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Abstract: 

The Nambu-Goto equations of motion for a free string in flat space-time 

are brought into a form which makes the ambiguity of the time-evolution 

explicit. It is achieved by finding the" general solution" for the second time­

derivatives. A possible application to path-integral motivated descriptions 
of string dynamics is pointed out. Moreover, one may use the formalism to 

write down a version of the equations of motion which drags the string into 

the gauge XI ~ = 0 asymptotically. 
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1. Reformulation of the Nambu-Goto equations 

The N ambu-Goto equations of motion for a free string in flat space are 

invariant under reparametrizations on the world-sheet (for reviews see Refs. 

[1-3]). Hence, they constitute a constrained system. If the time-coordinate 

t == xO is chosen as the timelike parameter, part of this invariance remains. 

In this case, the Nambu-Goto Lagrangian reads 

(1.1) 

where x =x(t, u), the corresponding equations of motion are 


a a a 8

---£=---£, (1.2)at 8Xi au 8x~ 

where we will place all three-indices downstairs (as long as we are not dealing 

with four-vectors, as we will do in seet.4). One usually adopts a condition 

fixing a particular "gauge" for the coordinate (f, as for example [4] il xI = 

i2+i/2-1 = 0. Here, u measures the total energy along the string, and (1.2) 

reduces to three two-dimensional wave equations fi = x". In this note, we 

will not assume such a choice but deal with (1.2) in its unconstrained form. 

Hence, prescribing initial values x(0, u) and i (0, u), the time-evolution is 

not uniquely fixed. The purpose of this work is to bring (1.2) into a form 

which illustrates the ambiguity of the time-evolution explicitly but does not 

seem to be known to a broader audience. The idea is to solve (1.2) with 

respect to £ (in the sense of finding the most general solution). 

Let us choose 

q(t,u) = i'(t,u), 

(1.3) 

p(t,u) = i(t,u) 

as basic variables and introduce the projection matrix (from now on sup­

pressing the dependence on t and u) 

q.q'
0 •• _ ~ .. _ ...!-1. (1.4)r"J - u"J --2' q 

The component of £ orthogonal to the string tangent is given by (see e.g. 

[3]) 

V · - D ·· X•· =p' - qp q. (1.5)
" - .&1.J J - t -2 1.q 
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and may be denoted as the physical velocity of the string. Then the N ambu­

Goto Lagrangian (1.1) reads 

(1..6) 

Carrying out the derivatives in (1.2), and making use of the quantities defined 

so far, one obtains (upon separating £) 

" . {)2 y'1 - -02 - -~x. 
xJ {)' {)' v - I_I 1 

(1.7)
Xi Xj q 

with 

(1.8) 

The left-hand-side of (1.7) turns out to be 

(1.9) 

where 
Vk Vi 

Qkl = Okl + 1 -02' (1.10)-v 

Hence, multiplying by -(1 - iJ'2)1/2, the Nambu-Goto equations of motion 

(1.2) take the form 

(1.11) 


The evaluation of Yi requires some tedious but straightforward manipula­

tions. For technical ease, one should define £, = -JW and compute (1.8) in 

terms of W. The result may be brought into the form 

1'; = ;2 P,k Qkl Plj ((1- p2) xj + 2 (ijp) pj) (1.12) 

Putting everything together, the equations of motion (1.2) turn out to 

be identical to 

-2 .... ­1 n (. - p, qp ') 0
Pik Qkl rlj Pj - if2 qj - 2 if2 Pj = . (1.13) 

2. "Constraint-free" forrnulation of time-evolution 

In order to proceed, we note that the determinant of the matrix Qij 

from (1.10) is given by (1 - v2 )1/2 which is generically non-zero. Hence, 
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the ambiguity in the time-evolution as described by (1.13) stems from the 

projection matrix Pij. Explicit computation gives 

(2.1 ) 


which is (usjng qv = 0) generically of rank 2. Hence, an equation of the typE' 

(2.2) 

has the general solution aj = /qj, where / is arbitrary. Note that (1.13) is 

precisely of this type. The dynamics of the free string may thus be written 

in the form 

:... -,q=p , (2.3a) 
1 ....2 ........ 


]r= -=: if' + 2 ~ pi + Iij. (2.3b}
q q 

The connection to the standard formalism is as follows: x(t, u) satisfies the 

Nambu-Goto equations (1.2) if and only if there exists a function I(t, u) such 

that (2.3b) is satisfied. One may likewise adopt if and p as the basic ("phase 

space") variables and consider both equations (2.3) as the complete systeIn. 

It is possible to invert this argument, prescribe the function f (e.g. as 

f (t, a) or I (if, p, if' ,p') or even as afunctional) and integrate (2.3) from initial 

conditions (q(O, (1), p(O, u)). Clearly, the resulting string configuration will 

satisfy the correct equations of motion. 

Two simple choices are I = 0 and 

1 -2 
f = a,,( -;.: ). (2.4) 

In the latter case, (2.3b) becomes 

1 ....2 - ­:... 8 ( - p -) 2 qP -I (2.5)P = q ij2 q + ij2 P . 

A third possibility is mentioned in sect.5 (see eq.{5.4» . Note that there 

are no constraints necessary for the variables (if, p) in this approach. 

3. Reparametrizations and gauge-fixing 

The invariance of the system under reparametrizations of the parameter 

u oew = E(t, 0'), (3.1) 
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is reflected here by the freedom in choosing I. Taking (3.1) in its infinitesimal 
form 

O'0ew = 0' + € (t, 0') (3.2) 

(i.e. neglecting O(€2)), two string configurations are equivalent if they differ 

by a variation 

(3.3) 

the very last identity sign being valid only" on shell" , i.e. on account of 

(2.3a). Their respective equations of motion differ by 

1 -2 - ­
u~I -- € .. - --2p € " - 2 q-2P € ·1 + € I' - € 'I • (3.4)

q q 

This illustrates that arbitrary reparametrizations (3.1) are allowed within 

this formalism. 

One may likewise use a specific choice of I in order to propagate a gauge­

condition. If, for example, the usual constraints ijp = q2 + p2 - 1 = 0 are 

adopted for the initial conditions, I may be determined such that they are 

conserved by (2.3). The result is f = 0, and (2.3b) reduces to P= if'. 

4. Covariant formalism 

It is possible to start with the Nambu-Goto action for a string xl-'(T, 0') 
which is completely unconstrained in its world-sheet parametrization, 

(4.1) 

where ±2 == TJI-'Vxl-'XV etc, with 1J = diag(l, -1, -1, -1), and a dot denoting 

8.,.. 

The analysis of sect.1 may be repeated almost identically. Instead of 

(2.1), one encounters the matrix 

I P. /v 
MJoW _ I-'V _ X X (4.2) ­- 17 X l2 

where 
I ' 

II. • 'IJ. X X III
v'" = x'" - -x"', (4.3)

x'2 

5 




Since (4.2) is generically of rank 2, an equation MJ-wa" = 0 has the general 

solution a~ = f x'il + gxJ.'. Hence, the analogue of (2.3b) turns out to be 

(4.4) 

with f and 9 arbitrary functions on the world-sheet. These two functions 

correspond to the invariance under full world-sheet reparametrizations as 

given by 

(4.5) 

in its infinitesimal form. There are of course two identities analogous to (3.4), 

and (4.4) is equivalent to the Nambu-Goto equations of motion following from 

the Lagrangian (4.1). 

If the world-sheet coordinates are restricted to T = t (hence xO(r,O") = 

r), the JL = O-component of (4.4) implies 9 = 0, and identifying x2 =1 - p2 

etc., we recover (2.3b). 

The theoretical status of f and 9 may be illustrated by the analogy to 

the free particle motion Xll ( r) which is described by the reparametrization 

invariant Lagrangian 

£, = -v'x2. (4.6) 

Here, the equations of motion are equivalent to 

(4.7) 

with 9 an arbitrary function. 

5. Applications 

In statistical (path-integral motivated) approaches to cosmic string dy­

namics [5], one would like to deal with a probability density functional p[q, pl. 
One draw-back in the conventional view is that the constraints induce delta­

functionals that are difficult to handle. In the formalism presented above, 

one could use an unconstrained phase space and evolve any string in the 

ensemble according to (2.3). Thereby, one could either choose f once and 

for all, or use some (path-integral induced) average over all f's to define 

statistical expectation values. 

Hence, the problems are shifted into a form that might be easier to han­

dle: the density functional p should be invariant (or transform in a simple 
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way) under reparametrizations. The free time-evolution of p (or likewise of 

arbitrary statistical mean values) is then induced by (2.3), whereas the in­

teraction (intercommutation) terms may (in a first approximation) be taken 

over from Ref. [5] without essential change. 

Another application is the (numerical) evolution of particular initial 

conditions (i/,p) that do not obey the standard constraints. Inspecting (2.3), 

one finds an even more drastic simplification of the time-evolution. Defining 

1-p2 
A= ....2 ' q 

(5.1) 
i/p

B=~,
q 

(2.3) results into 

A= -2AB' +2B{A' - f), 

(5.2) 

13 = -!A' +1,
2 

which may be solved without any reference to vector quantities (as long as 

1 depends only on A and B). The solutions are inserted into (2.3b) which 

becomes 

f= Ai/' + 2Bp' + Ig· (5.3) 

Again, f may again be chosen arbitrarily. An interesting version is to set 

1 = !A' - AB (5.4)
2 

with A a positive constant. (5.2) implies 

B = -AB. (5.5) 

Hence, B vanishes asymptotically, and A becomes a constant. In other 

words, the solution is forced to approach the gauge-condition ifp = 0 for 
large times (i.e. for times larger than .A -1). There are of course a lot of 

related possibilities to choose f. 
Let us finally note that the energy £ along the string satisfies 

BE ....2 1/2- = ( q...) == (A + B2)1/2, (5.6)ad 1 - v 2 

the time-derivative of this quantity being independent of f as a consequence 

of (5.2). 
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