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Abstract:

It is shown that it is possibl> to formulate
a consistent local supergravity theory in the
Weitzenbock space-time. It is likely that our theory
has a close relationship with the theory of FSUPWT by

J.G. Taylor et al.



Theory of gravitation in the wWeitzenbdck space-time is

1)t)

called new general relativity. This space-time is characterized

by the absence of the curvature tensor and the presence of che
torsion tensor.r) In accordance with this, the gauge symmetry of
the Lorentz transformation is reduced to a élobal symmetry.

It has been shown that new general relativity is equivalent to
ordinary general relativity as far as the measurements of macro-
scopic phenomena are concerned; differeﬁces appear only in the

. . PR & oY)
microscopic region.

2)

The recent work of J.G. Taylor et al. can be viewed as an

extention of the concept of new general relativity to the
superspace. In this theory, it has been shown that the only
divergence occurs in the overall coupling constant renormalization
to all orders.

It is interesting to investigate whether new general
relativity, the geommetry of the Weitzenbock space-time, is
compatible with supergravity. In this paper, we show that it is
indeed possible to construct a consisten?w}ocal supergravity
theory in the Weitzenbdck space-time; the Lagrangian of the
conventional supergravity in the Riemann-Cartan space-time3)’4)
can be translated into that in the Weitzenbock space-time.

Our conclusions are summarized as follows:

(1) Inref.lb, there remains an undetermined cons*tant 2,
connected with a massless scalar particle mode of the antisymmetric
part of the linearized vierbein (tetrad or the parallel vector
field bSl). On the other hand, in our supersymmetric extension

of new general relativity, this constant A is shown to vanisn

because of a strong symmetry of supergravity.

t+) This space-time was once examined by Einstein in 1928.



(2) The coupling between the torsyron and the gravitino ¢
W
cannot be a mintmal one in o strict Scense as is shown lator.

(3) The conscervation law of the cnergy-momnentum tensor and the
equivaloence principle hold_exactly, since there 1s no additional
term duc to the antisymmetric part of the encergy-momentum tensor.

The questions of closure of the gauqge algebra and the
renormalizability are discussed later.
Now the Fuclid condition is of the form, anuﬂ = 0. This

can be written in the Weitzenbdck space-time aslb)t)
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Dé ) is the full covariant derivative corrcesponding to the
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in the Riemann-Cartan space-tLime.  We can choose the Lorentz

connexion in the Weiltzenbook space-time to be identically zero

(¥

from the definition of this space-Lime. We solve r“p i (1)
to be of the form,
> o . o
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The contorsion tensor and the torsion tensor are given by

/ .
/(PU(EE;ET(7;UT"JT>EU'f [}G}J :”“ffpra' , (3)

t+) Strictly speaking, Qﬁ"in the wWeltzenbdok space~time 1is a

parallel vector ficld symbolized as b;" in ref.lb and has the

b:(x) = g _ (x)

. & . . m
relationship with the metric tensor: b“(x)n L

mn
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respectively.
It is noticed that we can represent the Lorentz connexion
wumn(e,w) of the conventional supergravity theory (in the second

3),4)

order formalism) in the Riemann-Cartan space-time in terms of

tensorial quantities in the Weitzenbdck space-time.
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The equations (4), (5) and (6) enable us to translate the
. (R) . ; . .
Lagrangian 623 of the conventional supergravity theory (in the
; ; ¢ s ; 2),4) . (W) .
second order formalism without auxiliary fields) into céj in

the Weitzenbock space-time. After some calculations we obtain
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up to a four-divergence. We usc the notations Bos = diag. (=+++),

0123 mn _ 1 ;
e = +1, =: ‘é—i‘[leYn]r {Ym' Yn} = +2r‘lmn ’ YS E lYl.{2v3YO
and
4 i,, mn L7, s ) mn
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The scalar curvature R({}) is formed of the Levi-Civita
connexion {;;}. It should be noticed that R({}) can be expressible

as quadratic forms of Tpc , b)) |
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Then %r(W) in (7) is put into the simpler form
o/
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)?pd""’7;¢ 'F<:Pf = — ﬁ?qp/o. (/)

1s a supercovariant torsion in the sense of ref.5.

) Ir ref.lb, the expression is given in terms of three

irreducible components of T Moot , v. and dy

po T Tpou u



The first line of (10) may be viewed as a natural extension
of the scalar curvature (9) in ordinary general relativity.
A simpl: replacement of TpoU in R({}) by RpoU with the additional
kinetic term of wu yields the Lagrangian of supergravicliy in the

Weitzenhdck space-time. Supersymmetry leaves no additonal

VI %CuooTT

parameter A = 9/(4c3) of the antisymmetric part a AT

of the torsion T .
poT

As 1n conventional supergravity, one must check the

consistency condition for the field equation of-wu. However,
th . . . (W) .

e problem is already solved since our Lagrangian is
smesanecequivalent  to 62f(R) with the'same variational principle.' ' Then

the field equations are the same as those in ref.3 (in the

second corder formalim). We can rewrite the field equation of

H

u . .
00 and RpO explicitly:

wu in terms of T
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We can rcalize the equivalence of the "1l.5-order formalism" to

the second order formalism. Each term of the equation (12) is

covariant under the global Lorentz transformation but not under



. 1 LT :
the loc:l one, since we regard T and P a8 tensors in the
;13 e ————t
WeitzeniOck space-time. The consistency check can be done in
the samc¢ way as in ref.3, but the interpretation 1s slightly

different. The equation.,Ol('mR"J = 0 1s now from (%), (6) and (1l1)
w) ¢ P P, PP =l gFe
[D,w +5 (K~ R+ R ) Ope] & RI=0 e

where D‘L) is a covariant derivative with the Levi-Civita

connexicn., Since the last three terms of (13) form a super-

covariar.t contorsion tensor, they should not be confused with the

oy

connexicn. These terms pose no problem for several reasons.

First, it is natural that the contorsion tensor appears in the

conservaticn law in the Weitzenbock space—uime.lb) Secondly,

the field equation RY = 0 can be applied to (13) after the
operaticn of the derivative in DsL), so that the last three terms
have no contributions.+) Thirdly, the invariance of the action
under thc supersymmetry transformation of the fields, (20) and
(21), leads to (13) by the use of equation (15) after the

integration by parts. We also emphasize that our field equation

rRY = 0 1s the same as that in ref.3. From these considerations

we can safely regard ozf(w) as a consistent Lagrangian.

u

Thc absence of the minimal coupling between Too and wu in

;8(W) can be understood as follows. It we add & minimal coupling

between them in (10), there appears a tcerm of the form ~

cHVoO 0 pWhp, ¥
o) e]

Y5 5 ¥,Dy in (13). This term never vanishes by using
N

1) Theie is a similar situation in the conservation law of the

energy-romentum tensor. (see (19) and (17))
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the field equation (15) and RY = 0 itself, so that the consistency

check fails.

Attention should be paid to the Einstein gravitational field

equation. Suppose we regarc the part %eR({}) as the gravitational

Lagrangiancéﬁ éW)' and the rest in on(w) as the matter

LagrangianDZ: éw);

Lertth) | L= LW- L5 %)

W)
Lg

il

Then the Einstein equation takes the form:

' Cw) RN
G—ﬁf’ op= T . ¢/5)

Since the left hand side is symmetric in p and v, (15) is
equivalent to

(WD

W) _

G,u.u({}) - 72/.4.1/) P (76)
w)

TL}LV] =0 3 (/7)

The Bianchi identity for the Einstein tensor 1is

W My
D, Gy F =0 18)

The response equation of T?;) is 1b),6)

£T

w) £ Ve

Since 1" a is antisymmetric in p and o, the second term of (19)



vanishes when the equation (17) is applied. In a general

b)

Weitzenbock space-~time, the second term of (19) does not vanish
even on the geodesic frame as far as the antisymmetric part of

T[“V] is present. So the conservation law DéL)'TUp = 0 and the

equivalence principle are broken in the microscopic region.

In our theory, on the other hand, the supersymmetry excludes

such a term, and recovers the conservation law and the eqguivalence

principle. The difference of Géz) from that of ref.3 is due to
: _ (W) (W) .
the differert way 27(3 and onM are seoarated from each other,
- . ’ 7/
but the Einstein equation itself is the same, since oéf‘w) =125R).

4)

The trensformation rule of the fields is

m/ =\
§€, " =Ex"%. (20)
= Lr PR TR )O; 21
6‘%L,—’ 253¢£:*'4 (794 —~ R+ R ) Tper £

As mentionec above, the last three terms of (21) are tensors.
We next turn to the question of closure of the gauge algebra.
It is instructive to notice the peculiar property of the

generator Jrs in the graded Poincaré algebra (GP).

[‘)‘mn,J)’J]::(Z.v/nmrjﬂb"f'é?njjm,.)_()’@f) , (22)

[])m,jrs]:"é?mrfs*é Ims B, (23)

[»;a_,;nun]:: 2% (Cps), > Se P (2%
'{lsa’) Sa} _— -—-2?: (a’m)aé f’«“& . (25)



The generator Jrs does not appedr on the right hand side except
in (22), in which i1t appears on the left hand side as well,

From a nmathematical point of viev this indicates that the

generators Pm and Sa form an ideal sub (graded) Lie algebra.

We can choose the parameter of Jrs to be global consistently

without any interference with the other local parameters of P

and Sa’ In fact, this can be seen in the notation of ref.5.
The relations [6(Oi), (0N ] = 6(I i ,85})(l4a) and the other
relations (14b) ~v (14d) hold under the restirctions wurs = xurs =

D™ - 0 1nd auxrs = 0 by the peculiar property of the generator
Jrs' In superspace, this means the absence of the supercurvature:
R (z) = 0.7) The problem of the minimal set of auxiliary

MN -

fields 15 still left open. It is obvious, however, that the
auxiliary fields of ref.4 are not appropriate, since the local
Lorentz cransformations with field dependent parameters take
part in closure of the gauge algebra.

As for the renormalizability of the theory, it is likely
that our theory is less divergent than the ordinary supergravity
theory, as new general relativity is less divergent than
ordinary general relativity. Notice that, in our theory, there
arises no counter term containing the curvatures formed of the

rs m
(

Lorentz connexion such as R (m)Ruv_ (e,w), RU

u
LV s elw)Rm(elw)l

2 .
R(e,w) , etc. The only possible counter terms are formed of the
. : ) T T . . . (W)
torsion :ensor 'I‘po (or Rpo ), the covariant derivative Du ;

and wu. These problems are yet to be studied in the near future.

The author thanks Professors Kenji Hayashli and Yasunori

Fujii fo:- many fruitful discussions and careful readings of

the manuscript.
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