorrectly that Einstein's predictions do not depend on his equivalence 

principle [10,11,28,29]. For instance, the gravitational red shift was regarded as derivable 

with a coordinate-free method [6,25]. The fact is, however, that a valid space-time coordi­

nate system, which satisfied Einstein's equivalence principle, must be implicitly used [1,27]. 

Although the deflection angle of a light ray can be derived directly without referring to the 

local light speeds, a physical coordinate system is necessary such that the deflection angle 

can be defined. For the perihelion of Mercury, a physical coordinate system is also needed to 

define perihelion although the connection between perihelion and Einsteins equivalence prin­

ciple is not direct and obvious. Moreover, these three predictions are expressed in terms of 

the Euclidean-like structure [1,27]' whose existence depends on a satisfaction of Einstein's 

equivalence principle. Thus, Einstein's predictions are inextricably related to Einstein's 

equivalence principle and a physical space-time coordinate system (see also Section 5). 

In fact, the physical meaning of space coordinates has been used right at the beginning 

implicitly in symmetry considerations5). Now, the physical meaning of space-time coordi­

nates has been identified, and the experiment on local light speeds would make the crucial 

role of Einstein's equivalence principle even clearer [26,27]. 

Pauli's version is inadequate in physics because it requires only the existence of Local 

Minkowski space and ignores Einstein's notion of physical space [1,12,16]. It is based on 

Paulis version that Logunov and Mestvirishvili [23] showed that general relativity would lead 

to inconsistency related to the radiation formula. Moreover, the local distance formula of 

Landau and Lifshitz [32], which is based on Pauli's version, would give results in disagreement 

with observation and even incompatible to their own claims 6) [33]. Thus, it is necessary to 

re-establish Einsteins equivalence principle on a firm theoretical ground. 
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3. THE PRINCIPLE OF GENERAL RELATIVITY, UNIFORM ROTATION, AND 

RIEMANNIAN SPACE-TIME 

Einstein considered a Galilean (inertial) system of reference K{x, y, z, t) and a system 

K'(x', y', z', t') in uniform rotation n relatively to K. The origins of both systems and 

their axes of Z permanently coincide. (The gravity of this example would be useful for 

the calculation of the gravity related to a uniformly accelerated frame.) For reason of 

symmetry5), a circle around the origin in the x-y plane of K may at the same time be 

regarded as a circle in the x'-y' plane of K'. Then, according to special relativity, in the x-y 

plane and the x'-y' plane, the metrics of K and K' [1,34] are respectively the following: 

and 

(6) 

Then, 

f ds = (1-02rl2/c )-!r' 12~ dq/ = 21rr'(1-02rl2/c)-~, x' = r'oos¢/, y' = r'sin</J'. (7) 

would be the circumstance of a circle of radius r' (= r) for an observer in K. Moreover, as 

Einstein pointed out, "an observer at the COlnmon origin of co-ordinates would therefore see 

it lagging behind the clock beside him." So, he will be obliged to define time in such a way 

that the rate of a clock depends upon where the clock may be [14]. Thus, Einstein also 

defined a physical space..time coordinate system together with its metric that is related to 

local clock rates and local spatial measurements. 

To illustrate Einstein's equivalence principle and the notion of Einstein space, let us first 

derive metric (6). Consider the coordinate transformation to the uniformly rotating disk 

[34], in terms of Newtons notion of "absolute time" as follows: 

x = x'cos nt - y'sin nt, y = x'sin nt + y'cos nt, and z = z' (8a) 

or 

r = r', z = z', <P = <P' + nt, (8b) 

in cylindrical coordinate systems of K and K', where n is the angular velocity. We take 

advantage of the fact that one can start with an arbitrary coordinate system of a Riemannian 
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space. Then, from (5) the resulting metric has the following form, 

ds2 = (c2 dr12 dz12- rz2rl2) dt2 - 2nr'2d</>' dt - - rl2d</>12 - . (6') 

However, the mathematical system K* (x', y', z' , t) is not a physical space-time coordinate 

system for the uniformly rotating disk K because what measured in a resting local clock 

is time t' but not time t. In other words, metric (6) together with its coordinates K* 

is not a space-time coordinate system, as Einstein defined, that can be used for physical 

measurement. 

Nevertheless, metric (6') alone can be used to derive metric (6), which some claimed as 

incompatible with (5). To obtain a physical coordinate system including the time t' of the 

rotating disk, a comparison of (6) and (6') leads to, 

d</>' d</> Odt, (9a) 

and 

(9b) 

Thus, it is necessary to modify the time coordinate t'. Relation (9) makes clear that metric 

(6) is related to the fiat metric (5). 

The time dilation and the spatial contraction in general relativity [1,12] are results due 

to comparisons with a clock and a measuring rod in relatively rest at the beginning of a 

free fall. To verify this, consider a particle P resting at (r', </>', z'). Then, P has the velocity 

of Or in the </>'-direction, which is denoted by dX". It follows that the Lorentz coordinate 

transformation is, 

(lOa) 

and 

edt = [1 - (rn/c)2]-1/2[edt" + (rO/c)dx"]. (lOb) 

Then, 

rd</>' = [1 - (rO/c)2p/2dx"; and edt' = [1 - (rO/c?J- 1/ 
2cdt" (lla) 

and 

(lIb) 

These are exactly the time dilation and spatial contraction. This illustrates that a particle 

resting at K', can attached to a local Minkowski space. Thus, this is also an example of 

Einstein's version of infinitesimal equivalence principle. 
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However, for the coordinate system K* (x', y', z' , t), the question of time dilation is compli­

cated because Einstein's equivalence principle is not applicable. Nevertheless, let us assume 

the Einstein's equivalence principle could be applied to K*. Mathematically, for a particle 

P resting at K*, the state vector of Pis (0,0,0, dt). According to (9), P is also resting at K' 

with a state vector (0, 0, O,dt'). Then the local Minkowski space for P is identical to (lIb). 

It thus follows that 

(12a) 

and 

(12b) 

Thus, 

dt = [1 - (rfl/c?]-1/2dt" (12c) 

would be considered as the time dilation since a clock rest at K* has d¢' = 0. The problem 

of this derivation is that the parameter t is not related to the local clocks for the frame 

K'(x', y', z'). 

Since metric (6') satisfies Pauli's "equivalence principle", Pauli's version is clearly inade­

quate in physics. This calculation confirms that Einstein's equivalence principle is applicable 

only to a physical space. Thus, in spite of geneml covariance, the freedom toward the phys­

ical space-time coordinate systems that can be used for physical interpretation is severely 

limited. 7) 

The directional spatial contraction as indicated in metric (6), is measured with a resting 

measuring rod in the state of free fall. However, if a spatial measurement is performed with 

a measuring rod which is attached to the frame K'(x', y', z'), it would appear as Euclidean. 

In fact, it is based on this implicit assumption that the cylindrical coordinate system is 

well defined in K'. Thus, as shown in examples (3) and (6), the distance in terms of the 

Euclidean-like structure is necessary and complementary to the metric for the Riemannian 

space that produces the local distance. The system K*(x', y', z', t) has a Euclidean subspace, 

but the time t is not associated with the frame K'(x', y', z'). Although K* is diffeomorphic to 

K, K* is not a physical space-time since it fails the physical requirement of local time. Thus, 

diffeomorphic manifolds may not be equivalent in general relativity as Wald [25] believed 

and Logunov and Mestvirishvilli [23] objected. 

Thus, an Einstein space is a Riemannian space with a Euclidean-like structure, and is a 
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physical space if it sufficiently satisfies all physical requirements, including Einstein's equiv­

alence principle. As in special relativity, the Euclidean characteristics are not invariants. 

However, if Pauli's version instead of Einstein's equivalence principle were considered, since 

coordinates have no physical meaning, it would not be possible to derive the metric (6) for 

the rotating disk and thus obtain the relation (7). Thus, Einstein's equivalence principle is 

essential in the theory of general relativity. 

4. UNIFORM ACCELERATION AND EINSTEIN'S EQUIVALENCE PRINCIPLE 

IN RIEMANNIAN SPACE 

The analysis of a rotating disk suggests that there are similarities with respect to the case 

of a uniform acceleration. Based on similarity to the case of the rotating disk, the metric 

for the case of uniform acceleration would be 

(13) 

where vet') is the relative velocity of the coordinate systems in the x'-direction. Metric (13) 

has a Euclidean-like structure as if v were zero. In other words, for the acceleration in the 

x-direction, the metric would have the following form, 

Note that a uniform acceleration cannot exist forever, otherwise the resulting speed would 

exceed the velocity of light. 

It follows that a uniform acceleration must be started at some time, for instance, t to < 

0, and then decreased some time afterward. Moreover, a uniform gravity must be confined 

in a finite region; otherwise the light speed as the maximum velocity would be violated. In 

other words, uniform gravity like an electromagnetic plane wave, also does not really exist 

in nature. Thus, the equivalence of acceleration and uniform gravity is best described, as 

Einstein did, in terms of an accelerated chest [14]. (In Einstein's derivation of gravitational 

red shifts [12], the obvious, though crucial, step of replacing the infinitesimal energy ,h 

by ~q. is omitted.) In practice, the uniform gravity is essentially a local idealization of a 

non-uniform gravity. 

Consider a system K' accelerated with an acceleration a relative to an inertial system 

Ko. Then, if the coordinates of the origin of K' in system Ko is (Xo,(t), 0,0, t), we have 
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(15a) 

and 

XO/(t) = XO/(O) + at2/2; y = y'; z = z', if v(O) = O. (15b) 

where Xo,(O) is arbitrary. Thus, to obtain a transformation compatible with form (14), we 

may assume similar to (11) that 

dx' = dx - v(x, t)dt, x = x' - XO/(O) + at2/2 (16a) 

and 

edt' = [1 - F(x, t)]-l[edt - f(x, t)c-1dx], (16b) 

where v( x, t) is a relative velocity of the two systems, and f (x, t) is an unknown function. 

Note that (15a) is equivalent to 

, ~x dx dv
dx == O' and - = a (- = 0 and - a). (16c) , dt2 dt dt 

Substituting (16) to metric form (14), a comparison with the flat metric leads to three 

relations as follows: 

-(1 - 2U/C2)-1 + (1 - F)-2(1 - 2U/c2)(f/c)2 = -1; (17a) 

- (1 - 2U/C2)-I(V/C)2 + (1 - F)-2(1 2U/c2) l', (17b) 

(17c) 

It follows that 

Thus 

(18b) 

Since v is the relative velocity of the two systems of coordinates K' and Ko, as expected, 

metric (14) is in the form of (13). 

Also, in terms of physics, (16) is in complete agreement with (11) as shown be the 

following relations: 

dx' dx - vdt;. (19a) 
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and 

edt' = [1 - (V/C)2]-1[edt - vc-1dx]; (19b) 

or 

dx = [1- (v/c)2]-ldx' +vc-1edt'. (19c) 

and 

edt = edt' + [1 - (V/c)2]-lVC 
-

1dx'. (19d) 

The limitation on the velocity of light and the definite sign of ds2 for the time line element, 

also requires 

2/ U(") ~x' 1 au 
c 2 > x , t ~ 0, and ds2 = c2 ax" (20) 

from the geodesic equation for the case of dx' / ds = o. 
On the other hand, the gravitational acceleration of a particle in K' is equivalent to 

dx:::::O; (21a) 

and 

ds = edt, dx' = -vdt, and dt' = [1 - (v/c?]-ldt. (21b) 

Thus 
d2x' dv au 

-a=-. (21c)ds2 ;:=: - c2dt and ax' 

where a is the constant acceleration by assumption. Thus, if U is independent of the time 

t' , 

U(x') = -ax' + C, or U(x') = -a(x'xo) (22) 

where C is a constant. Since U(x') is bounded according to (20), we must also have a range 

for x'. From (16a), we have 

U = -a(x' - x - XO/(O)). (23) 

According to (21a) dx ::::: 0, x + XO'(O) should be considered as just an arbitrary constant. 

Thus, (23) agrees with (22). 

To verify time dilation and spatial contraction, one should consider a system in rela­

tive rest at the beginning of a free fall. Let us consider the following Lorentz coordinate 

transformation, 

dx = [1 - (V/C?]-1/2[dx" + vdt"], (24a) 
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and 

edt = [1 - (V/C)2]-1/2[edt" + (v/c)dx"]. (24b) 

where v [2U(x')]1/2. Then, we have the expected relation 

and 

(24c) 

(24d) 

Thus, the initial form of Einstein's equivalence principle is indeed compatible with Einstein's 

notion of Riemannian space. 

There is an arbitrary constant in the potential U of metric (14) for uniform gravity. This 

uncertainty is actually a necessary feature that a uniform gravity can be considered as a local 

idealization of a non-uniform gravity. Without this arbitrary constant, one cannot adjust 

the metric for uniform gravity to have the same local value of a changeable non-uniform 

gravity. Note also that metric (14) for a uniform gravity has the form of the Schwarzschild 

exterior solution far from the source. Just as the plane wave is a local idealization of an 

electromagnetic wave, the uniform gravity can be considered as a local idealization of the 

Schwarzschild solution. As a local idealization, one may not expect that metric (14) satisfies 

the normal boundary condition at infinite, just as an electromagnetic plane-wave has the 

same amplitude everywhere, and appears as having no source. 

To calculate the space-time metric of uniform gravity, it is crucial to recognize the dual 

characteristics of the spatial subspace of Einstein's Riemannian space-time. Thus, for this 

case, the equivalence of gravitational force and acceleration is accurately valid. In other 

words, the criticisms of Fock [10] and his followers [31] on Einstein's general relativity are 

baseless. This further strengthens the status of Einstein's equivalence principle that has been 

further established due to its role in the derivation of the Maxwell-Newton Approximation 

[18,19]. Weinberg [4, p.3] declared, "In my view, it is much more useful to regard general 

relativity above all as a theory of gravitation, whose connection with geometry arises from the 

peculiar empirical properties of gravitation, properties summarized by Einstein's Principle 

of the Equivalence of Gravitation and Inertia." 

An interesting result of this calculation is that it confirms Einstein's 1911 calculation 

on the gravitational red shifts is valid in terms of a Euclidean-like structure instead of a 
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curved space. The notion of Einstein space clarifies that it is valid to consider the frame of 

reference as if a three-dimensional Euclidean-like structure. Since a Euclidean-like structure 

is independent of gravity, it makes sense to define the Euclidean-like structure first to obtain 

the Schwarzschild solution and/or the other metric solutions. 

5. THE SCHWARZSCHILD SOLUTION AND EINSTEIN'S EQUIVALENCE 

PRINCIPLE 

The Schwarzschild solution, though the first, is not the only solution. In fact, depending 

on the gauge condition used, one can obtain a new diffeomorphic solution almost at will. 

Other well-known metric solutions for the gravity of a spherical distribution of mass are 

respectively the isotropic solution, and the harmonic solution as follows [4]: 

and 

ds2 = [(l-M tl-/r)/{l+Mtl-/r)]dt2-[{1+Mtl-/r)/{l-Mtl-/r)]dr2-{1+Mtl-/r)2r2{dB2+sin2(}dqi) 

(26) 

where tl- = K /87rc?, M is the total mass of a spherical mass distribution with the center at 

the origin of the frame of reference K (x, y, z), r [x2+ y2 + Z2] 1/2, tl- is a coupling constant. 

Since the metrics are functions of r, this illustrates again that the Euclidean-like structure 

is necessarily included in a Riemannian space-time of Einstein. In fact, Einstein [12] had 

made clear that the light velocity is "defined in the sense of Euclidean geometry" . 

These three different solutions of the space-time metric for the same frame of reference 

produced the same (first order) deflection of a light ray. Einstein [1] even remarked, "It 

should be noted that this result, also, of the theory is not influenced by our arbitrary choice 

of a system of coordinates." Subsequently, the first order results of the gravitational red shift, 

the perihelion of Mercury, and the retardation of light are also the same from these solutions. 

These inconclusive evidences were sufficient to convince many that general relativity is gauge 

invariant. This also led many to believe that Einsteins equivalence principle is non-essential 

for Einstein's predictions, and Pauli's version were sufficient. 

However, if one ventures to the second order, the gauge invariance cannot be maintained. 

For instance, the second order effects of gravitational red shifts are different since these three 
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metrics have three distinct time-time components of the space-time metrics in terms of the 

second order. Thus to decide which of the metrics (if the correct one is among them) give 

the correct gravitational red shifts, one must consider Einsteins equivalence principle. 

According to Einsteins equivalence principle, local space contractions and time dilations 

are measurable [1,12]. However, since these different solutions have the same frame of 

reference, only one of them can be valid. Unfortunately, the current theory does not favor 

any of these solutions. Moreover, their differences in the well-known four tests are in the 

second order approximations, which remain beyond the accuracy of current experimental 

capability_ Therefore, to have a first order approximation, it is necessary to measure the 

local light speeds ( for instance) of the earth such that the realistic gauge would be identified 

[27]. The isotropic and the harmonic solutions are indistinguishable in term of the first order 

Maxwell-Newton approximation, 

(27) 

which is incompatible with the Schwarzschild solution. From metric (27), the local light 

speeds of first order is 

c. (28a) 

But 
dp 2Af~ pd8 2Af~ 
- = (1 - -) c and - ~ (1 - -) c. (28b)
dt p dt p 

where c is the light velocity at a free fall in vacuum, would be the local vertical and horizontal 

light speeds of the Schwarzschild solution for the earth. Thus, it is possible to distinguish 

experimentally between the Schwarzschild solution and the Maxwell-Newton approximation. 

An experimental difficulty for not reaching the required high accuracy is the gravitational 

stretch and compression effects on the vertical arm [40]. However, this difficult can be 

circumvented by measuring horizontal light speeds at different heights and at free fall [26]. 

In view of this, the Schwarzschild solution is in an unfavorable position for having no 

specific experimental support. Although the calculated results show that gravity can be 

anisotropic, this gives little theoretical support to the Schwarzschild solution since differ­

ent situations give different space contractions. On the other hand, the Maxwell-Newton 

approximation is the basis of a very accurate Einstein-Infeld-Hoffman equation for tracking 

planets spacecraft [5}. Moreover, the accurate experiments on binary pulsars also support 
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the Maxwell-Newton approximation [18-20,44,45J. Therefore, it is expected that the exper­

iments on local light speeds will directly support the Maxwell-Newton approximation, but 

reject the Schwarzschild solution. 

Since the current theory of back hole depends on the presumed validity of the 

Schwarzschild solution (30,31], this theory would have to go through a revision unless the 

experimental result of local light speeds turns out to be unexpected. The current depen­

dencyon this solution is at least in two aspects: 1) It is crucial to interpret dt/dr (instead 

of normally dr/dt) as velocity inside the "event horizon" [31J. This disagrees with Einstein 

[1] who believes in a fixed signature for any space-time coordinate. However, such an ex­

change of signatures between a space and a time coordinate does not happen in an isotropic 

solution. 2) For an isotropic solution, the radius of the event of horizon would be only 1/4 

of that for the Schwarzschild solution. Thus, it is not surprising that theorists such as Wald 

[25], E. J. Weinberg (30], and Landau and Lifshitz [32], who believed in the current notion 

of black hole, actually rejected Einstein's equivalence principle but accepted Pauli's version. 

6. DISCUSSIONS AND CONCLUSIONS 

Some theorists [35] believed "a homogeneous field is characterized by that any part of 

it is representative of the whole", and thus turn against Einstein's equivalence principle. 

Experimentally [4,5], it is known that the gravitational redshifts are related to the grav· 

itational potential, but not the gravitational field. Moreover, this belief is also not true 

in electrodynamics since experiments show that the electromagnetic potential actually has 

physical influence [36] just as Aharonov and Bohm predicted [37]. It should be noted also 

that both metrics (6) and (14) do not satisfy the harmonic gauge condition [4], and thus 

seem to against the proposal of Zhou [38] that the harmonic gauge condition should be an 

additional physical condition. However, Peng [39] clarified that such a condition is meant 

to apply for the case when the metric is asymptotically flat. 

Based on Pauli's version, Yu [7, p. 58] misleadingly claimed that all measurable quantities 

must be scalars, and Liu [42] defined a light speed such that the local light speeds are 

always isotropic for any othorgonal coordinate system. According to these theories, Zhou's 

experiment [38,40] of local light speeds would appear to be irrelevant. However, Liu's light 

speeds give only one half of the observed deflection angle [1,2], and it is well known that there 
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are non-scalars such as vectors in physics. Moreover, as illustrated by the local distance 

formula of Landau and Lifshitz [32], Pauli's version leads to incorrect acceptance of any 

Lorentz manifolds as valid in physics [22]. Since Pauli's version leads to disagreements with 

observation and theoretical inconsistency [23,24,33], it is necessary to re-establish Einstein's 

equivalence principle on a firm theoretical ground. 

In Einstein's theory [1], the reality is modeled with a physical space (-time) that has 

a frame of reference. In such a physical space, all physical requirements are sufficiently 

satisfied. In particular, in a physically valid space-time coordinate system, Einstein [1,12] 

has shown that time is compatible with the rate of a local clock. 

Thus, a different coordinate system can fail as a space-time coordinate system in physics 

although some calculations can be carried out with an arbitrary mathematical coordinate 

system (see Sections 2 and 3) Moreover, it has been illustrated that the local Minkowski space 

at a point is obtained by means of choosing the appropriate acceleration. This requires that 

the coordinates of a physical space must have physical meanings. As illustrated in Sections 

3, Einsteins equivalence principle is applicable only in a physical space. Otherwise, the 

so-calculated local time rate and local spatial contraction would be incorrect in physics. 

Now, it is clear that Einstein's equivalence principle cannot be replaced with merely the 

existence of local Minkowski spaces since, as Logunov et al [23] showed, Pauli's "equivalence 

principle" has been proven as inadequate in physics. (There is a class of Lorentz manifolds 

any of which is not diffeomorphic to a physical space [19].) Otherwise, not only this will 

surely end up in theoretical disagreement with Einstein, but also against the weighty fact 

that there are non-scalars in physics. Moreover, the existence of definitive gravitational red 

shifts testifies that a valid space-time coordinate system cannot be arbitrary [27). 

Historically, Eddington [2) is the first who recognized that a gauge couldn't be arbitrary. 

Zhou [38,40] is probably the first who did an experimentS) in order to show that a gauge is 

unique for a physical coordinate system although his reason for uniqueness was essentially 

an assumption. In this paper, it is shown that the uniqueness of a gauge for a given frame 

of reference is actually built in the theoretical framework of general relativity. Thus, this 

paper supports the essential part of Zhou's proposal. 

Note that the uniqueness of a realistic gauge for a given frame of reference is compatible 

with the fact that the same deflection angle of light was obtained by two different metrics, 

namely, the Schwarzschild and the isotropic metrics. First, these two gauges are related 
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to the same frame of reference. Moreover, both metrics are asymptotically flat and have 

the same first order gravitational red shift. Thus, these gauges are restricted. Second, 

the deflection angle is an integrated effect over a very long range, and thus would not 

be subjected to the same rule for local effects such as gravitational red shift and local light 

speeds. In view of that the realistic gauge is not yet known, such a restricted gauge invariance 

in mathematics may be needed to explain the observational confirmation of light bending. 

Besides, the second order approximation is no longer invariant. 

In conclusion, a uniform acceleration, as an idealization, is valid for an illustration of Ein­

stein's equivalence principle as a foundation of general relativity. Since the physical meaning 

of space-time coordinates is included in the theoretical framework of general relativity, there 

is no longer any reason to substitute Einstein's equivalence principle with Pauli's version 

[3]. Another source of difficulty was a misconception that the curved space-time is expected 

to be embedding in a higher dimensional flat space [41]. It goes without saying that White­

head's objection [21] is no longer valid. It is hope that this paper would help rectifying the 

damages done by Bergmann's misinterpretation [13] and Fock's misconceptions [10]. On this 

basis, one may expect that general relativity would be infused with new life and be even 

more fruitful in the future. 

However, since the application of Einstein's equivalence principle still cannot decide the 

realistic gauge, one might ask what is its difference from Pauli's version in physics. The main 

difference is that as illustrated by the local distance formula of Landau and Lifshitz [32J, 

Pauli's version leads to incorrect acceptance of any Lorentz manifolds as valid in physics [22]. 

On the other hand, Einstein's equivalence principle, which enables us to have a clear physical 

meaning of coordinates, would reject some unphysical Lorentz manifolds [26]. Logically, 

Einstein's equivalence principle demands the burden of proof from current advocates of 

black holes for choosing the Schwarzschild solution instead of the possibility of others since 

the gauge is unique for a given frame. Moreover, both Whitehead [21] and Fock [10] rejected 

general relativity because they believe uniformity of space-time owing to their philosophies. 

However, their objection turns out to be irrelevant since their required uniformity is actually 

implied by Einstein's equivalence principle [26]. 
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ENDNOTES 

1. 	 In fact, Einstein [12, p. 144] wrote, "For it is clear that, e.g., the gravitational field 

generated by a material point in its environment certainly cannot be transformed away 

by any choice of the system of coordinates, i.e. it cannot be transformed to the case of 

constant 9p,v". Thus, some theorists misrepresented Einstein's theory simply because 

of carelessness in reading. 

2. 	 To be more precise, the Riemannian space is actually a pseudo-Riemannian space 

because the metric signature is indefinite as that of a Minkowski space. 

3. 	The Maxwell-Newton approximation is derived independent of the Einstein equation, 

which was guessed by Einstein. 

4. 	 In Euclidean geometry, the measurements in terms of the coordinates or in terms of 

the metric are the same. For a curved space, as shown by Weinberg [4], these two 

kinds of measurements would be different unless the curved space is embedded in a 

Euclidean space of higher dimension. 

5. 	 The principle of causality [17] assumes that the causes of phenomena are identifiable. 

This principle is commonly used in symmetry consideration in electrodynamics. In 

general relativity, Einstein and subsequent theorists have used this principle implicitly 

on symmetry considerations [1-10]. Thus, in practice, the physical meaning of space 

coordinates has been used not only subsequently but also right at the beginning. 

6. 	 Landau and Lifshitz (32] erroneously claimed that their local distance formula always 

produces" actually (local) distances". 
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7. 	 Einstein declared, "The general laws of nature are to be expressed by equations which 

hold good for all systems of coordinates, that is, are covariant with respect to any sub­

stitutions whatever (generally covariant)." However, Einstein's equivalence principle 

and the principle of causality are not just tensor equations. 

8. 	 Although Yilmaz [43] proposed a similar experiment in 1979 earlier than Zhou's, the 

purpose of Yilmaz's proposal was to compare his own theory with Einstein's theory. 
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