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Abstract 

It has been demonstrated recently [1] that a single small discontinuity (such as an 
enlargement or a hole) on a smooth waveguide can result in the appearance of trapped 

. electromagnetic modes with frequencies slightly below the waveguide cutoff frequencies. 
The present paper studies similar phenomenon for a waveguide with many small disconti
nuities, which is a good model for the vacuum chamber of large accelerators. Frequencies 
of trapped modes and their contributions to the coupling impedance are calculated. The 
frequencies for the cases of a few discontinuities or a periodic structure coincide well with 
those from numerical simulations. The trapped modes produce sharp resonance peaks of 
the coupling impedance near the cutoff frequencies. The magnitude of these peaks, as well 
as the existence itself of a trapped mode, strongly depends on the distribution of disconti
nuities, or on the distance between them if a regular array is considered. The impedance 
in the extreme case can be as large as N3 times that for a single discontinuity, where N is 
the number of discontinuities. 

Introduction 

Previous computer studies of cavities coupled to a beam pipe indicated that the impedance 
of small chamber enlargements exhibits sharp narrow peaks at frequencies close to the cutoff 
frequencies of the waveguide, see references in [1]-[4]. For the case of a single small discontinuity, 
such as an enlargement or a hole, on a smooth waveguide it was demonstrated [1] that these 
peaks can be attributed to trapped modes localized near ·the discontinuity. The existence of a 
trapped mode depends on a relation between the conductivity of the chamber walls and a typical 
size of the discontinuity, and in the limit of perfectly conducting walls the trapped modes exist 
even for very small perturbations. 

This phenomenon can be dangerous for the beam stability in large superconducting proton 
colliders like Large Hadron Collider (LHC), where the design anticipates a thermal screen (liner) 
inside the beam pipe [5]. The function of the liner is to screen the cold walls of the vacuum 
chamber from synchrotron radiation in order to prevent wall heating and photodesorption of 
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3 Many Discontinuities 

Consider an axisymmetric waveguide with N small enlargements located at ZI, Z2, .•• ZN and 
having areas At, A2, • •• AN of the longitudinal cross section, respectively. In this structure, we 
will look for a solution of the Maxwell equations with frequencJ, n slightly below the cutoff 
frequency WI. Let us introduce the propagation constant k = w~ - (,1,2 Ie and consider the 
following piece-wise form of the solution (only z-dependence is shown below, the radial behavior 
corresponds to Eq. (I) for £%, £% and 'H" respectively): 

al exp(kz) , for z < ZI , 

G,,+1 exp(kz) + b" exp(-kz) , for z" < z < Z,,+l , n = 1,2, ... , N - 1 , (10) 

bN exp( -kz) , for z > ZN , 

where ai, bi, n = 1,2, ... , N, are amplitudes to be determined. We assume, as well as in the 
case of a single discontinuity, that kb «: 1, and the form of the solution above is justified when 
enlargements are spaced at least by the distance of the order of the chamber diameter, so that 
one can neglect higher modes which are essential only very close to discontinuities, namely, at 
distances a few times smaller than the chamber radius. 

To find the eigenfrequency of the trapped mode we use continuity conditions and the Lorentz 
reciprocity theorem. It states that for any two solutions of Maxwell's equations without sources 
the following equality holds [6] 

fdSii(El x H2 - E2 x Hd = 0 , (11) 

where the integration runs over a closed surface S consisting of the surface of the waveguide 
wall and two plane end sU.rfaces which are transverse to the waveguide axis. We take EI = E, 
HI = 'R and choose E2,H2 to be a TM mode having frequency !l, the same as the trapped 
mode, and exponentially decaying either as exp( -kz) in the positive direction or as exp( kz) in 
the negative one. Due to the orthogonality of the radial eigenfunctions the only contribution to 
the end-surface integrals comes from terms with factor exp(kz) (or exp( -kz)) opposite to that 
of the chosen TM mode. The only contribution to the wall integral comes from the regions of 
the waveguide enlargements, see [1] for more detail. We choose the positions of the end surfaces 
in such a way that thewall integration in Eq. (11) includes only one discontinuity at a time, and 

- apply this procedure twice to all discontinuities in turn using first the TM mode with exp( ~kz) 
behavior, and then with exp(kz). In fact, for the first and the last enlargements which belong to 
the semi-infinite intervals we use the integration with only one of the two. possible TM modes. 
One more equation for each of these two discontinuities follows from the field continuity: 

al exp(kzt} - b1 exp( -kzt} + a2 exp(kz1 ) , 

bN-l exp( -kziv) + aN exp(kzN ) - bN exp(-kzN ) • (12) 

Other 2N - 2 equations follow from the reciprocity as described above: 
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-a" +y" (a" +b,,-1 exp( -2kz,,)) +a,,+1 - 0, n = 2, ... ,N -1, 

-bft + y" (b" +a,,+1 exp(2kz,,)) +b,,-1 - 0, n = 2, ... , N - 1, (13) 

-bN + yNbN +bN- 1 - 0, 

where the following notations are introduced: 1/" =d,,/x, d" = p~A,,/b2 and x = kb. Combining 
(13) and (12) we get 2N simultaneous homogeneous equations for 2N + 1 variables: amplitudes 
ai, bi and propagation constant k. The condition for the solutions for ai, bi to exist, i.e. the 
determinant of the matrix in the left hand side of the equations above to vanish, gives us an 
equation for the propagation constant and, hence, for the frequency of the trapped mode. 

Due to the structure of the matrix, which has three or less non-zero elements in each column 
or row, this equation can be written recurrently for any given number N in terms of all the LHS 
of the equations for lower numbers of discontinuities. In the notations introduced above, Eq. (2) 
for N = 1 can be rewritten as . 

1-y=O, 

where Y = d/x with d = p.~A/b2 and x = kb. The small parameter d is just the ratio of the 
waveguide radius b to the length 11 of the region occupied by the fields of the trapped mode for 
a single discontinuity, cf. Eq. (2). For the case N = 2 from (13) and (12) we get 

(14) 

where gi,k = Zk - Zi, (k > i), is a longitudinal spacing between i-th and k-th discontinuities. 
Similarly, for N = 3 the equation is 

(15) 

For the case of N > 3 discontinuities the equation can be written in the following form: 

N-2 
D1,N(k) == D1,N-l(k)DN-l,N(k) - L D1,m(k) exp( -2kgm,N )YmYN - exp( -2kgI ,N )YIYN = 0 , 

m=2 
(16) 

that can be proved by induction. Multiplying by k2N
- 2 the LHS of the equation one can reduce 

it to a polynomial of the power (2N - 2) in k except the exponential dependence on k in its 
coefficients. 

3.1 N=2 

To study the frequencies of trapped modes in the system of two discontinuities, it is conve
nient to introduce new variables: 

the ratio of areas of two enlargements p = A2/AI > 1; 

d = p.~ Al/b2 
; 

variable u = x / d is the ratio of the propagation constant k for a N = 2 trapped mode to 
that in the case of a single discontinuity, kl' given by Eq. (2) with A = AI, and 
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parameter r = gd/b = 9 /11 is the ratio of the distance between discontinuities to the length 
11 of the region occupied by the trapped mode for a single discontinuity with area AI, i.e. 
11 = b/ d = b3 

/ (JJ~ Ad, cf. Eq. (2). 

In these notations, Eq. (14) takes the for~ 

(u - l)(u - p) - pexp(-2ur) = 0 . (17) 

We are interested only in positive solutions of this equation. Factorizing it as product of two 
"linear" equations 

(2U - p - 1 - V(p - 1)2 +4pexp(-2ur)) x 

(2U - p-1 + V(p-l)2 +4p exp(-2ur)) - 0, (18) 

one can easily find out that there are two positive solutions. The first one, u., exists for any 
positive value of parameter r and decreases asymptotically in the range from p + 1 at small r 
to p when r ~ 1/p. The second solution, U a , exists only for r > (p +1)/(2p), and increases 
asymptotically from 0 to 1 with r increase (see Fig. 1 for p = 2). The asymptotic values p 
and 1 obviously correspond to the two independent trapped modes for the two discontinuities 
separated so far that they do not feel each other, and each mode is described separately by 
Eq. (2). 

The case of two identical discontinuities, p = 1, is very intersting. The factorized Eq. (18) is 
especially simple in this case: 

[u - 1 - exp(-ur)] [u -1 +exp(-ur)] = 0 , (19) 

and both its solution tends to 1 at large r. The physical interpretation of the two possible solution 
can be easily found from Eqs. (12)-(13): u, gives a symmetric field and U a an antisymmetric one, 
i.e. the fields are zero in the midpoint between the two identical enlargements for the second 
solution. The antisymmetric solution exists only for large spacings, see Fig. 2, and its frequency 
shift is always smaller than that for a single discontinuity with the same area. It should be 
noted here that frequency shifts are assumed to be small compared to the cutoff frequency, and 
they are approximately proportional to u 2 , cf. Eq. (3). 

The behavior of the symmetric solution tl. at small r is also easy to explain: when two 
enlargements are very close to each other they work like a single enlargement with area A = 
Al +A2 • It corresponds to the lim.it u, -+ p + 1 in the general case of two discontinuities (and 
u. -+ 2 for two identical ones) when r -+ O. 

It is appropriate to mention an obvious analogy of the problem under consideration with the 
well-known problem of two narrow potential wells in quantum mechanics. 

To check our analytical results for frequencies, we have carried out numerical computations 
of the lowest eigenfrequencies in a long cylindrical resonator with two small pill-boxes by means 
of the code SUPERFISH [7] varying the distance between the pillboxes. The waveguide cut-off 
frequency WI corresponds to the eigenfrequency of EOlO-mode in the smooth (without pill-boxes) 
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resonator with the same radius, but the presence of enlargements shifts the eigenfrequency down. 
To exclude the influence of the side walls, one has to choose length L of the resonator to be 
larger tha.n the region where the trapped mode is localized, L ::> II = b3/(J.'~A). We have used 
b =2 cm, Al = A2 = A = 0.18 cm2

, 9 =1-20 cm and L from 40 cm to 100 cm. Fig. 2 shows that 
numerical a.nd analytical results are in good agreement. Fig. 3 and 4 show the electric field lines 
for resonator eigenmodes that correspond to the symmetric and antisymmetric trapped modes 
in the waveguide with two enlargements (only one quarter of the longitudinal cross section of 
the resonator is shown). 

The resonant contributions of trapped modes to the beam-chamber coupling impedance can 
be calculated in the same way as in the case of a cavity with known eigenmodes, see Reference 
[4] for details. The peak value of the longitudinal impeda.nce in the resonance can be evaluated 
as 

R2 = u611 dz exp( -inz/c)£z(z)1
2 

(20)Is ds 1111" 12 

where 111" is the tangential component of the magnetic field near the wall, integration in denom
inator is performed over the inner waveguide surface, u is conductivity of the pipe wall, and 

6 = J2/ (JlOUWl) is the skin depth. Performing the integration and taking into account that the 
frequency n of the trapped mode is very close to the cutoff frequency WI = Jll c/b lead to the 
expressIon 

- R 3 u (1 + p) + 2p [exp( -ur) COS(Jl19/b) - 1]
R2- lU [ ] , (21 )

u(1 + p) + 2p exp( -2ur)(1 + ur) - 1 

where Rl = (4ZoJl l An/(-rr8bsJ;(Jlt}) is just the impedance for a single enlargement with area 
At, cf. Eq. (6), and u = u(r, p) is a solution of Eq. (17). 

The extreme cases of small (r --+ 0) or large (r > 1) distances between discontinuities can 
be derived easily basing on the study of Eq. (17) above. For small r the ratio of impedances of 
two discontinuities to the impedance of the smallest one of them, R2/ Rl , tends to (1 + p)3 for 
the "symmetric" solution u a• For large distances, R2/ Rl becomes p3 for Ua and 1 for u a• There 
are some oscillations at intermediate distances, see Fig. 5. 

Expression (21) takes even more simple form for the case of two identical discontinuities, 
p = 1: 

3
R2 = Rl u (1 ± COS(Jl19/b)) , (22)

1 ± exp( -ur)(1 + ur) 

where the upper sign corresponds to the symmetric solutionu - ua(r) which satisfies u 
1 - exp(-ur) = 0, and the lower one to the antisymmetric solution U = ua(r) which satisfies 
u - 1 + exp(-ur) = o. The asymptotic behavior of (22) at large distances can be found using 
asymptotics U a --+ 1 +e-r and Uo --+ 1 - e-r 

• The ratio R2/ RI becomes (1 ± COS(Jl19/b)). While 
the sum of these impedances is just twice the impedance of a single enlargement, there are 
strong oscillations for each of two modes. 

The ratio R2/ Rl is plotted in Fig. 5 for p = 2 and in Fig. 6 for p = 1. 
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3.2 N=3 

We restrict ourselves here only to the case of three identical equidistant discontinuities, i.e. 
d. = d, i = 1,2,3 and gl,2 = g2,3 = g. The equation (15) transforms into the following factorized 
equation: 

(u -l)(u -1 +exp(-2ur)) [(u _1)2 - (u + l)exp(-2ur)] = 0, (23) 

where again u = kbld = klkl and r = gdlb = gill, One can easily recognize that the expression 
in the second brackets gives an antisymmetric trapped mode for two enlargements spaced by 2g, 
compare Eq. (19), and the enlargement in the middle just does not play in this case since the 
trapped mode fields vanish near its location. The first brackets gives an extraneous root, while 
the "quadratic" equation in the square brackets has two positive solutions which correspond 
to symmetric trapped modes. The first solution, U.o, corresponding to fields without nodes, 
exists for all positive values of r and tends to 3 at small r. The second one, U.tl, exists only 
when r > 3/2 and gives a trapped mode with 2 nodes. All three solution goes asymptotically 
to 1 at large distances between discontinuities. Fig. 7 shows the three solutions of Eq. (23) 
versus the spacing between discontinuities, as well as comparison with results of some numerical 
computations using SUPERFISH. 

The impedance for the antisymmetric trapped mode is given by Eq. (22) with the minus sign 
where 9 -+ 2g and r -+ 2r should be substituted. For the symmetric modes one can obtain 

R3 = R1u (exp(ur)(u - 1) + exp(-ur) + 2u cos(plg/b))2 . 
(24)

3u + 1 - exp(-2ur) +4ur(u - 1) 

The derivation and notations used are similar to those of Eq. (21). At small distances, ra
tio R3/ Rl for the maximal symmetric mode u"o goes to 33 = 27, and at large distances os
cillates as (1 + ..j2 COS(Plg/ b)? /2. The second symmetric mode exhibits similar oscillations 
(1 - J2COS(Plg/ b))2 /2 at large r. The impedance versus the distance between discontinuities 
is plotted in Fig. 8. In spite of the oscillations for each of the trapped modes, the sum of the 
impedances for all three modes becomes just triple of that for a single discontinuity at large 
spacings in which case all three modes have the same frequency, given by Eq. (3). 

3.3 - Many Identical Discontinuities 

In the case of N identical equidistant enlargements one should put Yi = y, i = 1,2, ... ,N 
and g','+1 = g, i = 1,2, ... , N ~ 1 in equation (16). The resulting equation has the following 
properties. 

It can be factorized in the form 

(25) 

where n, m are integers satisfying n + m = N so that 

for N = 2m 
for N = 2m + 1 
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and Pn{Y), Pm{y) are polynomials in 'II of the power n and m except exponential dependence 
on u = l/y in their coefficients, cf. Eqs. (19) and (23) above. Equation Pn{Y) = 0 has up 
to n positive solutions corresponding to symmetric trapped modes. The actual number of the 
roots depends on the distance g between discontinuities. It can be proved by induction that 
for any 9 there is at least one solution, and it behaves like Y ~ 1/N at small distances, i.e. 
k ~ Nk), because Pn{Y) -+ 1 - Ny when g/Il -+ O. This solution corresponds to the maximal 
symmetric trapped mode, without nodes, as was discussed in two subsections above for N = 2 
and N = 3. It always has the largest frequency shift, i.e. the lowest frequency between all the 
trapped modes. 

Equation Pm{y) = 0 gives up to m solutions corresponding to antisymmetric trapped modes. 
At large distances, when g/11 ::> 1, the asymptotics of Pj{Y), j = n, m, are (I - 'II)i, and there 
are N = n + m solutions of Eq. (25) which asymptotically tend to 1. The degenerated roots 
y - 1 due to the explicit factor in Eq. (25) are extraneous ones. 

As follows from discussions in previous subsections, the physical interpretation of the both 
extremal cases, at small and large spacings, is quite obvious. At small distances between dis
continuities they work together as a single combined discontinuity with effective area A = 
Al +A2 + ... + AN, that gives the maximal symmetric trapped mode with k ~ N kl for identical 
discontinuities. At large separations, the discontinuities do not feel each other, and there exist 
N independent trapped modes, each localized around one of the discontinuities. These modes 
can be described by the equations of Section 2 for a single discontinuity. 

Pictures of subsections N = 2 and N = 3 give some impression about frequencies and 
impedances of trapped modes for these particular cases. In addition, Fig. 9 gives an illustration 
of the solutions to Eq. (25) in the case of N' = 6. There are three symmetric and three 
antisymmetric trapped modes. 

4 Many Discontinuities: Periodic Structures 

4.1 One Discontinuity per Period 

In this section periodic arrays of discontinuities are considered. We assume that the period of 
the structure D is longer than the waveguide diameter, D > 2b, and look for a periodic (with the 
same period D) solution of the Maxwell equations with frequency n below the waveguide cutoff, 
n < WI. As well as above, we restrict ourselves to TM-like solution with radial behavior given 
by Eq. (I), taking into account, however, that the same way of reasoning works for TE-modes. 
Let us consider one period - D /2 < z < D /2 with an enlargement located at z = O. Similar to 
Eq. (10) and using the same notations, one can write z-dependence of the solution as 

,aexp(kz) + b_t exp(-kz) , for - D /2 < z < 0 , 

bexp( -kz) + al exp(kz) , for 0 < z < D /2, (26) 

where amplitudes a, b correspond to the waves originated from the enlargement at z = 0, the 
wave with amplitude b_ 1 comes from the previous period of the structure with the center at 
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z = -D, and the wave with amplitude al comes from the next period, with the center at z = D. 
From periodicity follows that 

b_ t = bexp(-kD); at = a exp( -kD) . (27) 

To find the frequency of the trapped mode we use continuity conditions and the reciprocity. The 
continuity at z = 0 requires 

a + b_ t exp(-kD) = b + al exp(kD) . 

Taking into account relations (27), it gives 

(a - b)(l - exp(-2kD)) = 0 . 

Since we consider k > 0, this equation leads to a = b, while other solutions, k = i7rm/D, 
correspond to space harmonics with frequencies above the cutoff. 

Applying the reciprocity theorem for the trapped mode under consideration and a regular 
waveguide TM-mode with the same frequency n, we get a simple equation for propagation 
constant k: 

y -1 +exp(-kD)(y + 1) = 0, (28) 

where, as wen as in previous sections, y = d/(kb) with d = Jl~A/b2 <t: 1. Using new variables 
u = l/y = k/kl and p = dD/b = D/ll' one can rewrite it as follows 

1 + ex-p( -up) 
u= . (29)

1 - exp( -up) 

A simple study shows that this equation has only one positive solution u = u(p) > 1 for any 
positive value of p, see Fig. 10. Asymptotics for long periods, u(p) ~ 1+ 2 exp( -p) when p ~ 1, 
obviously corresponds to the trapped mode for a single discontinuity, cf. Section 2. 

The opposite asymptotics, at p <t: 1, is quite different from the asymptotics in the case 

of a finite number of discontinuities, when it tends to a finite limit (Section 3). For periodic 
structures, the short-period behavior is 

u(p) ~ J2/p = J21 l / D for p <t: 1 . (30) 

Since u = /1// where 11 =I/kl has the meaning of the length of the region occupied by the 
trapped mode for a single discontinuity, cf. Eq. (2), and 1 =1/k, it gives a new "effective" length 
of the trapped mode in aperiodic structure 

I ~ JDl1 = .!!...JDb (31)
- 2 Jll 2A' 

The frequency shift down from the cutoff frequency for this trapped mode becomes 

Jl~ (AU)2 A 
~w = WI 2" lfl = Wt bD . (32) 
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This simple answer has also a simple physical explanation. For a closed cylindrical cavity 
resonator of length D and radius 6 with a small axisymmetric enlargement, having area A in 
the longitudinal cross section, on its side surface, the eigenfrequency of a given TM-mode Wo 

shifts down due to the enlargement presence, e.g. [8]: 

~w 1 fAv dV(IHI2 - IEI2) A 
(33)

Wo = 2 fv dVIHI2 ex 6D ' 

where E, H are the fields in the resonator without enlargement, ~V and V mean volumes of 
the enlargement and cavity. In the transition to the last expression in the RHS is taken into 
account that lEI <: IHI near the cavity wall. So, the relative frequency shift is proportional to 
t.he ratio of the volumes of the enlargement and cavity, as well as in Eq. (32). 

One can imagine metallic transverse end planes in the middle between every two discontinu
ities in a periodic structure so that it transforms in a chain of adjacent identical cavities. Such 
walls do not change the fields and frequencies of trapped modes in the waveguide. However, the : 
analogy between Eqs. (32) and (33) works only when the fields fill the whole cavity, from one 
end wall to the other. It is exactly the case of trapped modes in short-period structures when 
D <: II. One the other hand, for long periods (D ~ IJ) the argument of a closed cavity fails 
since the fields in a trapped mode do not reach the end walls, and that is why the frequency 
shift is independent of the length of resonators. 

It is appropriate to mention that starting from the well-known relation (33) one can easily 
derive qualitatively the frequency shift of the trapped mode for a single discontinuity, Eq. (2). 
Indeed, if the mode frequency is given by Eq. (33), its propagation constant is 

and the length of the mode propagation 

These relations work until I > D /2, otherwise fields tear off the end surfaces of the resonator. 
One can estimate the resonator length when it occurs by putting D = 21 in the equation above. 
If D becomes larger, the mode frequency does not change any more because the fields do not 
reach the end walls. It gives 

I = 63 /(JJ~A) , 

that is exactly the same as follows from Eq. (2). Of course, the coincidence of the numerical 
factors is just by accident. 

It is clear from the discussion above that one can check Eq. (32) by numerical computations 
using SUPERFISH [7] even easier than in previous sections when one had to use very long res
onators in order to avoid the influence of the end walls. The results of our numerical calculations 
for various resonator lengths (i.e., various periods) are shown in Fig. 10 and coincide well with 
the results from Eq. (32). Fig. 11 shows fields of trapped modes calculated by the code for two 
periodic structures. 
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The resonant coupling impedance per period produced by a trapped mode can be calculated 
in the same way as above, cf. Eq. (20), except the integration over z should be limited to one 
period. The result is a rather complicated expression 

/lp = Rl d2 (1 _ e:p(-up» [I'~e"'up sin
2 (I'~~) + 21'IUde-

up
/

2 
sin (I'~~) 

up
/ 2 	 up 2 x (1 - e- cos (I'~~)) + u 2cP (1 - e- / cos (I'~~)r] , (34) 

where u = u(p) is a solution of Eq. (32), and Rl is given by (6). The asymptotics of the 

impedance are: 

for large distances (p :> 1), 14 -+ R1, i.e. to the impedance of a single discontinuity; 

for short distances (p « 1), 


14 ~ 	Rl i'~b sin2 (i'lD) = Zo 2bsin
2
[i'ID/(2b)] 

tF D 2b 1ri'~Jl(i'd {) i' lD/(2b) . 

An interesting feature of the last expression is that it is independent of enlargement area A, 
except that this asymptotic is valid when 2b < D <t:: 11 = b3/(i'~A), while in the opposite 
extreme 14 ~ Rl ex: A3. Since A is considered to be small (d = i'~A/b2 <t:: 1), the impedance 
per period is much larger for short-period structures. It is illustrated by Fig. 12, which shows 
the impedance per . period versus the period length. 

4.2 	 A Few Discontinuities per Period 

Let us consider shortly the case when there are more than one enlargement per period of a 
periodic structure. Once again we introduce unknown amplitudes of a piece-wise solution, apply 
restrictions from continuity, periodicity and reciprocity to obtain a linear system of equations 
for the amplitudes. For the case of N enlargements, there are 2N + 1 variables (2N amplitudes 
and one propagation constant k) and 2N homogeneous equations. In fact, they differ from 
Eqs. (12)-(13) . only by two first and two last equations (for the first and last enlargement), 
due to periodicity. The requirement of the determinant of the matrix M2N( k) in the LHS of 
the linear system to vanish gives an equation to solve for k. We restrict ourselves only by the 
example of N = 2, in which case this equation takes the form: 

det M 2(k)/[(1 - yd(l - Y2)] - (1 - yt}(1 - Y2) - e-2kgYIY2 - 2e-kD (35) 
+ e-2kD (I +yt}(1 +Y2) - e-2k(D-g)YIY2 = 0 , 

where D is the st·ructure period, 9 is the distance between the discontinuities, 9 ~ D, and Yn 
are defined after Eq. (13). For long periods, kD ~ 1, Eq. (35) becomes just Eq. (14). For short 
distances g, when kg <t:: 1, Eq. (35) gives the same as Eq. (28) for one enlargement per period, 
but with Y = Yl +Y2, i.e. we have a single combined discontinuity. 
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When two discontinuities are identical, Yl = Y'J. = y, Eq. (35) transforms into a product of 
two following equations (u = 1/Y): 

1+ exp(-up) + exp( -ur) + exp( -u(p - r)) 
u - (36)

1 - exp(-up) 
1 +exp(-up) - exp(-ur) - exp(-u(p - r)) 

u = (37)
1 - exp(-up) 

where p = dDIb and r = dgIb, r :5 p. The first of this equations in the particular case D = 2g 
transforms into Eq. (29) with p replaced by r, that corresponds to a structure with period 9 
and one discontinuity per period. The second equation in the same particular case gives, for D 
large enough, one more solution, which can be recognized as corresponding to an antisymmetric 
trapped mode. We missed this mode earlier, studying the case of a single discontinuity per 
period, because the study was restricted to solutions having the same period as the structure. 
The antisymmetric mode in this case has twice longer period. In general case, this solution 
exists when (i) p is large enough, and (ii) both If. = rip = glD and (1 - K) are not very small. 
It is illustrated by Fig. 13, where solution uo(p, r) of Eq. (37) is plotted as the function of p 
and K·. The same plot for solution ua(p, r) of Eq. (36) is shown in Fig. 14. One can see that the 
frequency shift for the antisymmetric mode is always smaller than that for a single discontinuity 
(u = 1), while for symmetric solutions it is always larger. 

Effects of Trapped Modes in Liners 

It should be reminded that the results above are applicable to vacuum chambers not only with 
small enlargements but also with small pumping holes. The only difference is that for holes one 
should replace area A of the enlargement cross section in all formulas by an "effective" area, 
as was mentioned in Section 2. Say, if there are M holes in one transverse cross section of a 
cylindrical vacuum chamber, for an axisymmetric trapped mode the following substitution takes 
place 

0'01 + 0'02 + ... + O'OM
A (38)~ b ' 47r 

where OSm' m = 1,2, ... , M, denotes the magnetic susceptibility in the azimuthal direction 
of the mth hole in this transverse row, b is the chamber radius. The sum occurs because all 
small pumping holes, having the same longitudinal position, contribute to the trapped mode 
additively, working as a single discontinuity. Holes at another longitudinal location work as 
another combined discontinuity. As follows from the results above, one can consider two small 
holes as having the same longitudinal position if their separation along the chamber axis is 
shorter than the chamber radius. 

Bearing this in mind, we shall study trapped modes in a liner of a superconducting accelerator 
and give estimates of their contribution to the coupling impedance. As an example, we refer to 
the LHe vacuum chamber. Its present design anticipates inside the chamber a stainless-steel 
thermal screen (liner) with the wall thickness t ~ 1 mm, having a square transverse cross section 

13 



with rounded corners, 50 mm in diagonal, and a thin copper coating of the inner wall surface. 
To minimize the low-frequency coupling impedances, the pumping holes will have a shape of 
rounded-end narrow slots with length s = 6 mm and width w = 1.5 mm. The total pumping 
surface is 4%of the wall surface, this fraction was chosen from vacuum requirements. There are 
666 pumping slots per meter of liner, with M = 8 slots in one transverse cross section, and the 
londitudinal separation between adjacent cross sections with the slots is 9 = 1.2 cm. Taking 
into account that TM-modes in a square, rounded-end waveguide are quite similar to those in 
a cylindrical one, we will take for estimates the "effective" chamber radius b = 18 mm. Then 
expression (38) takes the form 

(39) 


where we use transverse magnetic susceptibility 08 = w2s/1r for a narrow long slot in the thick 
wall, because t ~ w, see, e.g. in [9, 10]. As the result, the "effective" area to be substituted 
in formulae of Sections 3 and 4 is A = 1.52 . 10-3 cm2

• The length of the region which would 
be occupied by the field of the trapped mode for a single such discontinuity is II = b3 /(Il~A) = 
6.63 m, cf. Eq. (2). Since this is much longer than the distance between adjacent discontinuities, 
they strongly interacteach other, and because 9 ~ I), this situation is described by Eqs. (30)

(32) with D = 9 = 1.2 cm. It means that u = J2/1 / 9 ~ 33, and the new "effective" length 

of interaction I = J/19/2 = 20 cm. If we define the number of discontinuities which work as 
a single combined discontinuity by Neff = 21/9, one can easily see that Neff = u = 33. The 
frequency shift for the trapped mode is given by Eq. (32): 

~w = 7.10-4 , 

WI 

that is ~I ~ 5 MHz for 11 ~ 6.4 GHz. The gap between the trapped mode frequency and the 
cutoff is rather small, and one has to compare it with the wi,dth of the resonance due to energy 
dissipation in the walls and due to radiation from the slots: I = 11 + Irad. According to Eq. (4), 

11 6 2.3 . 10-5 

- - - "" --=="..... 
WI - 2b - JRRR ' 

where RRR is the ratio of the copper conductivities at cryogenic and room temperatures, which 
is usually 30-100. The radiation width for a thin wall would be [1]: 

Irad "" N. M Il~ko~ "" 6 . 10-5 
WI - eff 3b5 - . 

However, for the thick wall, the external magnetic susceptibility Oert ~ exp[-7rt / (2w )]0:9 should 
be used, that makes the radiation width much smaller, Irad/Wl ~ 7 . 10-6 • So, the resonance 
width is small compared to the frequency gap, and the trapped mode exists. 

Let us proceed with impedance estimates. The important quantity entering the stability con
ditions in circular accelerators, e.g. [2], is so called reduced longitudinal impedance Z/n, where 
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Z is the total impedance of the ring at given frequency w, and n = w/wretl is the corresponding 
harmonic number of the revolution frequency Wrev = c/R, with R being the machine radius. 

If discontinuities are far separated, 9 > 11, the total impedance of the ring is just a sum of 
contributions (6) from all N = 21rR/g discontinuities. Since W ~ WI = /Jlc/b, it leads to the 
following estimate2 

(40) 


However, the case of the LHC liner is different, because 9 <: It, and the interaction of 
discontinuities should be taken into account. One can consider each group of Nell discontinuities 
as a single combined one, and the number of such group on the ring is Ng = N /Nell = 1r R/I. 
Then the estimate follows from Eq. (40) with replacements N ~ N/Nell and Rl ~ N;IIRl: 

Re Z = N 2 21rbRI = 16ZoA2 , (41)
n ellgPIP~Jl(pd6bg2 

that gives Re Z/n ~ 424 Ohms for the narrow-band impedance produced by the trapped modes 
in the LHC liner, if RRR = 100. This value for the narrow-band coupling impedance is too 
large, even for such a high frequency. 

In order to improve and generalize the impedance estimates above, one should consider that 
the pumping holes are not quite identical, they have some distribution of areas. It results in a 
frequency spread of resonances produced by different discontinuities. One can take account of 
the resonance overlapping using a weighted sum in calculating the total impedance of the ring, 
e.g. [11]: 

Ztot(W) = NZ(w) ~ N JdAw(A)Z(w, A) , 

where w(A) is the area distribution, JdAw(A) = 1, and Z(w, A) is defined by Eq. (5). It 
is convenient to rewrite Z(w, A) at frequencies near the resonance, i.e. when w ~ S1(A) = 
Wl - ~Wl (A), as follows: 

Z(W A) ~ __i_=-&....lR~l_(A~)__ 
, - 1 - ~ + AwdA) + il. ' 

w w w 

where Rl (A) and ~Wl (A) are the resonance impedance and frequency shift for the trapped 
mode caused by a discontinuity with area A. If the resonance width is small enough, namely, 

" ""1 < ~Wl (A) < w, the integral over areas can be treated like a dispersion integral to get 

1m fdA F(A) ~ -i1r F(A.) 
1 - ~ + A W l(A) + il. - 1...4... AwdA.)I ' 

w w w dA w 

where A. = A.(w) is the solution to equation w = WI - ~wI(A.). 

2In the case when "'(rod is not small compared to "'(1, in Eqs. (40) and (41) one should replace 2b/6 by w1/1 
with "'( ="'(1 + "'(rod· 
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In this way, we obtain two impedance estimates. For far separated discontinuities, i.e. 9 ~ It, 
the frequency shift is given by Eq. (3), and 

Re Z 47rZo w(A)A2 
----~~~--~-~~- (42) 

n - pfJl(Pl) bg 

with A being the averaged area per discontinuity. It should be noted that this estimate is 
applicable instead of Eq. (40) only when the following a posteriori condition 

~ < p~A 
W 7rb4w(A) ' 

is valid. Otherwise, Eq. (42) would give higher value than (40), that is unacceptable because 
spreading of resonance frequencies due to the area distribution only reduces the impedance. 

For interacting discontinuities, 9 < 11, the frequency shift is proportional to the area, cf. 
Eq. (32), and the impedance estimate is 

Re Z ""J _______81(" Zo__ w(A)A2
~~_ 

(43) 
n - Il~J;(lld bg 

Surprisingly, it is just twice the result of Eq. (42). For a specific distribution one should take 
max w( A) to get maximal impedance estimates (42) and (43). Say, for a Gaussian distribution 
of areas with standard deviation O"A, it is l/(J27fO"A). If we assume O"A/A = 0.1 and apply 
Eq. (43) for the LHe liner, it gives Re Z/n ~ 17 Ohms. This estimate is lower than that from 
Eq. (41), and it is independent of the wall conductivity and radiation from slots. 

It should be noted that an impedance estimate for a liner as a periodic structure, using 
Eq. (34), would be much higher. However, the periodicity of pumping holes in the liner is violated 
by the very structure of the accelerator ring, which includes many irregularities like interaction 
and utility regions, etc. Some intentional additional violation of the hole periodicity is also 
advisable in order to reduce high-frequency resonances, e.g. [12]. Since even a small distortion 
of the periodicity drastically reduces the resonance coupling impedance of the structure, see in 
[12, 13], the estimate (41) is more appropriate for the LHe case. 

-6 Conclusions 

Trapped modes in waveguides with many small . discontinuities such as e,nlargements or holes 
are studied, both for periodic and non-periodic structures. The existence conditions for trapped 
modes are considered and their frequencies are calculated. The calculated frequencies are in 
good agreement with results of numerical computations for particular cases. While our study 
concentrates on the lowest axisymmetric TM-modes, because of their importance for the beam
chamber coupling impedance calculations, the results can be easily applied for TE- and higher
order modes, using propagation constants for these modes from [1] and formulae of Sections 
3-5. 
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The magnitudes of the narrow-band resonances of the coupling impedance produced by the 
trapped modes are calculated. These results are applied to obtain coupling impedance estimates 
for the liners (thermal screens) of large superconducting colliders at frequencies near the cutoff. 
The practical conclusion for the liner design is to avoid an exact periodicity in the longitudinal 
distribution of the pumping holes and intentionally introduce some distribution of the hole areas 
to reduce effects of the trapped modes. 

The author would like to express his gratitude to Drs. V.1. Balbekov, R.L. Gluckstern, and 
G.V. Stupakov for useful discussions. 
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Figure 1: Ratio k / kl versus 9 / 11 for two discontinuities with p = 2. 
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Figure 2: Ratio k/k1 versus g/11for symmetric (solid line) and antisymmetric 
(dashed) modes. Thick points show numerical results. 
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Figure 3: Electric field lines in symmetric trapped modes. 
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Figure 4: Electric field lines in antisymmetric trapped modes. 
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Figure 5: Impedance ratio R2/ Rl versus g/lt for two discontinuities with 
p =2 (parameter d =0.26). 
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Figure 6: Impedance ratio R2/ RI versus 9 / II for two identical discontinuities 
(d = 0.26). Solid line is for symmetric mode, dashed for antisymmetric one. 
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Figure 7: Ratio k/ kl versus 9 / II for three identical discontinuities. Solid 
lines are for symmetric modes, dashed line is for anti symmetric one. Thick 
points show numerical results. 
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Figure 8: Impedance ratio R3/ Rl versus 9 / 11: solid line for So, dashed for a, 
and dash-dot ted for SI mode. . 
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Figure 9: Ratio k/kl versus g/11 for N = 6 identical discontinuities. Solid 
li~es are for symmetric modes, dashed for antisymmetric ones. 
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Figure 10: Ratio k/kl versus D/il for periodic structures. Thick points show 
numerical results. 
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Figure 11: Electric field lines in trapped modes for two periodic structures 
with different periods. 
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Figure 12: Impedance ratio Rpl RI versus Dill for periodic structures with a 
single discontinuity per period (d =0.26). Two parts of the graph are shown 
in different scales. 
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Figure 13: Ratio k/kl versus D/il and g/D for periodic structures with two 
discontinuities per period: antisymmetric mode. 
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Figure 14: Ratio klkl versus Dill and glD for periodic structures with two 
discontinuities per period: symmetric mode. 


