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Abstract 
r II i.: :T \ ' r:'i.f ·~fC:}~ i•.'\ u,a 1.,bP]·.RY ! 
L __' ·_'::"\._~ dbou.t Qle€~-rePulsjon there were accidental degeneracies between some of the excited 

states of two- (or more-) electron atoms among themselves and also with ionisation thresholds. 
The effects of these degeneracies on resonances of highly ionized atoms decaying by the Auger 
effect of autoionisation, are investigated by treating the repulsion between the electrons as a 
perturbation. 
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1 Introduction 

The states of the Helium atom or of an ion with two electrons can be considered as emerging 
from the states of the Hamiltonian 

2 

--(~1 + ~2)Ho = h - z-e (1- + -1 ) (1)
2m 41t"eo Tl T']. 

(non-relativistic and in the approxima tion of infinite nuclear mass) with independent electrons, 
perturbing with the repulsion 

2e 1
V=--. (2)

47r£o TI2 

The eigenstates of Ho with energies -(lIn? + linD hRy, n2 ~ nl ~ 3 turn into resonances, 
metastable states deca.ying by autoionisation [Co]. With the closely related atoms of Barium 
these resonances have been observed with quantum number n2 up to rv 50 [Ab], [Cal, [WC] 
(and references therein). 

The localisation of these resonances can be calculated by ordinary perturbation theory in 
firs t order. Higher orders can in principle be achieved after perfo rming a complex dilation [ABCl 
(also called complex rotation (HoI]). This complex dilation rotates the continuous spectrum of 
each channel into the complex plane, leaving only its ionisation threshold on the real axis, 
uncovering most of the excited states. The exposed bound states with ni ~ 3 wander off into 
the complex plane when the perturbation is turned on, denoting the poles of resonances after 
reversing the complex dilation. 

Since a real dilation r I-t T / Z, combined wi th a transformation of Hamiltonians and energies 
H ~ HIZ2, allows to consider lIZ as the coupling parameter for the perturbing repulsion, it is 
to be expected that perturbation theory is adequate for high Z. Examining detailed numerical 
calculations [H02J, it seems that already the first order perturbation theory gives a qualitatively 
good picture of the real parts of the resonances down to Z '" 4. So it is worthwhile to have a 
closer look on the perturbation theory and its prerequisites. 

The first step in perturbation theory has to be the diagonalisation of V in the subspaces of 
eigenvectors of H0 belonging to degenerate eigenvalues. In most cases these subspaces are char
acterized by two main quantum numbers n}, n2 . Now comes the surprise: There are accidental 
degeneracies due to the existence of pairs {nl ' n2} :f:. {n3, n4} with 

1 1 1 1 
2 + 2" = 2" + 2· (3)n3n1 n2 n4 

Moreover, in the limit 71.2 - 00 the energies ex I/n~ denote the ionisat ion edges, and there are 
also coincidences 

1 1 1 
n2 =n2 +n2 ' (4)

1 3 4 

In the following we report about how to find these degeneracies, about the consequences they 
cause for the resonances, and about related cases. 

2 Number theory to locate degeneracies 

The accidental degeneracy (3) is equivalent to 

(n2n3n4)2 + (nln3n4)2 ::::: (n}n2n4)2 + (n}n2 n3)2, (5) 
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On the other hand, given positive integers Zl •. . Z4 with 

Z 2 + ....2 _ .,.2 + .,.2 (6)1 ~2 - -3 ~4' 

the degeneracy (3) holds with the quantum numbers 

n,-· - Z/"',-to (7) 

Z a common multiple of Zl ••. Z4' SO the present problem to determine the degeneracies is 
equivalent to the time honored question, which integers can be represented as a sum of two 
squares in more than one way. 

One answer to this question, already known to Diophant, is found by way of the equality 

(pq + TS)2 + (ps - qr)2 = (ps + qr)2 + (pq - rs)2 . 	 (8) 

All quadrupels (Zl ... Z4) and hence all quadrupels (nl ... n4) can be determined this way [Sh]. 
There are however no exact relations between the magnitudes of the various quadruples. An 
alternative way to determine all the accidental degeneracies below some negative energy E is 
to proceed numerically: For each n} ::; (IEI/hRy)l/2 one has to test the finite set 

M := {(n3,n4) : n4 ~ n3 > nl,n;2 + n:t2 ~ ni"2} 	 (9) 

whether (n:t 2 +n;2 - n12)-1/2 is 	an integer, and whether 

(10) 

for (nJ' n~) 1- (n3, n4). 
The case ps = qr in equ. (8) gives Zz = 0 and a Pythagorean triplet 


Z2 - ')02 + ')02

1 - -3 -4 (11) 

corresponding to a coincidence (4) by setting 

(12) 

The Pythagorean triplets a2 + b2 = c2 correspond also to the special degeneracies (3) with 
'n3 = n4 by setting 

Zl = a + b, Z2 == la - bl, (13) 

The simplest Pythagorean triplet (3,4~5) gives in this way not only the lowest case of coincidence 
(4) 	with 

(nl; n3, n.d = (12; 15,20), (14) 

but also the lowest degeneracy (3) with 

(nl .. . n4) == (5,35; 7, 7) . (15) 

We give in the ta.ble the lowest degeneracies. 
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nl n2 n3 n4 -Eo = l/nf + 1/n~ 
5 
5 
6 
7 

10 
10 
10 
10 
12 
12 

35 
90 
72 
56 
55 
70 
180 

1320 
144 
00 

7 
6 
8 
8 
11 
14 
12 
11 
16 
15 

7 
9 
9 
14 
22 
14 
18 
24 
18 
20 

.040 816 

.040 123 

.027 971 

.020 727 

.010 331 

.010 204 

.010 031 

.010 001 

.006 993 

.006 994 

Table 1: The lowest degeneracies, the energies in hRy 

The effect on the resonances: spectral rep ulsion 

There exist definite algebraic relations between the hydrogenic states In, i, m) and In ± 1, i, m) 
[5ch}, which extend to relations between the eigenstates Inl. n2' ~) and In}, n2 ± 1, f!..) of the un
perturbed Hamiltonian Ho, (f!. denoting any set of necessary extra parameters). These algebraic 
relations should give some regularities in the matrix elements 

(16) 

when considering changes of n2 to n2 ± 1, implying furt her regularities in diagonalizing (V,6,,O) 
in the subspaces 1tnl ,n:z , and yielding finally regularities in first order perturbation theory~as 
long as the exceptional degeneracies are ignored. If there is a degeneracy (3), these regularities 
will be interrupted, because V has to be diagonalized in t he "interact ion subspace" 

(17) 

spanned by all linear combinations of In}, n2,/3) and In3, n4, ,) . Applying the min- max-principle 
in the same way as is done in t he Rayleigh--Ritz techniqu; ([CH], XIII. l and XIII.2 in [RS]) , 
one gets strict inequalities between eigenvalues Ejnt ,A,i of the matrix V in the larger space 1f.int 

and the "regular" eigenvalues cnlon2 ,A ,j, cn3 ,n4,A ,k in the ~'regular" smaller subspaces. (Now we 
suppose A to denote the quantum numbers of multiplicity, total angular momentum and parity; 
i, j or k just numerating the eigenvalues.) We get t he 

Theorem of spectral repulsion: 

mF Oint,A,' > max {mtX£nl,n"A,J, mF on 3 ,n.,A,'} 

min Cint,A,i :$ min { mjn[nl,n2 ,A, j , m~n Cn3 ,not ,A,k } 

and, moreover, for 

Etop( n}, n2, A, N) .- sum of the N highest £nl,n2,A,j, 

Ebottom(nl1 n2, A, N) .- sum of the N lowest £n l ,n2,A,j : 
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Etop(int, A, N) > 

Ebottom(int, A, N) < min (Ebottom(nl, n2, A, M) + Ebottom(n3, n4, A, N - M)).
O~M<5:N 

In other words: The mean value of the N highest eigenvalues of V in the larger space 1-lint,A is 
greater than the mean value of the highest elements in the union of the sets of eigenvalues of 
V in 1-ln1 •n2 ,A and in 1-l n3 •n4 .A. For the N lowest eigenvalues the converse inequality holds. 

The proof follows from the variational principle by which the left hand sides of the inequali
ties above are given by an extremum over the set of N orthogonal unit-vectors of1tint,A, whereas 
the right hand sides are given by an extremum over a smaller set, where linear combinations of 
vectors In}, n2'~) with 1123,124':0 are excluded. 

The sum (or the mean value) of all the iegnvalues however remains unchanged: It is equal 
to the trace of V in the space ?-lint.A, independent of the chosen basis, and equal to the sum of 
the traces in the subspaces 1-ln1 ,n2,A and ?-ln3.n4,A. 

The same is true for the widths r /2 of the resonances, as they are calculated by Fermi's 
golden rule . This rule can be wl'itten as (see 4.4,13 in [Th]) 

~ = - ;2 (n}, n2, A~j I Fln}, n2, .4,j), 	 (18) 

1 . ) 1F = -PJ..6(Ho - Eo Pl.-, 	 (19) 
1'12 	 rn 

P.1. 	 being the projection onto the channels with continuous spectrum at Eo. 
This fa.ct can be stated as the 

Invariance of the mean value: In first order perturbation theory the mean value of the 
real parts, emerging from a degenerate eigenvalue, and belonging to states with some fixed 
type x L± will be the sanle, and also in second order perturbation theory the mean value of the 
imaginary parts of the resonance- poles will be the same, the interaction between the subspaces 
being ignored or not. 

Concerning the coincidence (4) of an eigenvalue with an ionisation threshold, there appears 
the fundamental problem to prove the conversion of the eigenvalue to resonances. The coinci
dence remains after complex dilation, and perturbation theory cannot be applied. Only formally 
one can calculate the change of the eigenvalue (to first order in liZ), given by the expectation 
value of 1/rl2' and also the appearance of an imaginary part (in second order), given by Fermi's 
golden rule. This problem will be discussed elsew here. 

4 Heuristic discussion of the effect 

To be precise, we choose A = 1 se states emerging from 1ts,35;i,7: The subspace ?-lS.35,A is five 
dimensional, 1i7.7,A is seven-dimensional. By considering the virial theorem for the hydrogen 
atom, 

/~) = 21EI ex ~ , 	 (20)n2\r n 

and estimating the eigenvalues of l/r12 in 1-ln1 •n2 roughly to be comparable to (1/r)n2' we 
estimate the eigenvalues of l/r12 in 1-l7,7 to be about twenty times as big as the eigenValues in 
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1ts,3S. By ignoring the interaction between the spaces, one would get two well separated bunchs 
of energies: Five lower ones belonging to (5,3.)), seven higher ones belonging to (7,7). 

The "interaction" , the matrix elements of 1/r12 connecting the subspaces and effecting a 
configuration mixing, will certainly be much smaller than the matrix elements in 1tr,7. So we 
guess that there will remain two well separated bunchs of energies , the 7 higher ones not much 
changed. The effect of configuration mixing on t he fi ve smaller ones however may be appreciably, 
in magnitude comparable to their distance from the unpert urbed energy. 

Concerning the observabili ty, we remark that t he dist ances between resonances vary as liZ, 
their widths as 1/ Z2. The ratio distance/wid t h is proport ional Z, and the resonance peaks 
(5, n2) with n2 '" 35 should be well separated for Z '" 10. Effects of spin-orbit coupling are 
estimated as proportional to Z4 / n3 and can be ignored. 

5 Related cases 

Coincidence of spectral lines. Changing (3) to 

1 1 1 1 
(21a)n2 - n2 = n2 - n2 ' 

1 3 '4 '2 

1 1 1 1 
(21b)

n~ - n~ - n~ - n~' 

One has a relation of each degeneracy (3) to two or (in case n3 = n4) one coincidence of lines 
in the hydrogen spectrum , a possibility which has only recently been discovered [WW]. 

Changing (4) to 
1 1 1 

(22a) 

1 1 1 
(22b) 

one has a relation of each coincidence (4) to two coincidences of spect ral lines with an ionisation 
threshold. 

Multiple degeneracies. There exist integers, which can be represented as a sum of squares 
not only in two, but in three djfferent ways. The same is t rue, wi t h two replaced by four, or any 
number. The related degeneracies of sums of inverse squares will involve very high quantum 
numbers and will probably remain unobservable. 

Multiply excited Rydberg states. Just by adding ling to both sides of equation (3), one 
gets degeneracies of triply excited sta.tes. There exis t also triples of completely different numbers 
with the same sum of inverse squares . The same is true for higher multiples. The effects in these 
cases will be the same as discussed above for doubly excited states. 
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