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Abstract: 

It is shown that it is possibl~ to formulate 

a consistent local supergravity theory in the 

weitzenbock space-time. It is likely that our theory 

has a close relationship with the theory of FSUPWT by 

J.G. Taylor et ale 



Theory of gravitation in t he weitzenb6ck space-t i me is 


called new general re la tivi ty. 1) t) Th is spact!- time is charocter i zed 


by the absence of the curvature tensor and the presence of the 


· r)t orSlon tensor. In accordance with this, the gauge symmetry of 

the Lorentz transformation is reduced to a global symmetry. 

It has been shown that new general relativity is equivalent to 

ordinary general relativity as far as the m8asurements of macro­

scopic phenomena are concerned; differences appear only in the 

, , , . lb)
mlcroscoplC reglon. ... -----.-~-.-

The recent work of J.G. Taylor et al. 2 ) c~n be viewed as an 

extention of the concept of new general relativity to the 

superspac e. In this theory, it has been show~ that the only 

divergence occurs in the overall coupling constant renormalization 

to all ceders. 

It is interesting to investigate whether new general 

relativity, the geometry of the weitzenb6ck space-time, is 

compatible with supergravity. In this paper, we show that it is 

indeed possible to construct a consistent local supergravity 

theory in the Weitzenb6ck space-time; the Lagrangian of the , 
. ln. h'Rlemann-C' ar t t'lme 3),4)conventional supergravlty t e an space- I 

can be translated into that in the Weitzenb6ck space-time. 

Our conclusions are summarized as follows: 

(1) In ref.lb, there remains an undetermined cons~ant 'A, 

connected wi th a massless scalar particle mode of the antisymmetric 

part of the linearized vierbein (tetrad or the parallel vector 

field b 111 ). On the other hand, in our supersymmetric extension 
jJ 

of new general relativity, this constant A is shown to vanish 

because of a strong symmetry of supergravity. 

t) This space-time was once examined by Einstein in 1928. 



(2) 	 The couplinq bL'twL't!1l thv LOI:;'(;/I oIrll) ttl(' 'Jrdvil l nu ~ 
\1 

cannot be a rninllO.:J1 one iJl .. !.>lrict ~;,'n:;,' d~; i:1 :;hown lJL('r. 

() The con:Jl!rvation l.:-tw of thl..! "Il"f"'Jy-rnon\(Allt IlIn ton!Jor <lnti the 

equivillr.:nce principll! hold eXdctly, ~;incp th(~t"l' i~ no auditional 

term dU l ! to the antisymmetl' ic part uf Lhe cnet"IjY-lIlo",t~ntum tennor. 

The questions of clo:;;ure of th<.' (Jduqe algebra <.lnu th.:' 

renormalizability 	arc discu~~eJ ldler. 

No'''' the Euclid conc:iition is of th0 Corm, D q = O. 'I'h is 
II IJ (1 

can be 'written in the WeiLzcnuock ~;PdCL'-t imc as.1 b) n 

DOV) e m __ """ /J m r' cr 'lT2 0 (/)'fl' J> - /'" "-,P - I f'-.f e.tr :-.-:: • 

o(W) i~; lhe full covelLi.lld d ( 'rivL)t' ivI' C ) I'rL'!..ipOlldinIJ '-0 the 
\J 

' , [( r:) m ,_ ,') (,', III _ I' (I III I (,I III rI( , ,_ (,\ ( I{) (,' In _ I' U n, IIId l:c.lVdLtvc) e - (' 	 oIJ <: 

\J P II Pili' (l 1 ( Pn II (J Ii P U 
in the' I, iemu nn-Cd t' trln S[1.)C(~- t i I!\l!. ~Vl' cdnch()o~;c the \.0 ren lz 

from tlli' clcfini Liofl of lili~; ~q)dcI'-l iIIif'. ~v (! ~; 0 I v (' I' () j n (1)
II (I 

to be of' t.he form, 

(.2.) 


, (3) 

.] k' 1Il t.he wl·i tz,-~nb()ck sp~lcc-time is at) S t r let ,Y SP L' d 1. n q, C ,1. n 
11 

111 l f'11 mloliz'd d~; hili in ref.Jbdnd husthcpura , e vee :or .I .e ( ~;Y ) " ,C 11 


relatjonshit-> with the tnt~tric t('n~>or: bm(x)n bn(x) <J'IV(X)

\I 	 rnn v , 

" - 'J _ 



respective Ly. 

It is noticed that we can represent the Lorentz connexion 

w mn(e,w) of the conventional supergravity theory (in the second 
IJ 

1 ')' h ' , 3) ,4)ord er f ormJ lsm In t e Rlemann-Cartan space-tlme in terms of 

tensorial yua~tities in the Weitzenb6ck space-time. 

C fL ­ .L til vrl.jJ, - - C J.C 
prr = - Z 'f'pd tr - rJjO ' • 

The equati o ns (4), (5) <::.nd (6) enable us to translate 'c.he 

Lagrangian ol: (R) of the conventional supergravity theory (in the 

second orde r forma li5m wi thou t auxi liary fields) 3) , <1) into ot (W) in 

the Weitzenb6ck space-time. After some calculati0ns we obtain 
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--- -- - - --- --

up to a four-divergence. We usc the notations ~ ~ di ~cr . (-+++)mn -:> , 

0123 1e +1, offin ::: 2 i[ym,y
n J, h , Y } ;;;: +2~mn' Y :; iyly 2y3yO

m n s 
and 

The scalar curvature R({}) is formed of the Levi-Civita 

connexion {IJ}. It should be noticed that R ( { })
po 

as quadratic forms of T WIb) t) 
po 

can be: expressible 

Then ~. (W) in (7) is put into the simpler form 
cP---J 

(10) 

where 

(II) 

is a s upercov~ri~~t torsion in the sense of ref.S. 

t) Ir. ref .lb, the expression is given in terms of three 

irreducible components of T "o w t v and a 
>-' (:,Of l ' W P 
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Th0 first line o f (10) may be viewed as a natural exte nsion 

of the scalar curvature (9) in ordinary general relativity. 

A simph~ replacement of T U in R({}) by R U with the additional 
po po 

kinetic term of ~ yields the Lagrangian of supergravi~iy in the 
u 

Weitzenbock space-time. Supersymmetry leaves no additonal 

parameter A = 9/(4c 3 ) of the antisymmetric part a IJ = -frCIJPOTTpOT 

of the torsion T 
POT 

~s in conventional supergravity, one must check the 

consistE~ ncy condition for the field equation of ~. However,
\l 

. 1 d d· . c;o (W) .t h e pro1:)1em ~s a rea Y solve s~nce our Lagrang~an ~ ~s 

equi val E!nt to ;lj (R) with the same variatd.Gmal principle. Then 

the fieJd equations are the same as those in ref.3 (in the 

second order forma lim). We can rewrite the field equation of 

~ in t ~ rms of T U and R U explicitly:
U po po 

-
-
-


o . (J2) 

\'ie can r cal ize the (quivC\lence of the "1. 5-order forr.lalism" 4b) to 

the seco nd order formalism. Each term of the equation (12) is 

covariar,t under the global Lorentz transformation but not under 
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the loc .ll one, si nce we reg a r d '1' 
1 unrJ P , as t~nsor s in the c)' J " _ 

wei tzen J}oci< space-t ime. The consi~tcncy check can be d o ne in 

the sam,.' way as in ref.3, but the intcqJrctation is s lightly 

differe !lt. The equation 1) (R)R~ := 0 is now from (5), (6) and (11)
l' 

L)
where 0 is a covariant derivative with the Levi-Civita 

1 

connexic'n. Since the last three terms of (13) form a super­

covariar.t contorsioll te:lsor, they should not be confused with the 

connexic n. These terms pose no problem for several reasons. 

First, j t is nCltural that the contorsion tensor appears in the 

o 0l ' . b' o k Ib) dlconserva t1cn aw 1n the We1tzen oc space-_1me. Secon y, 

the fie J d equation R~ = 0 can be applied to {13) after the 

. f h d' . . (L) h' h 1 hoperatlc n o ' t e er1vat1ve 1n 0 , so t at t east tree terms 
p 

have no c ontributions!) Thirdly, th~ invariance of the action 

under t he supersymmetry transformat.ion of the fields, (20) and 

(21), l E! ads to (13) by the use of equu. tion (1.5) a fter the 

integra t ion by parts. We also emphu.size that our field equation 

R~ = 0 i s the same a s thu.t in ref.3. Prom the se considerations 

(I' (H) . 0 we can s afely regClrd ~ a s a cons1stent Lagrang1an. 

Th e u.bsence of the minimc.!l coupling between T lJ and 1jJ" in 
po ... 

~ (W) c o.n be understood as follows. If we add a minimal coupling 

between them in (10), there appears a term of the form ~ 

(: ~ v p 0 Y 5 "\ 41 0 (W) '1' 4> i n; 1 ]) . This term neve r vanishes by using. . ) v lJ p o 

t) Thel e is a sim i l a r situu.tion 1n the conservation law of the 

energy-namentum tensor. (see (19) and (17» 
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RUthe field equaLion (15) and . - 0 itself, so that the consi ste nc y 

check fails. 

Attention should be paid to the Einstein gravitational field 

equation. Suppose we regarc~ the part ~R ( {}) as the gl"a vi t a t iond 1 

LagrangianX ~W), and the rest in X (W) as the matter 

Lagrang ianX l~~v); 

(I 'f) 

Then th e Einstein e4uation takes the form: 

(IS) 

Since the left hand side is symmetric in ~ and v, 

equival e nt to 

G (WI IWJ 
jA-v({}) = ~rV) , 

T Of/) 
=0!.f' Y1 

The Bianchi identity for the Einstein tensor is 

(15) is 

(16 ) 

(;7) 

The response 

D (/..) f'_ )/'-.1 ({}) == 0 
.P '-A.(W) • 

equation of T~~) is 1b) ,6) 

D (iJ)
:p 

pPr (w) 
l-<' fA­+ f l pr> 

T.pC1" 
(w) - 0 

since rY 
po 

is antisymmetri-::: in p and 0, the second term of (19) 
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vanishes when the equation (17) is appl ied. In a genera 1 

.. . 1b) h dWeitzenbock space-tIme, t e secon tcrm of (19) docs not vd n ish 

even on the geodesic frame as far as the antisymm~tric rart of 

T[~vJ is prE'sent. So the conservation law o(L)T uP = 0 and the 
P 

equivalence principle are broken in the microscopic region. 

In our theory, on the other hand, the supersymmetry excludes 

such a term, and recovers the conservation law arid the equivalence 

. . 1 Th d' ff f G (W) f th t f f 3' -'I tpr1nc1p e. e 1 erence 0 rom a 0 , re. IS ~Le 0
Uv 

the dj ffereLt way cZ ciW) and L ~!;n are separated from each other, 

- - '" -. ~c~ {W) __' ~(R).but the Einstein equation itself- is the same, 'since..,:; oL../ 

The transformation rule of the fields is4) 

(21) 


As mentione~ above, the last three terms of (21) are tensors. 

We next turn to the question of closure of the gauge algebra. 

It is instructive to notice the peculiar property of the 

generator J rs in the graded poincare algebra (GP). 

(23) 

(25) 
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The gen0rator J does not appear on the right hand Slue c xc 'p t 
rs 

in (22), in which it appears on the left hand side as we ll. 

From a lTa:hematical point of vic ... · this indicates that the 

generators P and S form an ideal sub (graded) Lie algebra.
m a ---­

We can choose the parameter of J to be global consistentlyrs 

without any interference with the other local parameters of P 
m 

and S . In fact, this ca~ be seen in the notatinn of ref.S. 
a 

The relations [6 (Oi), 6 (O~) 1 = 6 ([Oi ' 8 2)) (l4a) and the other 

rs
relation 3 (14b) ~ (14d) hol~ under the restirctions ~urs = Xa = 

Drs ~ 0 l nd a A
rs ~ 0 by the peculiar property of the generator 

~j 

J In superspace, this means the absence of the supercurvature:, rs 
7

RMNrs(Z) = 0. ) The problem of the minimal set of auxiliary 

fields i ; still left open. It is obvious, however, that the 

auxiliar y fields of ref.4 are not appropriate, since the local 

Lorentz =ransformations with field dependent parameters take 

part in c losure of the gauge algebra. 

As ~or the ~e~ormalizability of the theory, it is likely 

that our theory is less divergent than the ordinary supergravity 

theory, d S new general relativity is less divergent than 

ordinary general relativity. Notice that, in our theory, there 

arises no counter term containing the curvatures formed of the 

Lorentz (:onnexion such as R rS(w)R Uv (e,w), Rm(e,w)R U (e, w),
IJV :cs IJ m 

R(e,w) 
2 

, etc. The only possible counter terms are formed of the 

.torslon :ensor TT 
po 

( or T)R 
po 

, ht e ':1"covarlaDt rerlvatlve (W)D 
u 

, 

and ~. 
IJ 

These problems are yet to be studied in the near future. 

The author thanks Professors Kenji Hayashi and Yasunori 

Fujii fo : many fruitful discussions and careful readings of 

the manu .3 cript. 
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