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1· Introduction 

Anomalies constitute an essential ingredient in our present understanding of relativistic 
quantum field theories. Gauge symmetries should be free of anomalies in order to allow 
a consistent quantization procedure. Global symmetries, however, can be broken at the 
quantum level. A well known example is the chiral anomaly [1, 2], present in quantum 
field theories with chiral structure, such as the standard model. Its origin is an unavoid­
able clash between the chiral symmetry of the classical Lagrangian and the necessary 
regularization at small distances to obtain a well defined quantum field theory. Although 
the mathematical properties of the anomaly are well understood, experimental tests of 
this important aspect of modern particle physics are relatively rare. 

The chiral anomaly manifests itself most directly in the low-energy interactions of the 
pseudoscalar mesons. The appropriate framework to study these effects is chiral perturba­
tion theory (CHPT) [3, 4,5), an effective field theory at the hadronic level. Its Lagrangian 
is constructed in terms of the asymptotically observed fields, using the symmetries of the 
standard model. The effective theory gives rise to a systematic low-energy expansion of 
the amplitudes, solving all constraints imposed by chiral symmetry and unitarity. The chi­
ral anornaly is included in a natural way by the Wess-Zumino-Witten (WZW) functional 
[6]. For the strong, electromagnetic and semileptonic weak interactions, all anomalous 
Green functions can be obtained from this term. In contrast to most other aspects of the 
standard model in the hadronic sector, the t ranslation from the fundamental level to the 
mesonic level is unambiguous and free of hadronization problems. 

The chiral anomaly also appears in t he non-leptonic weak interactions. It has been 
shown [7, 8, 9], that only radiative kaon decays are sensitive to the chiral anomaly in the 
non-leptonic sector. There are two different manifestations of the anonlaly: the reducible 
amplitudes [7], which can again be derived directly from the WZW functional, and direct 
contributions [8, 9, 10], which are subject to some theoretical uncertainties. 

In the following, I shall briefly review the construction of the effective chiral La­
grangian, including non-Ieptonic weak interactions. It will be explained how the chiral 
anomaly enters in the non-leptonic sector. Finally the phenomenology of the two most 
frequent" anomalous" decays K+ ~ 7r+7r0, and K L ~ ']f+']f-, will be discussed. 

The Low-Energy Limit of QeD 
The Green functions of the vector-, axialvector, scalar and pseudoscalar quark currents 
built out of the three light flavours u, d, s are generated by the vacuum-to-vacuum am­
plitude 

eiZ[v,a,s,p] = (0 out lO in) (2.1)v ,a,s,p 

associated with the Lagrangian 

£ = £QCD + ij,l-l( v~ + al-'Is)q - q(s - ip/s)q. (2.2) 

£QCD is the QeD Lagrangian with the masses of the three light quarks q = (qu, qd, qs) T 

'et to zero. The external fields VI-" af.l' sand pare Hermitean 3 x 3 matrices in flavour 
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space. To describe electromagnetic and semileptonic interactions the relevant fields of the 
standard model are 

Tp. - VJ.' + ap' = eQAp., 


lp = Vp - ap = eQAp + ,fi e (W~-r+ +H.c.) , (2.3)

2 sznOw 

with 

0 Vud "Vus)' 
Q = diag (2/3, -1/3, - 1/3), T+ = 0 0 0 , (2.4)

( o 0 0 

where Vij are Kobayashi-Maskawa matrix elements. The mass matrix of the light quarks is 
contained in the scalar field s(x). The Lagrangian (2.2) exhibits a local SU(3)L x SU(3)R 
symmetry 

qR,L -t 9R,L qR,L, 

t . 8 t
Tp. -t 9R Tp. gR + zgR J.'9R1 

lJ1. -t 9L lJ1. gl + igL 8J1.91, (2.5) 

s + ip -+ gR(S + ip)gl, 

gR,L E SU(3)R,L. 

The generating functional Z admits an expansion in powers of the external momenta 
and of quark masses. Approximating Z by a given order in this expansion is called CHPT 
[.l , 4, 5]. To lowest order in this chiral expansion, the effective Lagrangian describing 
pseudoscalar mesons is given by 

(2.6) 

where 
(2.7) 

and ( ... ) denotes the trace in three-dimensional flavour space. U is a unitary and uni­
modular 3 x 3 matrix which transforms as 

(2.8) 

under SU(3)L x SU(3)R. The parameters F and Bo are the only free constants of £2: F 
is the pion decay constant in the chirallimit, 

F1f = F(l + O(mquark))' (2.9) 

whereas Bo .is related to the quark condensate, 

(2.10) 
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The matrix U incorporates the fields'of the eight pseudoscalar mesons. It is conv'enient 
to use the parametrization 

(2.11 ) 

In the limit mu = md the matrix q, is related to the mass eigen-fields of the pseudoscalar 
octet by 

&2 + -Ts 11"+ K+ ) 
q. = 11"- -~_+ 7e [(0 . ' 	 (2.12)( [(- 1{ 0 - 1!L 

. -./6 

The Lagrangian (2.6) is referred to as the effective chiral Lagrangian of O(p2). The 
chiral counting rules are the following: The field U is of O(pO), the derivative 81J. and the 
external gauge fields VtJ., atJ. are terms of O(p) and the fields s, p count as O(p2). 

At O(p4) the generating functional consists of three terms [4, 5J: 

• 	 The one-loop functional generated by the lowest order Lagrangian (2.6). 

• 	 The most general chiral-invariant local act ion of O(p4) which respects also the 
discrete symmetries P and C . 

• 	 A contribution to account for the chiral anomaly. 

Let me briefly discuss the last two point s starting with the local action of O(p4). It. 
is generated by the Gasser-Leutwyler Lagrangian [5) 

(2.13) 

where the Pi are operators of O(p4) like PI = (DIJ.UDJ-L Ut)2, etc. The twelve low-energy 
constants L I , ... , L12 arising here are in general divergent (except L 3 , L7) ' They absorb 
the divergences of the one-loop graphs. The finite parts of L}, .. " LlO can be determined 
[4, 5) by using experimental input. (Pn and P12 are contact terms which are not directly 
accessible to experiment.) 

Let us now turn t.o the anomaly. Under a chiral transformation 

9R,L = 1 + ia =F i{3 + ... 	 (2.14) 

the generating functional of QeD transforms in a non-trivial way: 

8a Z[v, a, s,p] = 0, 

b,aZ[v, a, s,p] = {3 . G[v , a], (2.15) 

where the explicit fornl of G[v, a] has been given by Bardeen [2J, A functional 
S[U,i, r]wzw which reproduces the chiral anomaly has been constructed by Wess and 
Zumino and Witten [6]. Instead of writing down the complete expression, let me empha­
size a crucial property of Swzw. It has no free parameters at all and is given ent irely in 
terms of the matrix field U and the gauge fields f , r. This is indeed a remarkable feature. 
In general the transition from the fundamental level of quarks and gluons to the mesonic 
level involves a host of undetermined parameters (e.g., the twelve parameters in £4)' 

3 




3 Non-Leptonic Weak Interactions 

The effective Lagrangian constructed so far is describing strong, electromagnetic, and 
semileptonic weak interactions. One could naively think that non-Ieptonic weak processes 
can now be treated by simply contracting the W boson field between two hadronic Green 
functions. A moment's thought reveals that this cannot be a successful strategy. The 
reason are the strong interactions connecting the strongly interacting fields on both sides 
of the W . 

The correct approach in non-leptonic weak interactions is the following: One first has 
to integrate out the W boson and the heavy quarks in the fundamental theory to arrive 
at an effective I~SI = 1 Hamiltonian [11] 

I~sl=l OF * "c Q H
Heff = f() Vttd Vus L.J i i + .c. (3.1 ) 

y2 i 

Neither the explicit form of the local four-quark operators Qi nor the Wilson coefficients 
Ci are needed in the following. For the effective chiral realization of (3.1) at the hadronic 
level it is important that (3.1) transforms as 

(3.2) 

under the chiral group. The effective chiral Lagrangian for (3.1) to lowest order in the 
chiral expansion can be written as 

A = ~(A6 - iA7), 

Neglecting the small I~II = 1/2 part of the 27-plet, the Lagrangian (3.3) produces the 
tree-level amplitudes 

A(K~ ~ 7[+7[-) 

A(K+ -t 7[+7[0) (3.4) 

a(3/2) 
27 

Up to radiative and higher-order chiral corrections [12, 13], the ratio 

0 (3/2) 1 
27 (3.5)a;: = 32 

is sInail (and positive), expressing the ~I = 1/2 rule in I{ -t 27r decays, and IG8l ~ 
9.10-6 GeV-2 • 
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At next-to-Ieading order in CHPT, the chiral Lagrangian C~Asl=I is already quite 
involved [14] . I shall only need the octet Lagrangian of O(p4). Following the classification 
of Ecker, Kambor and Wyler [15], I write . 

37 

C4 
1ASI=1 = G F2,"", N W i + H 	 (3.6)8 ~ i .c. 

i=I 

with dimensionless coupling constants Ni and octet operators Wi. The operators 
WIg, .. " W27 ; W32 , ... , W35 can contribute only to processes with external W bosons (in 
addition to the non-Ieptonic weak transition) and W36 , W37 are contact terms, needed 
for renormalization. So, only 22 of the coupling constants Ni contribute to observable 
physical processes. Referring to Ref. [15} for the complete Lagrangian, I list here only a 
few terms that will be needed in the following: 

W28 - iClJ.vpu(ALJ.L) (L II LP LU 
), 


W29 = 2(A[Ut Pttu, LIJ.LI/)) , 

W30 - (ALIJ.) ((Ff'/ +Utp;tU)L II ) , (3.7) 


W31 - (>-.LIJ.)(Ffll - UtFftIlU)L II ), 


where FIll , Fit are the field strength tensors associated to the external gauge fields ip, 
rlJ. and FL,RJ.LII = t:lJ.lIPuF£~ are their duals. 

4 	 The Chiral Anomaly in t he Non-Leptonic Weak 
Sector 

The chiral anomaly also contributes to non-leptonic weak amplitudes starting at O(p4). 
Two different manifestations of the anomaly can be distinguished: 

4.1 Reducible Anomalous Amplitudes 

These amplitudes arise from the contraction of meson lines between a weak I~SI =.1 
Green function and the WZW functional. At O(p4), there can only be one such contraction 

and the weak vertex must be due to the lowest-order non-leptonic Lagrangian .c~Asl=l in 
Eq. (3.3). 

Since L~ASI=l contains bilinear terms in the meson fields, the so-called pole contribu­
tions to anomalous non-leptonic amplitudes can be given in closed form by a simultaneous 
d:iagonalization [16] of the kinetic parts of the Lagrangians L2 and L~ASI=l . The corre­
sponding local Lagrangian (octet part only) is (7]: 

.cIAS1=1 = _ ieGs FlJ.va 1r0K+ E Jr- + aGs FlJ.v F (K+7r-7rO - _l-K°7r+Jr-) + H,c. 
an 81r2F J.' II 61r F J1.11 vI2 

(4.1) 
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Here Fp.v = ap.Av - avAp. is the electromagnetic field strength tensor, FJ1.v = Cp.vP<TFP<T 
its dual and DJ1.<p± = (Op. 1= ieAJ1.)r.p± denotes the covariant derivative with respect to 
electromagnetism. In the limit of CP conservation, the anomalous Lagrangian (4.1) con­

0 0tributes only to the decays K+ ~ 7r+7r " 7r+7r " and KL ~ 7r+7r- ....rt with real or virtual 
photons. 

There are of course other reducible anomalous amplitudes. A generic example is pro­
vided by a non-Ieptonic Green function where an external 7r0 or TJ makes an anomalous 
transition to two photons. All reducible anomalous amplitudes of O(p4) are proportional 
to Gs in the octet limit. No other unknown parameters are involved. 

4.2 Direct Weak Anomaly Functional 

The second manifestation of the anomaly in non-leptonic weak amplitudes arises diagram­
matically from the contraction of the W boson field between a strong Green function on 
one side and the WZW functional on the other side. As already explained in Sect. 3 such 
diagrams cannot be taken literally at a typical hadronic scale, because of the presence of 
strongly interacting fields on both sides of the W. Instead, one must first integrate out the 
W together with the heavy quark fields. The operators appearing in the operator product 
expansion must then be realized at the bosonic level in the presence of the anomaly. 

The bosoruzation of four-quark operators in the odd-int rinsic parity sector was in­
vestigated in Ref. [8]. As in the even-intrinsic parity sector, the bosonized four-quark 
operators contain factorizable (leading in liNe, where Ne is the number of colours) and 
non-factorizable parts (non-leading in II/ve). The factorizable contribution of O(p4) can 
be calculated exactly [8]. Specializing to the dominant octet operator in 1i~~SI=l , one 
obtains the following bosoruzed form of O(p4) in the factorizable approximation for the 
odd-parity part {8, 10]: 

1:1o~2 (2ie:"v0{1 (>'L,,) (LvL"L{1) + (>'[U t i'J;vU, L"Lv)) 

+ 3 (),Lp.) ((ltV + UtF~VU)Lv) + (),LJ1.) ((FtV- utPftU)Lv)). (4.2) 

Comparison with the general weak Lagrangian .c~asl=l of O(p4) in (3.6), (3.7) shows 
that all the possible octet operators proportional to the f, tensor (W2S , W29 , W 30 and W3d 
appear in (4.2). Thus the chiral anomaly contributes to all the coefficients Nzs , . .. , N 31 

of normal octet operators. Moreover, the non-factorizable parts must be of the same form 
(4.2). The corresponding coefficients will differ from those in Eq. (4.2) . In fact, they must 
depend on the QCD scale J.l to cancel the J.l-dependence of the Wilson coefficients in the 
i~S I = 1 effective Hamiltonian (17) . 

Since aH octet operators in 1i~~SI=l produce the same structure (4.2), the I~SI == 1 
eifective Lagrangian in the anomalous parity sector of O(p4 ) can be characterized by the 
coefficients [8] 

(4.3) 
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Table 1: A complete list of local anomalous non-leptonic weak K decay amplitudes of 
O(p4) in the limit of CP conservation. 

Transition CI~SI=l 
an W28 W29 W30 W31 expt. 

K+ -+ 71'"+1r0 , X X X x 

K+ -+ 1r+7r
0
" x X X 

KL -+ i+1r - , x x x 
KL -+ 71'"+7r - " x x x 
K+ -+ 71'"+7r07r0 , X X X 

K+ -+ 7r+ 71'"071'"0" X x 
K+ -+ 7r+l1"+1r-, x x x 
](+ -+ lI"+7r+1r-,i x x 
KL -+ 7r+7r- 7r°i x x x 
Ks -+ 1r+1r-1r°i(i) x x x 

where ai = 1 corresponds to the factorizable approximation (4.2) . There are some theo­
retical argument s that the actual values of the ai are slight ly smaller than one [8, 9]. 

In Table 1 all local contributions from either the Lagrangian £~SI=l in (4.1) or the 
direct terms of O(p4) to all kinematically allowed non-leptonic K decays are listed. A 
separate column indicates whether the corresponding decay has been observed experi­
Inentally. Let me note that the transitions with either three pions and / or two photons in 
the final state are in general also subject to non-local reducible anomalous contributions. 
Finally, one observes that in the non-leptonic weak sector the chiral anomaly contributes 
only to radiati ve K decays. 

In view of the experimental observation of anomalous contributions, the decays K+ -+ 

7r+ lI"0, and KL -+ 7r+lI"-i are the most interesting ones. The amplitude for K(P ) -+ 

7rl(Pt} + 7r2(P2) + ,(q) is decomposed into an electric amplitude E(Xi) and a magnetic 
amplitude M(Xi): 

A(I{ -4 7r7ri) = c#l(q)*[E(Xi)(Plq P21J - P2q PIIJ) + M(Xi)C,p."pqp~p~qq]/Mk (5.1) 

PPi Pq
Xi = M2 (i = 1,2), X3 = M2 ' Xl + X2 + X3 = 1. 

K K 

There is no interference between E and M as long as the photon helicity is not measured. 
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5.1 K+ -t 7r+7r0-y 

The electric amplitude for ](+ -+ 1r+r.0, at O(p2) is pure bremsstrahlung [7, 9], 

.... eA(K+ -+ 1l"+1r0) 
(5.2)EB(Xi) = M (I )'

K X 3 '2 - Xo 

According to (3.4) it is suppressed by the ~I :::: 1/2 rule. This facilitates the detection 
of the magnetic a.mplitude which occurs at O(p4) and consists of both a reducible and a 
direct amplitude [7, 8, 9] 

eGsMk ( 3 )
M4 = 27r 2 F - 1 + 2"a 2 - 3a3 , (5.3) 

in terms of the couplings ai defined in (4.3). 
At O(p4) there is also a local scale-independent contribution to the electric amplitude 

E (7, 9]: 

E1oca.l - 2ieGsJ.\t[k (N N N N)
4 - F 14 - 15 - 16 - 17· (5.4) 

By measuring the energy spectrum of the photon, the counterterm amplitude (5.4) can 
in principle be isolated through its interference with the bremsstrahlung anlpUtude (5.2). 
The size of this interference can be estimated by appealing to the so-called factorization 
model (see [17] and references quoted therein) which predicts [15] 

N14 - N15 - NI6 - N17 = -kj F;2 = -7· 10-3 kj • (5.5)
2Mv 

The constant kJ is a fudge factor which the naive factorization model puts equal to one. 
For k j > 0, the interference is predicted to be positive [7 , 9]: 

Elocal 

~B ~ 2.3x3(1 - 2xo)(-N14 + J.lV15 + N16 + NI7 )/7.10-3 
. (5.6) 

Except for small photon energies (X3 -+ 0, 2xo -+ 1) where bremsstrahlung is bound to 
dominate, the amplitude E~oca1 should be detectable. In fact, the experiment of Abrams 
et al. [18] is consistent with constructive interference between EB and Elocal, but the 
available data [18] are not precise enough to separate the amplitudes E - EB and M 
experimentally. 

As the counterterm contributions (5.4) are scale-independent, the loop amplitude is 
necessarily finite. It turns out to be rather snlall [9]: 

I~:P I ~ 4 .10-
2 

. (5.7) 

At least in the foreseeable future, the loop amplitude can safely be neglected in com­
parison with the bremsstrahlung amplitude (5.2). On the other ha.nd, the counterterm 
amplitude (5.4) should be within reach of facilities with intense K + beams. 

8 



One can also try to estimate the dominant effects of O(p6) due to vector meson 
exchange. For a detailed discussion the reader is refered to Ref. [9]. Here, I just give the 
result: 

(5.8) 

where 
64V2 7r2gvhvM'k 2Lg(Mp)Mk 

TV = 3M2 ~ 0.4 ~ F2 
V ~ 

with the vector couplings gv, hv [19] and the coupling constant L9 [5] of(2.13): 

(5.9) 

Under the assumption that direct emission is entirely due to the magnetic part, experi­
ments [18J find a branching ratio 

BR(55 < T~+ (MeV) < 90) = (1.8 ± 0.4) . 10-5 (5.10) 

for the given cuts in the kinetic energy of the charged pion. This experimental result can 
be used to determine the quantity A4 = -2 + 3a2 - 6a3' For the values of TV and L9 
listed in (5.9), A4 is found to be 

A4 = -4.1 - O.3kJ ± 0.5, (5.11 ) 

being very much consistent with the theoretical expectation based on ai :s 1. 

5.2 KL ~ 7r+7r-, 

The bremsstrahlung amplitude of O(p2) [7, 9] 

1 ceA(K~ -+ 7r+7r - ) 
EB(Xi) = M (12" )e x')'_ 

PI == p+, P2 = P-l (5.12) 
K - x+ :2 ­

is again suppressed because it violates CPo Here c. is the standard CP violation parameter 
in ]{ -+ 1i1i decays. From O(p4) on I assume CP conservation implying 

E(x_,x+) - -E(x+,x_), 
M(x _,x+) M(x+,x_). (5.13) 

The dominant contribution of O(p4) occurs in the magnetic amplitude and it is due to 
the anomaly. As can be seen from (4.1), there is no reducible anomalous amplitude of 
O(p4) . The direct weak anomaly functional gives rise to [8, 10) 

(5.14) 
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Because of (5.13) there is no local contribution to E at O(p4). The one-loop amplitude 
is again finite and small: 

(5.15) 


There are several contributions of O(p6). First of all, there is a reducible amplitude 
due to the anomaly of the form [7, 9] 

Ma.rJ.om _ _ eGsMk F (5.16)
6 - 27r2F }, 

1 (c - J2s) (c +2v'2 ps) (J2c + s) (2J2 pc - s)
PI = - + ~------=-~-~-~ 

l - r2 3(r~-1) 3(r~/ - l)' 

c = cos e, s = sine. 

8 denotes the 11-rl' mlxing angle and p =1= 1 takes into account possible deviations from 
nonet symmetry for the non-leptonic weak vertices (nonet symmetry is assumed for the 
strong WZW vertices). At O(p4) (8 = 0, M TJ , ---t 00) , FI vanishes because of the Gell­
Mann-Okubo mass formula. In the real world, the 1] and 1]' contributions interfere de­
:1tructively for 0 ~ p < 1 and 8 ~ -200 as in the similar case of the ](L ---t 2/, amplitude. 

In addition, there are O(p6) contributions induced by vector meson exchange [9J: 

v eGsAlk { 2L9M'k}M6 = 27r2F rv[1 + x3(2k j - 3)] + F2 kj (2 - 5X3) . (5.17) 

There are indeed strong experimental indications for the presence of a sizeable mag­
netic aJnplitude beyond O(p4). A recent analysis of I(L ---t 7r+7r-/, at FNAL [20] confirms 
an earlier result from Brookhaven [21] finding evidence for a dependence of the direct 
elnission amplitude on the photon energy consistent with (5.17). 

Summary 

• The chiral anomaly appears also in non-leptonic weak interactions. 

• Reducible and direct anomalous amplitudes can be distinguished. 

• Weak radiative kaon decays receive contributions from the chiral anomaly. 

• Crural perturbation theory is the appropriate tool to study these processes. 

• Present experiments are already sensitive to effects of O(p6) in the amplitudes. 
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