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Abstract 

Two symmetrical mass formulae are introduced that closely reproduce nine experimentally 

known mass ratios of the quarks and leptons. Consistency of results between these mass 

formulae is achieved by exploiting a symmetry present in the initial terms of the Fibonacci 

sequence. This s.ymmetry determines the mass formulae parameters and requires that there 

exist either one, or three, particle families. It is this three-family solution that produces the 

quark and lepton mass ratios that approximate their experimental values. 
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I. Introduction 

Two symmetrical mass formulae are introduced that closely reproduce nine experimental 

mass ratios of the quarks and leptons. The formulae are not intended to explain the origin of 

mass, but rather to establish underlying phenomenological connections that may serve as a guide 

to a physical explanation. The formulae exploit constants equal to the beta coefficients 

hI = 41/10 and hI = 1110 of the extra-dimensional, non-supersymmetric GUT described by 

Dienes, Dudas, and Gherghetta [1]. Earlier, the author used these same constants to reproduce 

the experimental values of the fine structure constant, as well as the neutron-, and muon-electron 

mass ratios, at or very near their experimental limits [2,3], while also demonstrating, by using 

information theory, that this result is unlikely to be purely coincidental [4]. 

IIa. The mass formulae parameters 

The Fibonacci sequence extends in both directions and includes the following terms 

-3 2 -1 1 Q 1 1 2 3 5 

Above, each term of the Fibonacci sequence equals the sum of the two terms that precede it. The 

initiators of the sequence 0 and 1 appear underlined. 
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To generate the mass formulae parameters, we begin by defining the sequence L as the 

six Fibonacci terms that are initiated by 0 and 1, and extended leftwards: 

-3 2 -1 1 Q 1 


We then define the sequence R as equal to the six Fibonacci terms that are initiated by 0 and 1, 

and extended rightwards: 

Q 1 1 2 3 5 


We then pair the terms of the sequences L and R so that they sum uniformly to 2. 

-3 2 -1 1 o 1 


+5 +0 +3 + 1 +2 +1 


2 2 2 2 2 2 


As the Fibonacci numbers may be written F(-4) -3, F(-3) 2, F(-2) = -1, F(-l) = 1, 

F(O) = 0, F(1) 1, F(2) = 1, F(3) = 2, F(4) = 3, F(5) = 5, ... etc., the above sums may be 

restated as follows. 
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F(-4) F(-3) F(-2) F(-l) F(O) F(l) 

+ 	F(5) + F(O) + F(4) + F(2) + F(3) + F(l) 

2 2 2 2 2 2 

Conveniently, the above sums serve as a ready template for assigning values to nand n 

for the quarks and leptons. 

'[' e J.l b t C 

V3 VI V2 d s u 

n -4 -3 -2 -} 0 } 

n 5 0 4 2 3 1 

Note that the above parameter assignments are carried out with heavy particles paired 

with light particles in a natural way, with all pairings governed by mass. So, the heaviest heavy 

quark (t) is paired with the heaviest light quark (s); the lightest heavy quark (c) is paired with the 

lightest light quark (u); and so on. 

In addition, the values for one additional variable m will be assigned as follows. 

4 



Particle m
Subgroups 

Light Quarks & 
2Light Leptons 

Heavy Quarks & 
1Heavy Leptons 

The values for n, n, and m-the only parameters used by the mass formulae-are summarized in 

Table I. 

Finally, note that the above assignments guarantee that for any particle p 

(la) 

This implies that for any particles p and q 

F(n )+ F(n )=: 2 = F(n )+ F{n ) (lb)p p q q 

or, equivalently, 

(Ie) 
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which is the key relation that will guarantee consistency of results between the mass formulae 

defined below. 

lIb. The mass formulae 

Define LxJas equal to the largest integer that is less than or equal to x; and define rxl as 

equal to the smallest integer that is greater than or equal to x. Also define the symmetrical mass 

formulae 

F~np) F[r,n;'1J F[l~J) 
M(p)==4.1 xO.l x3 mp (2a)p 

,., -~np) F[r,n;'1J F[l~J)
M(P)= 4.1 xO.l x3 mp (2b)p 

where M(p) and M(p) equal relative mass for a particle p. 

It is important to note that the only differences between the right sides of Eqs. (2a) and 

(2b) are in their exponents for 4.1; they are otherwise identical. 

Also important is the fact that the above mass formulae are limited in scope, in that they 

are only meant to reproduce the quark and lepton mass ratios within these four particle 

subgroups: the heavy quarks, the heavy leptons, the light quarks, and neutrino mass eigenstates. 

That is to say, Eqs. (2a) and (2b) only are meant to reproduce the following eight mass ratios. 
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Particle Subgroup Mass Ratios 

M{v2 ) _ M{v2 ) M{v3 ) _ M{vJNeutrino mass 
eigenstates M{v ) - M{v ) M{v ) - M{v )1 1 1 1

M{d) M{d) M{s) M{s)
Light quarks M{u) = M{u) M{u) = M{u) 

M(u) _ MCu) M{r) _ M{r)Heavy leptons M(e) - M{e) M{e) - M{e) 

M{b) _ M{b) M{t) M{t)
Heavy quarks M{c) - M{c) M{c) =M{c) 

The application of the mass formula is straightforward. By way of example, consider the 

muon-electron mass ratio, which appears in the above list, and which is therefore within the 

scope of the formulae. The muon-electron mass ratio may be calculated using either Eq. (2a) 

Fln,J F(r 1n;11J F(l~ j) F(4) F(r'~211) F(l~J)
M (J.1 ) 4.1 x 0.1 x 3 P = 4.1 I x 0.1 x 3p I 

(3a) 
M(e) = F(n,) F(f,n;'l) F(l i j) F(O) F(rl~311) F(l%j) 

4.1 me X 0.1 x 3 me 4.1 1 X 0.1 x 3 I 
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4 IF(4) x 0 IF(I) x 3F(2) 4 13 X 0 II X 31 

=' . =" =4.ex3=206.763 
4.1F(0) xO.lF(2)x3F(0) 4.10 X 0.11 x3° 

or Eq. (2b) 

" -~n,u) F([ln;11J F(l~ j) -F(-2) F(f'-;ll) F(l~J)
M(p) 4.1 ,u xO.l x3,u = 4.1 1 xO.l x3 1 

iJ(e) = -F(ne) F(r'~'l) F(ln; j) -F(-3) F(r'~'l) F(l%j) 
(3b) 

4.1 me X 0.1 X 3 me 4.1 1 X 0.1 X 3 I 

4 I-F(-2) X 0 IF(I) X 3F(2) 4 11 X 0 11 X 31 

= . . =" =413 x3=206763
4. r F(-3) X 0.lF(2) X 3F(0) 4~ r2 X 0.11 X 30 ' . 

with identical results: ~t1=~t1=4.13 X 3 =206.763 . 

Note that Eqs. (3a) and (3b) produce consistent results because, for the muon and electron 

(3c) 

or, substituting and simplifying, 
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As this equation makes clear, the only difference between Eqs. (3a) and (3b) is that their 

exponents for 4.1 have been uniformly shifted by 2. Crucially, the uniformity of "this shift leaves 

the differences between exponents unchanged. It is this, along with the fact that the muon and 

electron share the same value for m, which enables Eqs. (3a) and (3b) to produce the sanle values 

for the muon-electron mass ratio, albeit in a slightly different manner. 

As it is, equations equivalent to (3a) and (3b) for any other particles p and q will also 

undergo the same uniform shift, and therefore produce consistent mass ratios, provided of course 

that p and q share the same value for m, which of course they will if they are members of the 

same subgroup. The uniformity of the above shift is a direct consequence ofEq. (I c). 

It should now be clear why, earlier, such care was taken in assigning values forn and n. 

It is the symmetry of the Fibonacci numbers F (n p) and F (n p) that ultimately guarantees mass 

formulae consistency_ More specifically, it is the symmetry possessed by the two 6-term 

sequences generated by the Fibonacci initiators 0 and 1 that allows the assignment of the values 

for nand nin such a way that F{n p)+ F{np) = 2 for all particles p; and it is this which, in tum, 

guarantees that the mass formulae to produce consistent results. 

As will be analyzed later, the absence of an equivalent symmetry for Fibonacci sequences 

of 8 or more terms automatically imposes a limit of 3 on the number ofparticle families. So, if 

the masses of4 or more particle families were to be modeled, it would be impossible for Eqs. 
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(2a) and (2b) to fit such mass ratios-irrespective of what they were. No correct model of such 

mass ratios would be possible, because there would be no way to assign consecutive valu~s to 

nand n so as to allow Eqs. (2a) and (2b) to yield consistent results. 

Conversely, and perhaps surprisingly, the mere requirement that the values assigned for 

nand n achieve consistent results is enough to ensure mass formulae accuracy. That is to say, if 

nand n are chosen to produce consistent results, they will automatically produce accurate results. 

III. Comparison of the calculated mass ratios against their experimental values 

As was noted earlier, either Eq. (2a) or (2b) allows one to closely reproduce the 

experimental mass ratios that hold within these particle subgroups: the heavy quarks, the heavy 

leptons, the light quarks, and neutrino mass eigenstates, where these equations take their 

parameters from Table I. The following ratios are a consequence ofEqs. (2a) and (2b) and Table 

I: 

(4a) 

(4b) 

O.lXM(S))2 = O.lxM(t) =4.11 x3 (4c)( M(u) M(c) 

M(d))2 =M(b)=4.10x3 . (4d)( M(u) M(c) 

10 



And Eqs. (4a)-(4d) imply the mass ratios: 

For the heavy leptons: 

For the neutrino mass eigenstates: 

4.15x 3 : 4.13 x 3 : 1 

.J4.15 x 3 : .J4. ex 3 : J1 

For the heavy quarks: 

F or the light quarks: 

4.1 x 10 x 3 : 3 : 1 

.J4.l xI 0 x J3 :J3 :J1 . 

When we compare these ratios against their corresponding experimental values, we find a 

remarkable fit: 

+0.29 
The tau's measured mass equals 1776.99 MeV [5], while the electron's measured 

-0.26 

mass is 0.510998918 MeV [5]. Dividing the lower end of the tau's mass by the electron mass 

yields a mass ratio of 1776.99 - 0.26 = 3476.97 .... This is not very different from its calculated 
0.510998918 

value of 4.15 x3 =3475.686... , from which it differs by roughly 1 part in 2,700. 

Similarly, the experimental value for the muon-electron mass ratio equals 206.7682838 

[5], versus a calculated value of206.763. These differ by roughly 1 part in 40,000. 

The t-quark's mass of 172,700 ±2,900 MeV [6] and the c-quark's mass of 1,150 to 1,350 

MeV [5] suggest a possible t-quark / c-quark mass ratio of 169,800/ 1,350 125.77... , which is 

near its calculated value of 123. 

The b-quark's mass of4,100 to 4,400 MeV [5] and the c-quark's mass of 1,150 to 1,350 

MeV suggest a possible b-quark / c-quark mass ratio of4,100/ 1,350 = 3.037 ... , which is near its 
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calculated value of 3. 

The above comparisons are summarized in Table II. In addition, Table III provides four 

additional calculated mass ratios involving light quarks, that are within their ranges of 

experimental error. 

IVa. The neutrino squared-mass splittings 

Equations (4a) and (4b) require that the masses of the neutrino mass eigenstates occur in 

the following ratios 

and that the neutrino squared-mass splittings, in tum, fulfill the following ratios 

It follows that 

IM(v3 Y-M(vIY/ 4.15 x3-1 
16.8868... ,and, (5a)

IM(V2Y-M(v1YI = 4. 
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!M(v,y - M(v2 Y! =4.1' x3-4.13 x3 =15.8868.... (5b) 
!M{vzY -M{vIY! 4.13 x3-1 

Observational data exist for two neutrino squared-mass splittings, namely [5] 

and [9] 

()21 -5 +1.2 2 

1M { )ve 2 M vx = 7.1 x 10 l1eV .- -0.6 

As this second neutrino squared-mass splitting is the more precisely-known of the two, it may be 

used as a starting point to calculate IM(vp)2 - M{vx )21 ' as well as the remaining unknown 

neutrino squared-mass splitting: 

4.15 X 3 -1 7 1 10-5+1.2 A V 2 -1 19+0.2 10-3 A V 2 d
3 X . X -0.6 ue -. -0 I X ue ,an, (5c)

4.1 x3-1 . 

4.15 x3-4.13 x3 7 1 10-5 +1.2 A V2 -1 12+0.2 10-3 A V2 
3 X • X -0.6 ue .....,. -0 I X ue . (5d)

4.1 x3-1 . 
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These predictions offer an opportunity to test the mass formulae's validity, especially as the Eq. 

(5c)' s value for \M{V)J)2 - M{v xY \ is predicted to be slightly below its experimental value. 

IVb. The neutrino mass eigenstates 

The above neutrino squared-mass splittings allow one to calculate M(v I ), M(v2), and 

M(v3 ) from the observed value for IM(veY -M(vxYI. Thus, 

5 +1.2 2
7.1 x 10- -0.68eV -3 +0.7 2 
r------- =8.5x10 -0.4 8eV . 

1- 1 
4. x3 

If follows that 

M( )= M(v2) =5 9 10-3 +0.5 A V2 
VI -J . X -0.3 tie 

4.13 x 3 

and 

-3 +0.4 2M() ()V3 =Mv2 x4.1=3.5x10 -0.28eV • 
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Note that the calculated mass of the heaviest neutrino mass eigenstate M(V3) is within 

range of cosmological considerations such as [10] 

0.03 eV < Mass [Heaviest Vi] < 0.23 eV . 

v. 	An automatic limit of three on the number of particle families 

It is helpful to examine in detail the two Fibonacci sequences responsible for 

reproducing the quark and lepton mass ratios; this is to say, the sequences that arise when the 

Fibonacci sequence initiators 0 and 1 are extended in both directions to a length of 6 terms. 

Values for F{n): o 1 1 2 3 5 


Values for F(n): -3 2 -1 1 o 1 


Earlier, by appropriately pairing the quarks and leptons with the above terms, we saw to it that 

F{n) and F{n) summed to a common value, in this case 2: 

-3+5=2+0=-1+3=1+1 0+2=1+1=2. 
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In this way, Eq. (Ic) was fulfilled and the mass fonnulae produced consistent values for the 

quark and lepton masses. 

It is interesting that the above Fibonacci sequences cannot be lengthened to 

accommodate 4 or more particle families. To see why, consider that if more than 4 particle 

families were modeled, the above Fibonacci sequences would have to be correspondingly 

extended to contain 8 or more tenns. But an inspection of the first 8 tenns of the Fibonacci 

sequence 

o 1 1 2 3 5 8 13 

+? +? +? +? +? +? +? +? 

k k k k k k k k 

shows that no other sequence of 8 consecutive Fibonacci numbers can be found to pair with them 

to sum to a common integer k. Furthennore, this problem remains even if the sequence is 

extended to more than 8 tenns (see Appendix for proof). 

This inevitable mismatch of tenns sees to it that the mass fonnulae cannot produce 

consistent results for 4 or more particle families. Nor, for that matter, can it accommodate just 2 

particle families, for the same reason, though it can accommodate just 1, as the sequence 

initiators may be paired with each other to produce a common sum. This "single-family 

solution" takes the following fonn. 
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1 0 

+0 +1 

1 1 

Although the above conclusions should not be taken as absolute, particularly as it is 

inevitable that a sufficient "loosening of the framework" may make it possible to accommodate 

more than 3 families, nevertheless, it should not be overlooked that the above framework offers a 

natural way to limit the number ofparticle families to 3, and that any modifications to the above 

framework might very well rob it of its simplicity. 

VI. Unambiguous steps that generate the quark and lepton mass ratios 

It is instructive to identify an unambiguous set of steps that will generate the quark and 

lepton mass ratios ofEqs. (4a)-(4d), while automatically disallowing 4 or more particle families: 

Step One: We begin by assuming that Eqs. (2a) and (2b) govern particle mass, and that 

their values for m equal 1 for heavy particles Hn, and 2 for light particles Ln. 

Step Two: 	 We then assume there exist N pairs ofheavy and light particles (Ho, Lo), (HI, 

L 1), ... , (HN-I, LN- 1), where each pair is assigned an integer n, as follows: 

Particle Pair 	 n 

o 
1 

N-1 
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Step Three: We further assume that a second set of N consecutive integers n is also 

mapped one-to-one to each pair of particles. The values for n need not 

map over in any particular order, but in order to assure consistency between 

Eqs. (2a) and (2b), the sum F{n p)+ F{n p) must produce the same value for 

all particles p. 

Step Four: 	 Under the above restrictions, Eqs. (2a) and (2b) can achieve consistency in 

only two ways: via the single-family solution noted earlier, where 

n = { 0, I} and n = { 0, 1 } , 

and via the three-family solution described at the outset of this article, where 

n= {-4,-3,-2,-1,0, 1} and n {O, 1,2,3,4,5} . 

We discard the single-family solution and retain the three-family solution, 

where the values for nand n are paired and mapped to particles as in Table 

I. This three-family solution is then used to compute, in the form of either 

Z~j or ~~j, the eight independent mass ratios that hold within the 

following subgroups: the heavy quarks, the heavy leptons, the light quarks, 

and neutrino mass eigenstates. 
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VII. Are the mass formulae successful for physical, or accidental, reasons? 

The above framework generates the particle masses via fonnulae that take the general 

fonn of 

(6a) 

and 

(6b) 

where the values for the constants J, K, and L are as follows 

J=i! 
10 

1
K=­

10 

L 3 . 
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In Table I, the values for the parameters Ii and n are listed. Clearly these parameters are 

not easily fine-tuned in order to make Eqs. (6a) and (6b) fit the mass data. This is so partly 

because these parameters are sequences of consecutive integers, but more importantly because 

the values for nand n are rigidly constrained by the need for consistency of results between Eqs. 

(6a) and (6b). Consequently the parameters ofTable I offer virtually no opportunity for fine-

tuning the mass formulae parameters to fit the mass data by accident. 

But it must be added that J, K, and L also cannot be fine-tuned in order to make Eqs. (6a) 

and (6b) fit the mass data. This is because J, K, and L were not specifically chosen to fit the 

quark and lepton mass data, but instead are constants originally selected to generate the mass 

ratios ofa quite different set ofparticles. More specifically, the constants 4.1,0.1, and 3 were 

first introduced by the author to generate the tf meson-, JIlI'meson-, muon- and neutron-electron 

mass ratios [2,3,4]. Their reuse here, therefore, merely maintains consistency with earlier work. 

Accordingly, the constants 4.1, 0.1, and 3 cannot be regarded as values selected to 

accommodate the quark and lepton masses. That they can still manage to generate the quark and 

lepton masses, despite this independent origin, must be taken as key evidence for their physical, 

rather than accidental, origin. 

It is also suggestive that the fine structure constant reciprocal ~ may be approximated 
a 

closely with the aid of the constants K == 1 and L == 3 ofEqs. (6a) and (6b) 
10 

1 1 1 103 2 
-~-(\3 +-2 ==-3 +10 ==137.037037 ... (7a) 
a KL} K 3 
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where the 2002 CODATA value for..!... equals 137.03599911 (46) [11). The effectiveness of 
a 

this approximation lends key additional support to the conjecture that the constants 1110, and 3 

are not arbitrary. 

Of course, one could plausibly object that the above approximation achieves its close fit 

of ..!... by coincidence, and that other approximations of the same form might achieve a better fit 
a 

while employing even smaller integers. 

To resolve this issue, a computer searched for a better approximation of..!... in the form 
a 

A
a 

CC 
-b+ ,
B 

where the exponents a, b, and c were integers arbitrarily allowed to range from 0 to 5, inclusive, 

and A, B, and C were integers allowed to range from 1 to 10, inclusive. Across these ranges no 

better approximation was found. 

As it is, to find a better approximation requires that A, B, and C be allowed to range up to 

37, as follows 

137.0350620 ... , 
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with, once again, a, b, and c limited to between 0 and 5, inclusive. Accordingly,Jor values ojA, 

B, and C less than 37, the best fit is achieved by the unusually small integers 

A=C=10, 

B 3, 

which, of course, are the same constants relied upon by the mass formulae. 

Finally, it is interesting to carry out an additional search for a refined version of the 

3 3 

approximation 10 +102 
, specifically one in the form 1 0 ~Dd +1 02 

- E e 
, where the exponents 

33 3 

d and e are integers arbitrarily allowed to range from 0 to -3, inclusive, and D and E are integers 

arbitrarily allowed to range from 1 to 30, inclusive. Within these restrictions the best fit ofthe 

experimental value of the fine structure constant inverse is provided when D = E =10 and 

d =e =-3 , so that Dd =E e = 10-3 
, and 

(7b) 

Remarkably, the integer 10 now occurs no less than four times, while reproducing exactly the 

celebrated 137.036. This four-fold repetition of 10 is suggestive that Eq. (7b) is physically 

significant, and that the constants 10 and 3 may be fundamental constants ofnature. 
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Because A =10 =~ and B =3 =L, one may readily restate Eqs. (6a) and (6b) in terms 
K 

ofA and B as follows 

and 

(8a) 

(8b) 

1 
Note that, above, 4.1 has been replaced by 1+ A + B . 

It is especially significant that these equations generate the nine experimental quark and 

lepton mass ratios of Tables II and III, because they make use ofno important values chosen to 

fit the quark and lepton mass data. Their key values are either the interdependent and symmetric 

parameters nand n,whose values are determined by the requirement of mass formulae 

consistency; or are small integers (the constants A and B) that were introduced earlier by the 

author to fit other mass data [2,3,4], and which, in any case, may be derived from the fine 

structure constant, as just demonstrated. The remaining values of the mass formulae are 
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inherently trivial: the constant 1, which is used in the expression that substitutes for 4.1; the 

constant 2, which p~ays the same role in two exponents; and the parameter m, which equals either 

1 or 2 for heavy and light particles, respectively. 

In contrast, the mass ratios reproduced are non-trivial: they range across three orders of 

magnitude, and, where the tau- and muon-electron mass ratios are concerned, they are fit to 

roughly 1 part in 2,700, and 1 part in 40,000, respectively. All this supports the broad conclusion 

that the mass formulae work for physical, rather than accidental, reasons. 

VIII. Summary and Conclusion 

In summary, in this article nine experimentally known mass ratios of the quarks and 

leptons are reproduced by a symmetrical pair of mass formulae that generate the quark and 

lepton mass ratios that hold within these particle subgroups: the heavy quarks, the heavy 

leptons, the light quarks, and neutrino mass eigenstates. It is shown that the requirement that 

these mass formulae be consistent automatically limits the number ofparticle families to 3, and 

that the calculated masses they produce approximate the experimental mass data. Finally, a 

link is established between the mass formulae constants 0.1 and 3, and the fine structure 

constant. 

It is noteworthy that the Fibonacci nutnbers conveniently generate the proper values for 

the 2 x 12 x 3 = 72 exponents of Eqs. (2a) and (2b), the mass formulae. If any of these 72 

exponents were altered by just 1, its corresponding mass would have its value shifted by a 

factor of at least 3. In almost all instances this would shift the corresponding mass ratio to well 

outside its range of experimental error. This congruence of 72 exponents inevitably suggests 

that the mass formula works for some, as yet unknown, physical reason. 
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But why should the Fibonacci numbers play such a role? Within the realm ofphysics 

Fibonacci numbers appear at least three times. They govern the self-organization into spirals of 

magnetized droplets in a magnetic field [12]. They playa role in helping understand 

quasiperiodicity in quasicrystals [13]. And they may be generated from the "magic numbers" 

that correspond to the total number of electrons in filled electron shells; to be specific, the 

expression LZ 118 +1/2Jgenerates the first six Fibonacci numbers, as Z assumes the atomic 

numbers of the noble gases [14]. 

Noble Gas Atomic Number Z LZ/18+1/2J 

Helium 2 0 

Neon 10 1 

Argon 18 1 

Krypton 36 2 

Xenon 54 3 

Radon 86 5 

Finally, it is interesting to conjecture what physical considerations might underpin the 

constants 4.1 and 0.1 of the mass formula. As the beta coefficients bi and ~ of the extra­

dimensional, non-supersymmetric GUT described by Dienes, Dudas, and Gherghetta [1] also 

equal 4.1 and 0.1, it is tempting to speculate whether a physical basis ties one, or both, of these 

beta coefficients to the mass formula. 
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Appendix 

Assume a portion ofthe Fibonacci sequence R is initiated by 0 and 1 and extended 

rightwards to include at least eight terms 

R = {O, 1, 1, 2, 3, 5, 8, 13, ... } . 

Then another portion ofthe Fibonacci sequence L cannot exist whose terms when paired one-to­

one with those ofR sum to a common value k. 

This follows because R contains two, and only two, repeated terms { 1, 1 }, and therefore 

L must likewise contain two, and only two, repeated terms, which when paired with { 1, 1 } sum 

to k. This requires that L take the form 
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L= { ... ,-8,5,-3,2,-1,1,0,1}" 


and that k = 2. (Note that L cannot be extended further rightwards as this would give L three 1 s, 

and it cannot be shortened on the right, as it would then have no repeated terms.) Now ifk = 2 

there is no Fibonacci number that can be found to pair with the value 8 in R to sum to 2. 

Accordingly, a sequence L meeting the above requirements cannot exist. 
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Table 1. Assignment of the values for the parameters ii , n, and m for all quarks and leptons. 

These parameters, along with the mass formulae Eqs. (2a) and (2b), are all that is needed to 

generate the quark and lepton mass ratios ofEqs. (4a)-(4d). Solid lines group those particles that 

possess the same electric charge Q. The Fibonacci numbers are F(-4) -3, F(-3) = 2, F(-2) = 

-1, F(-l) = 1, F(O) =0, F(l) = 1, F(2) = 1, F(3) = 2, F(4) = 3, F(5) = 5, while for all particles 

F(ii) + F(n) = 2. 

Light 
Particles 

Heavy 
Particles 

m=2 m 1 n n F(ii)+F(n) 

Q +2/3 

Q 
u 

u c 1 1 2 

a 
r 
k 
s 

ts 0 3 2 

d b 

Q= -113 

2 2 

Q=O Q -} 

L 
e 
p 

v2 !l -2 4 2 

t 
0 

n 

VI e -3 0 2 

s V3 1: -4 5 2 
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Table II. Experimental versus calculated values for the quark and lepton mass ratios, 

calculated using Eq. (2a) or (2b) and the parameters ofTable I. The experimental mass 

M tratios for , Mb ,and My) below were formed by choosing from the experimental 
Me Me M Y2 

values' upper or lower bounds, in an effort to fit the calculated values. Experimentally, 

the t-quark's mass equals 172,700 ± 2,900 MeV [6], the b-quark's mass ranges from 

4,100 to 4,400 MeV [5], while the c-quark's mass ranges from 1,150 to 1,350 MeV [5]. 

See text for discussion of the neutrino squared-mass splittings. 

Mass Ratio 

M" 
Me 

Mp 

Me 

M t 

Me 

Mb 

Me 

Experimental Value 

1776.99 - 0.26 
= 3476.97 ... a 

0.510998918 

206.7682838 a 

172,700 - 2,900 
= 125.77 ... a,b 

1350 

4,100 
=3.037 ... a 

1,350 

> 1.5 X 10-3 !J.eV2 

< 3.9 X 10-3 !J.eV2 a,c 

Calculated Value 

4.1 5 
X 3 = 3475.686 ... 

4.13 X 3 = 206.763 

4.1 X 3 X 0.1-1 = 123 

3 

aReference 5. 

bReference 6. 

cReference 9. 
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Table III. The experimental versus calculated values for four additional ratios involving 

light quarks [5]. 

Experimental Calculated
Mass Ratio 

Value Value 

1 a 
-I = 0.57735 ...0.3 to 0.7 

1 
17 to 22 b4.12 X 0.1-1 = 20.248 ... 

25 to 30 25.674 ... 

30 to 50 46.042 ... 

aThis calculated value is within 4% of the first order approximation produced by chiral 

perturbation theory [5,7,8]: 

bThis calculated value is within 112% of the first order approximation produced by chiral 
M2 +M2 _M2 


perturbation theory [5,7,8]: Ms = ~o ~+ ~+ = 20.152 ... 

Md M Ko -MK + +Mrc+ 
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= 0.5560.... 


