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Abstract 

In this paper, we study infall collapse solutions for star formation in the small ra
dius limit where the particle orbits become nearly pressure-free. We generalize previous 
solutions to simultaneously include the effects of both radiation pressure and angular 
momentum. The effects of radiation pressure can be modeled using a modified potential; 
for representative cases of such potentials, we obtain analytical solutions for the density 
and velocity fields. In general, radiation pressure limits the maximum mass of a forming 
star by reversing the infall when the star becomes sufficiently large. Our results imply 
that this maximum mass scale is given by the condition that the turnaround radius RR 
(the radius at which the radiation pressure force exceeds the gravitational force) exceeds 
the centrifugal radius Rc (the angular momentum barrier). The maximum mass scale 
for a star forming within a rotating collapse flow with radiation pressure depends on the 
initial conditions, but is generally much larger than for the case of spherical infall con
sidered previously. In particular, stars with masses M* 100 M0 can form for a fairly f"V 

wide range of initial conditions. 

Subject headings: stars: formation - hydrodynamics 
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1. INTRODUCTION 


In this paper, we study generalized aspects of the collapse of molecular cloud cores to 
form stars. In particular, we include the effects of radiation pressure for the inner regime 
of the collapse flow. This work thus helps extend the current theory of star formation to 
include the formation of stars of higher mass. 

In the current theory of star formation, molecular cloud cores provide the initial 
conditions for the star formation process. Star formation occurs when these cores collapse. 
A pressure supported star forms at the center of the collapse flow and a circumstellar 
disk forms around it from the infalling material with higher specific angular momentum 
(cf. the review of Shu, Adam s, & Lizano 1987). Thus, during this formative stage, 
a protostar consists of a central star/disk system which is deeply embedded within an 
infalling envelope of dust and gas. The characteristics of this infalling envelope largely 
determine the manner in which the protostar evolves. 

Previous collapse calculations have focused on isothermal cloud cores which are either 
perfectly spherical (Larson 1969ab; Shu 1977; Hunter 1977) or slowly rotating (Cassen 
& Moosman 1981; Terebey, Shu, & Cassen 1984). These solutions have been extremely 
useful in studies of low-mass protostars. In particular, these infall solutions have been 
used as a starting point for radiative transfer calculations to determine the spectral energy 
distributions of protostellar objects; the results are in good agreement with observed 
protostellar candidates (e.g., Adams, Lada, & Shu 1987, hereafter ALS; Butner et al. 
1991; Kenyon, Calvet, & Hartmann 1993). However, with large amounts of new kinematic 
data becoming available, m ore detailed collapse solutions are desirable. 

These previous studies have shown that the collapse flow will remain nearly spherical 
in the outer regions, i.e., outside a centrifugal radius Rc which is determined by conser
vation of angular momentum. When magnetic fields are present, an analogous magnetic 
barrier occurs at the radius RB where the Lorentz force of the magnetic field exceeds 
that of gravity (see Galli & Shu 1993ab). In this present work, we study the collapse 
solutions in the inner regime (r '" Rc), where the infalling particles follow nearly ballistic 
trajectories as they spiral into the central star/disk system (Cassen & Moosman 1981; 
Terebey et al. 1984). Previous work in this regime has been limited to the case of zero 
energy orbits and the gravit ational potential of a point mass (the star). 

In this work, we consider the additional effect of radiation pressure, which is impor
tant for protostellar objects with mass M ~ 2 M 8 . In the current star formation scenario, 
there is an "opacity gap" immediately surrounding the star; here, the dust evaporates 
and radiation streams freely through this region. At the dust evaporation radius (often 
denoted as the "dust destruction front"), the ultraviolet and visible photons are absorbed 
in a thin shell and the photons are thermalized. Outside this radius, the infalling en
velope is optically thick at infrared wavelengths where the warm dust reradiates. The 
gradient of this infrared radiation provides a radiation pressure which acts to decelerate 
the infalling gas. 

Radiation pressure has been considered previously for spherical collapse (Larson & 
Starrfield 1971; Kahn 1974; Wolfire & Cassinelli 1986, 1987). These studies show that 
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radiation pressure severely restricts the possible masses of forming stars. Nakano (1989) 
has argued that nonspherical infall can lead to the formation of more massive stars (see 
also Nakano, Hasegawa, & Norman 1995); this work assumes both a flattened density 
distribution and a nonspherical radiation field. In this present study, we carry this idea 
further by finding a self-consistent infall-collapse solution which includes the effects of 
radiation pressure in the inner regime where rotation plays a large role and the flow is 
highly non-spherical. In our work, we assume a spherical radiation field and then calculate 
the corresponding nonspherical density field. The "inner" solutions resulting from this 
study can then be matched onto the "outer solutions" obtained elsewhere (e.g., Shu 1977; 
Adams et al. 1995) to provide a complete collapse solution for the star formation problem. 

This paper is organized as follows. In §2, we formulate the collapse problem including 
the effects of radiation pressure and solve for the infall solution in the inner regime. In 
the next section (§3), we find the mass and radial scales in the problem; in particular, we 
find the maximum mass of a star/disk system that can form within this infall scenario. 
If disk accretion is efficient, this mass scale is the maximum stellar mass that can be 
assembled in the presence of radiation pressure. We consider several additional issues 
in §4, including the effects of magnetic fields. We conclude in §5 with a summary and 
discussion of our results. 

2. INFALL WITH RADIATION PRESSURE 

In this section, we determine the most important effects of radiation pressure on 
the infall collapse solutions. For the cases of interest, the inner limit of the collapse flow 
approaches a ballistic (pressure-free) form. We expect our solutions to be valid within 
the following range of (radial) size scales: 

(2.1) 

In this ordering constraint, the scale R* is the radius of the forming star and defines 
the inner boundary of the collapse flow. The scale Rc is the centrifugal radius (defined 
more precisely below) which very roughly divides the nearly spherical outer region of the 
flow from the highly nonspherical inner region. Finally, the scale r H is the head of the 
expansion wave which divides the static outer core from the collapsing inner core (see 
Shu 1977). For radii comparable to the expansion wave radius rH, pressure effects cannot 
be neglected and the solutions found here must be modified. 

2.1 Coupling of the Radiation Field and the Infalling Gas 

The coupling between the radiation field and the infalling material is determined 
primarily by the dust opacity f\,v, which specifies the cross section of the interaction. We 
are thus assuming that the dust and gas are themselves well coupled dynamically. This 
assumption should be well satisfied in the dense inner regions of interest here. In this 
regime, the radial force f per unit mass exerted on the infalling gas by the radiation field 
is given by 

f = roo f\,vLv dv (2.2)io 47rcr2 
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where LII = 47rT2 FII and FII is the flux density of the radiation field. The second equality 
essentially defines the weighted mean opacity I'\,E and is thus formally exact. We can 
"evaluate" this force term by approximating the weighted mean opacity as the Planck 
mean opacity, i.e., 

L I'\,p(T) L I'\,p(To) T 
f~-- ~-- -- (2.3) 

47rC r2 47rC r2 To' 

where To is a fiducial temperature. The use of the Planck mean opacity implicitly assumes 
that the protostellar radiation field is thermalized to the local dust temperature; this 
condition is satisfied in the optically thick inner regions of the collapsing envelope where 
essentially all of the effects of radiation pressure take place. In the second approximate 
equality, we have made the additional assumption that the Planck mean opacity is a linear 
function of temperature; this result is exact for the particular case in which 1'\,11 <X v, which 
is a good approximation for the frequencies (wavelengths) in the near infrared (Draine & 
Lee 1984) where most of the interaction between the radiation field and the dust takes 
place. 

Notice that we have assumed a spherical radiation field. This assumption is impor
tant because it allows for a completely analytical treatment of the problem. For high 
mass stars, the stellar component of the radiation field is nearly spherical and dominates 
the (nonspherical) radiation field of the disk. However, the nonspherical density distri 
bution and the effects of bipolar outflows make the radiation field depart from spherical 
symmetry; these effects are not included in this present work. 

We must determine the temperature distribution for protostellar envelopes. To a 
reasonable degree of approximation, the temperature profile in protostellar envelopes can 
be taken to be a power-law over the range of radial scales of interest. Simple analytical 
estimates show that the power-law index q of the temperature distribution has the value 
q "J 5/6 in the optically thick inner regions and flattens out to the range q "J 1/3 - 2/5 in 
the optically thin outer regions (Adams & Shu 1985). Thus, as a starting approximation 
to span both regimes, we adopt the simple form 

T(r ) = To(r/ro)-1/2 . (2.4) 

This simple form allows us to obtain analytic solutions which elucidate the basic physics 
of this problem. Once we have this basic understanding, we can study the effects of 
different forms for the temperature distribution. 

Putting all of the above results together, we obtain an outward radial force due to 
radiation pressure of the form 

f - ~ I'\,p(To)Fo (2.5)
- 4 7rC r 5 / 2 • 

Using this form for the radiation pressure force, we can derive an effective potential. The 
total potential (including both radiation pressure and gravity) can be written in the form 

(2.6) 
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where we have defined a parameter a, 

_ LK,p(To) ~ 
(2.7a)a = 67rGMc yrO, 

which has units of [length]1/2. For the sake of definiteness, we take the reference radius ro 
to be the radius rd of the dust destruction front, i.e., the radius at which the temperature 
becomes larger than the sublimation temperature of dust grains. For typical interstellar 
dust grains, the Planck mean opacity K,p at this temperature (To = Td 2300 K) isrv 

about 30 cm2 /g; for the sake of definiteness, we adopt this value throughout this paper. 
We can thus write the parameter a in the form 

-3 [ L ]a ~ 1.6 x 10 vr:d M ' (2. 7b) 

where we have defined L == L/(IL0 ) and M =M/(IM0). Thus, as expected, for solar 
type stars, the correction to the orbits due to radiation pressure is small. Radiation 
pressure~be12.ns to playa substantial role in the infall when a 2 > rd; this condition is 
met for L/M > 640, which corresponds to moderately massive stars with M rv 7M 8 . 

2.2 Orbital Solutions 

Given the potential, we can find the orbital solutions for parcels of gas falling in 
towards the central star. Our goal is to derive the functional forms for the velocity fields 
and the density profile resulting from the collapse of slowly rotating cloud cores. This 
calculation generalizes the case studied previously (Terebey, Shu, & Cassen 1984; Cassen 
& Moosman 1981; Ulrich 1976), where the inner collapse solution is derived using only 
the gravitational potential of the star itself. 

Since the potential is spherically symmetric, the motion is confined to a plane and the 
angular momentum is conserved. This orbital plane can be described by the coordinate~ 
(r, ¢» where the radius r is the same in both the plane and the usual spherical coordinates. 
The angle ¢> is the angle in the plane is related to the usual spherical coordinates by the 
relation 

cos () 
cos ¢> = -()- , (2.8) 

cos 0 

where ()o is the angle of the asymptotically radial streamline (see below). We also assume 
orbits with zero total energy. For the case of no radiation pressure (a = 0), the orbits 
are simply parabolas in the (r, ¢» plane. 

For the general case, we can integrate the equations of motion to obtain the solution 
for the orbits in the form 

~ ~ [_ /-L 2 ] 1/2 . ~ _ 2[(r 1
/ 

2 (1 - /-L6) + a]2 _ 
cos ¢> + 1 2 SIn ¢> - ((1 2 ) 2 1 . (2.9) 

/-Lo /-Lo 2 r - /-Lo + a 

The quantity /-Lo is the cosine of the angle 80 of the asymptotically radial streamline (i.e., 
the fluid trajectory that is currently passing through the position given by ( and /-L =cos () 
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initially made the angle ()o with respect to the rotation axis). The quantity ( is defined 
by 

r = j~ = Rc (2.10)
~ - GMr r' 

where joo is the specific angular momentum of parcels of gas currently arriving at the 
origin along the equatorial plane. We have followed previous authors in assuming an 
initial state that is rotating at a constant rotation rate [2, so that the quantity joo is 
given by 

. () 2 
)00 = H.roo ' (2.11) 

where roo is the starting radius of the material that is arriving at the origin at a given 
time. T his radius can be determined by i~verting the initial mass distribution M(r), 
which we discuss below. Finally, the angle <p arises from the constant of integration and 
is defined by 

7. a 2 
- 2Rc(1 - J.l~) 

(2.12)cos~= ------------~~ 
a 2 + 2Rc(1 - J.l~) . 

Using these results, the "orbit equation" can be "simplified" to the form 

[a2-2(r(1-Jl~ )] [:0 -1] + [1- ~~ ]1/2aV8fr"(1-Jl~)1/2 = 2(2r(1-Jln2+4a(r1/2(1-Jl~). 
(2.13) 

The effects of radiation pressure on the infalling orbits can be illustrated as in Figure 
1, which shows projected orbits in the meridional plane for varying amounts of radiation 
pressure. Notice that as the radiation pressure (and hence a) increases, the orbits become 
increasingly deflected. 

W hen the orbits begin to turn around, adjacent orbits will intersect each other 
and the gaseous material will shock. The locus of this shock surface (or "turn around 
surface") is shown in Figure 2 for varying amounts of radiation pressure. Notice that 
adjacent streamlines do not intersect each other on the way in. 

2. J Th e Centrifugal Radiuj 

The centrifugal radius Rc plays an important role in determining the nature of the 
infall solution. To evaluate Rc, we must invert the mass distribution of the initial state. 
Here, we find Rc for the two types of initial states which are most applicable for star 
formation. 

We first consider the case of a molecular cloud core described by an isothermal 
equation of state. We thus obtain the profile 

2 GMM (r) = 2a r and hence roo = --2 . (2.14a)
G 2a 

Thus, for isothermal initial conditions, the centrifugal radius Rc can be written 

(2.14b) 
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where we have combined equations [2.10], [2.11], and [2.14a]. 

We are also interested in infall solutions which apply to the formation of more massive 
stars where isothermal initial conditions may not apply. Observations indicate that in 
regions of molecular clouds with higher mass clumps, the molecular line widths show a 
substantial nonthermal component (e.g., Larson 1985; Myers & Fuller 1992). Motivated 
by the finding that these observed molecular linewidths decrease with density according 
to the law ~V oc p-1/2, one can derive a "logatropic" equation of state P = Po log p 
to describe the fluid (see Lizano & Shu 1989; Adams et al. 1995). For this case, the 
equilibrium mass distribution and the corresponding '00 are given by 

_ M 1 / 2 [21T PO] -1/4and hence (2.15a)'00 - G ' 

where Po is the pressure scale that determines the amount of nonthermal support in the 
cloud. The centrifugal radius for logatropic initial conditions is given by 

(2.15b) 

We note that in the presence of radiation pressure, the effective centrifugal radius becomes 
modified, i.e., an effective centrifugal radius can be defined (see equation [2.29]). 

2.4 Velocity and Density Fields 

Given the orbital solution, we can find the velocity fields and the corresponding 
density distribution. We put together the geometrical relation [2.8]' conservation of 
angular momentum, and conservation of energy, 

1 2 2 2 GM GM 
-(V r + V(J + Vet') = -- - a~/2 ' (2.16) 
2 " 

to determine the velocity field, which can be written in the form 

1/2
GM 1/2 

Vr = - -,- { 2 - 2a,-1/2 - ((1 - 11~) } , (2.17)( ) 

1/2{2 } 1/2 _ G M 1 - 110 ( 2 _ 2) (
V(J - 1 2 110 11 , (2.18)

( , ) -11 

V<p = ( G~) 1/2 (1 _ JL~) (1 _ JL2)-1/2 (1/2 . (2.19) 

Notice that (, 11, and 110 are related by the orbit equation [2.13] so that the velocity field 
is in fact completely determined for any position (,,8). 
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The density distribution of the infalling material can be obtained by applying con
servation of mass along a streamtube (Terebey, Shu, & Cassen 1984; Chevalier 1983), 
I.e., 

p(r,8)vr r2 sin8d8d<p = - M sin 80 d80 d<po. (2.20)
47r 

In this present context, we ignore the fact that some particle orbits can turn around and 
leave the system. Thus, this solution for the density is valid for radii larger than the turn 
around radius given by equation [3.2] below. Combining the above equations allows us 
to write the density profile in the form 

p(r,8) = 
M dJ-lo 

2 -d .
47rvr r J-l 

(2.21 ) 

The properties of the collapsing core determine the form of dJ-lo/ dJ-l. In the present 
case, the orbit equation [2.13] determines the form of dJ-lo / dJ-l; thus, with the radial 
velocity given by equation [2.17], the density field is completely specified (analytically, 
but implicitly). 

T he density distribution as a function of angle and for varying amounts of radiation 
pressure is shown in Figure 3. Two trends are evident from this figure: For a given radius, 
the density decreases with decreasing angle and with increasing values of the radiation 
pressure constant a for small values of r / Rc. 

2.5 E quivalent Spherical Envelope 

One way to characterize the effects of both angular momentum and radiation pres
sure is to define an equivalent spherical density distribution. In other words, we take 
the angular average of the nonspherical density distribution (see Adams & Shu 1986; 
ALS). Since one effect of both rotation and radiation pressure is to prevent material from 
falling to smaller radii, this equivalent spherical density distribution will not be equal 
to the density distribution for spherical (nonrotating) initial conditions. We note that 
this approach has proven to be a useful characterization of protostellar envelopes for 
purposes of determining their spectral energy distributions (ALS; Kenyon et al. 1993). 
The equivalent spherical density distribution is given by 

(7r/2 
(p) = io p(r, 8) sin 8d8 = Cr- 3

/ 
2 A(r) , (2.22) 

where the constant C is defined by 

C= M (2.23) 
- 47rV2GM' 

and where we have defined an asphericity function A (r), 

11 dJ-l o { 2 1 } -1/2
A(r) = dll- 1 - G.r- 1

/ - -((1 - Il~) (2.24) 
o dJ-l 2 
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2 Notice that the density distribution in the spherical limit is given by p = Cr-3 / (see 
Shu 1977) so that the effects of rotation and radiation pressure are incorporated into the 
asphericity function A(r). 

We can evaluate the integral appearing in equation [2.24] by changing the integration 
variable from p to po and changing the lower end of the range of integration from 0 to 
a critical value pc. The difference in the range of integration arises because streamlines 
from all initial angles cannot fall to arbitrarily small radii. For large radii, streamlines 
from all initial angles (i.e., all values of po) are represented. Inside the centrifugal barrier 
Rc, however, only streamlines originating preferentially from the poles can reach these 
smaller radii (although for 0; =1= 0, no streamlines will reach radii r < 0;2). The last 
streamline that can reach a given radius for a given 0; is given by Pc; clearly pc ---t 0 as 
r ---t 00 and J-Lc ---t 1 as r ---t O. After evaluating the integral, we find 

_ 2 1/2 [ 1 + (2/()1/2(1 - o;r-1/2)1/2 ]
A(r) - (- ) log 1/2 . (2.25) 

( J1-C+ [(2/()(1-ar- 1 / 2)+J1-C2 - 1] 

The asphericity function A(r) is shown in Figure 4 for different amounts of radiation 
pressure. As the radiation pressure is increased, the cusp near the centrifugal radius 
becomes sharper and is also pushed back to larger radii. Notice also that for 0; > 0, a 
second "cusp" forms at the location of the shock surface (as shown in Figure 2). 

We can explicitly evaluate the asphericity function in the limits of large and small 
radii. For large radii, all of the streamlines reach r and hence pc = O. For this case, we 
have 

2 1/2 [1+(2/()1/2(1_o;r-1/ 2)1/2]
A(r)=(-) log 1/2 . (2.26) 

( [(2f()(1 - ar-1 / 2 ) - 1] 

Thus, in the limit r ---t 00, we have A(r) ---t 1. In other words, as expected, the departure 
of the solution from the pure spherical case disappears in the limit of large radii. In the 
opposite limit of small radii, the result depends on the relative size of the centrifugal 
radius Rc and the radial scale 0;2 set by radiation pressure. Under the ordering 

(2.27) 

we obtain the result 
(2.28) 

which is identical to the case of no radiation pressure (see ALS). Thus, the density 
1 / 2distribution has the form p '" r- at the intermediate spatial scales given by equation 

[2.27]. Notice that we need not consider the other limit in which 0;2 2 r because all orbits 
will turn around before reaching the radius r. 

The above discussion implies that there is an effective centrifugal radius in this 
problem. This radius, denoted here as RCR, is the smallest radius reached by streamlines 
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from all initial angles (all values of I-lo), This radius is easily calculated from the orbit 
solution and is given by 

(2.29) 

Notice that, as expected, the effective centrifugal radius is larger than for the case with 
no radiation pressure (0 = 0). 

2. 6 Matching onto Outer Solutions 

In the limit of large radius, this inner solution for the collapse flow matches smoothly 
onto the general class of spherical infall solutions which have a well defined mass infall 
rate; the isothermal collapse solution (Shu 1977) is a well known example. In this limit, 
the orbit equation [2.13] shows that I-l ----+ I-lo and the velocity field becomes purely radial 
with Vr ----+ -(2GM/r)1/2 (see equations [2.17 - 2.19]). Thus, in the limit of large r, the 

2density field becomes simply p = Cr-3 / , with the constant C defined by equation [2.23]. 
In other words, the density distribution approaches the form appropriate for spherical 
free-fall with a given (not necessarily constant) mass infall rate. 

In order for the large radius limit to apply, the radius r must be large compared to 
2both the centrifugal radius Rc and the radial scale RR = 0 set by radiation pressure. 

Thus, this solution approaches the "large radius limit" slightly slower than the case of 
rotation only. However, since we generally expect 0 

2 « Rc, this effect is small. 

3. MAXIMUM MASS SCALES FOR FORMING STARS 

In this sect ion, we discuss the maximum mass of a star that can be formed through 
a rotating infall flow which includes radiation pressure. In the absence of radiation 
pressure, most of the infalling material falls directly onto a circumstellar disk. Although 
disk physics is not well understood, stability considerations suggest that a substantial 
fraction of this m ass will eventually accrete onto the central star. When radiation pressure 
is important, some particle orbits will be "turned away" before they impact the disk or 
the star. As radiation pressure increases, less and less of the infalling material actually 
hits the disk. When the radiation pressure reaches a critical level, none of the infalling 
material can reach the disk and the star/disk system effectively becomes isolated from its 
environment. In this section, we calculate the mass scale at which this isolation occurs for 
several cases of interest. If disk accretion is efficient, then this mass scale is the maximum 
stellar m ass that can be formed within this infall scenario. 

9.1 Mass L imits for the Infall Collapse Solution 

Given the full solution for the particle orbits in the previous section, we can determine 
conditions for which material hits the disk and the corresponding conditions for which 
m aterial becomes turned away by radiation pressure. We first note that parcels of gas 
will hit the disk when they pass through the equatorial plane, i.e., when I-l = O. Using 
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the orbit equation, we can solve for the radius at which the particles hit the disk; this 
condition can be written in the form 

(3.1) 

Similarly, using the solution for the velocity field, we can determine that radius at which 
orbits will turn around due to the radiation pressure; this condition can be written in 
the form 

1/2 
Re(l - f.L~)r-l/2 = -a + [a 2 + 2Rc(1 - f.L~) ] . (3.2) 

Note that, as formulated, the orbits will always turn around for some sufficiently small 
radius. This behavior is simply a reflection of the fact that the repulsive term in the po
tential (due to radiation pressure) always becomes larger than the gravitational attraction 
for sufficiently small radius. In practice, however, when the "turn around radius" becomes 
smaller than the radius of the dust destruction front, parcels of gas will not actually turn 
around. 

Given the expressions [3.1] and [3.2] for the radii at which infalling parcels of gas 
hit the disk and turn around, respectively, we can write down a condition which must be 
met in order for parcels of gas to hit the disk before they reach the turn around radius. 
This condition can be written in the form 

a? < 2Rc(1 - f.L~) . (3.3) 

Alternately, we can use this condition to determine the range of initial angles which lead 
to orbits which intersect the disk. Formally, all particle orbits will hit the disk provided 
that 

(3.4) 

Thus, when 
(3.5) 

then none of the orbits will hit the disk plane and all of the orbits will turn around. In 
other words, when a becomes greater than 2Rc, the infall flow onto the central star/disk 
system effectively stops. As a result, the condition [3.5] defines the maximum mass of a 
star that can form through this infall scenario. This condition makes intuitive sense: The 
quantity a 2 defines the radius at which the radiation pressure dominates over gravity; 
the centrifugal radius Rc defines the radius at which angular momentum dominates 
over gravity. In order for radiation pressure to dominate over angular momentum, some 
condition like equation [3.5] is necessary. 

In order to evaluate the maximum mass scale, we must evaluate the coupling param
eter a (see equation [2.7]). Thus, we must find the dust destruction radius as a function 
of the stellar luminosity. We find that 
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where L is the total luminosity in units of Lev and where "'* is the opacity of the material 
to stellar photons (see Stahler, Shu, & Taam 1980 and Appendix B of Adams 1990). We 
have defined a fiducial value RD of the dust destruction radius which is that appropriate 
for the luminosity of the sun. Notice that the dust grains absorb stellar photons with 
an efficiency proportional to "'* and emit photons with a lower efficiency proportional to 
"'P(Td). T hus, the dust grain temperature at any given radius is larger than the naive 
"planet approximation" by the factor ["'*/"'P(Td)P/4 1.6, where we have adopted "'*"V 

= 200 cm2 /g. 
Using the expression [3.6] for the dust destruction radius, we can evaluate the cou

pling parameter Q' and then find the maximum mass scale. We first consider the case of 
isothermal initial conditions, since most previous work on star formation has begun with 
the collapse of an isothermal cloud core; however, the alternate "logatropic" initial state 
described below might be more applicable to the formation of high mass stars. For the 
isothermal case, after considerable rearrangement, we can write the condition [3.5] for 
radiation pressure to halt infall onto the disk in the form 

(3.7a) 

Inserting numerical values and rearranging once again, we find 

(3. 7b) 

where we have defined n_0 / (1 km S-1 pc-I) and a35 = a/(0.35 km s-l). The relation 
[3.7] implies a maximum mass of a forming star for a given set of the initial conditions. 

Notice that the mass M appearing in these constraints is the total mass that has fallen 
onto the star/disk system. In general, only a fraction of this mass becomes part of the 
star so that we should write M* = ,M. However, disk stability considerations (Adams, 
Ruden, & Shu 1989; Shu et al. 1990) show that , ~2/3; otherwise, the disk would be 
violently unstable to self-gravitating perturbations. Thus, the difference between M and 
M* is not overly large. 

In order to evaluate this limit, we must use some type of mass/luminosity relation. 
The stars of interest are generally in the mass range of 20 - 100 Mev so that their 
evolutionary time scales are short compared to the infall time scale. This ordering implies 
that the stars will have (nearly) their main sequence configurations while they are still 
in the infall phase of evolution (see, e.g., Yorke & Kriigel 1977; Yorke 1979; Palla & 
Stahler 1990). We can thus use a main sequence mass/luminosity relation for this present 
discussion (e.g. , Ezer & Cameron 1967; Allen 1976; Phillips 1994). 

Our results for an isothermal collapse are shown in Figure 5 where the mass limit 
is given as a function of the initial conditions a and n. For a given mass, the region of 
parameter space to the lower right of the curve is excluded, i.e., a star of the given mass 
cannot form with initial conditions in that region. The most restrictive limit occurs for 
stars with the largest value of L/M2 (see equation [3 .7b]) which occurs for M ~ 50Mev . 
Thus, if the rotation rate is large enough and/or the effective sound speed is low enough, 
then the luminosity never becomes large enough to halt the infall (in other words, the left 
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hand side of equation [3.7b] never exceeds the right hand side). In this case, radiation 
pressure alone does not restrict the mass of a forming star. 

Next, we consider the case of logatropic initial conditions. In this case, the condition 
for radiation pressure to halt the infall can be written in the form 

(3.8a) 

After inserting numbers and rearranging, we obtain 

LM-6 / 5 ~ 1.1 X 104 n4 / 5 p-2/5 , (3.8b) 

where nis defined as before and where we have also defined P _ Po / (3.6 X 10-11 dyne 
cm-2 ); this numerical value for the pressure scale corresponds to the magnetic pressure 
B 2 /81r for a field strength of 30ttG. In order to evaluate this limit, we can once again use 
the main sequence mass /luminosity relationship. 

The mass limit as a function of logatropic initial conditions is shown in Figure 6. 
As before, for a given mass, the region of parameter space to the lower right of the 
curve is excluded, i.e., a star of the given mass cannot form with initial conditions in 

5that region. Also, the quantity LM-6 
/ has a maximum value close to 10\ thus, if the 

pressure scale Po is sufficiently small and/or the rotation rate is sufficiently large, then 
radiation pressure alone cannot restrict the mass of the forming star. Notice also that 
the mass limits for these logatropic initial conditions are generally less restrictive than 
the isothermal case shown in the previous figure. In other words, for the expected range 
of pressure scales, a lower rotation rate is required to allow material to fall to sufficiently 
large radii in the disk to evade the effects of radiation pressure. 

As shown above, the maximum mass of a forming star increases with increasing 
rotation rate n and decreases with increasing pressure of the initial state (given by either 
the effective sound speed a or the pressure scale Po). This behavior has a straightforward 
physical interpretation: When the rotation rate is larger, the angular momentum is larger, 
and infalling material tends to fall to larger radii in order to conserve angular momentum. 
As a result, material does not fall as far down the potential well and cannot be affected 
(as much) by radiation pressure. When the sound speed (or the pressure scale) for the 
initial configuration is larger, the infall rate if is larger, and material falls farther down 
the potential well for a given rotation rate; at these smaller radii, radiation pressure has 
a greater effect. The difference between the isothermal and logatropic initial conditions 
is also clear: The latter case has more material at larger radii in the initial equilibrium 
state and hence the effects of angular momentum conservation are greater for a given 
rotation rate; this effect, in turn, makes the mass limits weaker for the logatropic case. 

3.2 Mass Limit for Spherical Infall 

For comparison, we write down the maximum mass scale for the case of spherical in
fall (no rotation). In this case, the parcels of gas and dust fall inward radially through the 
potential well given by equation [2.6]. The orbits will "turn around" if the coupling term 
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1/ 2ar- becomes larger than unity before the parcel reaches the dust destruction radius 
(where the coupling vanishes). Thus, the condition for radiation pressure to dominate is 
given by the relation 

(3.9) 

where the dust destruction radius is given by equation [3.6J above. Notice that the 
condition for reversing spherical infall is generally much weaker than the condition for 
reversing the rotating infall (because, in general, Rc »rd). Thus, the maximum mass 
scale for the spherical case will be much lower than the more realistic rotating case found 
above. After some rearrangement, we can write this condition in the form 

(3.10a) 

Using numerical values, we find 

L-::::::; > 640. (3.10b)M-

Ihis condition has the following simple physical interpretation. For sufficiently large 
L/M, the specific work done on the infalling gas by the radiation field exceeds the depth 
of the gravitational potential well at Td (see ALS). This value is essentially equivalent 
to that found by Kahn (1974), although he used a higher value for the dust destruction 
temperature (3670 K) and found a corresponding higher value for the maximum mass 
(see also Wolfire & Cassinelli 1987 for further discussion). 

3.3 General M a.!J.!J Limit.!J 

We have shown that the condition for radiation pressure to reverse infall onto a 
star/ disk system is that the turnaround radius RR of the radiation pressure must be 
larger than the centrifugal radius Rc of the rotating infall. In order words, the condition 

(3.11) 

defines the maximum mass of a forming star; the dimensionless constant 1] is of order 
unity, but its exact value must be determined from the true infall solution. In this 
subsection , we use this result to study the effects of varying the different parameters in 
the problem. In particular, we find the maximum mass of a forming star for different 
types of coupling between the radiation field and the infalling gas and for different initial 
conditions in the cloud core. 

We first define a radiation pressure "structure constant" ~R through the relation 

(3.12) 


Thus, ~R is an intrinsically small parameter in the problem. 
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--- --- ---

We want to consider different power-law forms for the radiation pressure force (see 
equation [2.5]). We can write this force in the form 

f = GM tJR (LIM)(rd)q , (3.13)
r2 r 

where q is an arbitrary power-law index which we expect to lie in the range 1/3 :s: q :s: l. 
The effective turnaround radius RR, where radiation pressure dominates gravity, is given 
by 

___ _ ]l/q 
RR = [tJR LIM rd· (3.14) 

In order to isolate the effects of different power-law indices q, we specify the initial state 
to be in logatropic equilibrium so that the centrifugal radius is given by equation [2.15]. 
We can write this radius in the form 

where M, !1, and P are defined as before. The radius Ro is the "natural value" of the 
centrifugal radius. 

For this case, the mass limit can be written in the form 

(3.15) 

(3.16) 

For a given set of initial conditions, the right hand side of this equation is a (generally 
large) constant. The left hand side is an increasing function of the mass, although it 
saturates at sufficiently large masses. As the index q increases, the mass scale given by 
equation [3.16] also increases. In other words, a larger mass star is needed to reverse the 
infall. This result is expected physically: As the index q increases, the effective range 
of the radiation pressure force decreases (see equation [3.13]) and hence radiation has a 
smaller effect on the infall. 

We also want to determine the effects of different initial conditions on the maximum 
mass scale for forming stars. As discussed in §2, we expect the initial equilibrium states 
for star formation to be described by equations of state which are isothermal or softer. 
As a result, the initial mass profile should be of the form M "'-J rb where the index b lies 
in the range 1 :s: b :s: 2. This set of states implies a corresponding set of centrifugal radii 
of the form 

-d
Rc = RoM (3.17) 

where the index d lies in the range 1 :s: d :s: 3 (see equations [2.14] and [2.15]). The 
fiducial radius Ro must be close to the disk radius for solar type stars, i.e., Ro 100 AU. "'-J 

The mass limit for forming stars can then be written in the form 

(3.18) 
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Typically, we expect the right hand side of this constraint to be a large number, f'V 

103 -105 • As the index d increases, the constraint becomes harder to satisfy, i.e., a larger 
mass star is required to reverse the infall. 

4. ADDITIONAL ISSUES 

In this section, we briefly and heuristically discuss several additional issues which are 
relevant to infall collapse solutions of the type considered in this paper. In particular, we 
discuss the leading order effects of m agnetic fields, a critical value of the mass infall rate, 
and the manner in which rotation places additional constraints on the infall solution and 
the corresponding maximum mass scales of forming stars. 

4.1 Magnetic Fields 

Thus far in this discussion, we have ignored the effects of magnetic fields on the 
collapse. However, since molecular clouds are supported on large scales by magnetic 
fields (Zuckerman & Palmer 1974; Shu et al. 1987) and since cloud cores are most 
likely formed through the process of magnetic field diffusion (e.g., Mouschovias 1978; 
Shu 1983; Nakano 1984; Lizano & Shu 1989), magnetic fields should be incorporated into 
the collapse solution simultaneously with rotation and radiation pressure. We can get an 
order of magnitude estimate of the magnetic field strength required to affect the infall as 
follows. The effective strength of the field can be measured by the radius RB at which 
the perturbation in the meridional velocity produced by the Lorentz force is equal to the 
asymptotic free-fall velocity; this radius plays a role in the collapse flow similar to that 
of the centrifugal radius and thus defines the outer radius of a "Pseudodisk" (see Galli 
& Shu 1993ab). The magnetic radius can be written 

(4.1) 

where kB is a dimensionless constant. For the case of an isothermal collapse model, we 
can replace the time variable by the mass, i.e., t = M/ Ad = MG/a3mo. The magnetic 
radius is then given by 

(4.2) 

where mo = 0.975 is the dimensionless mass determined from the isothermal collapse 
solution (Shu 1977). 

Since the magnetic radius plays an analogous role to the centrifugal barrier which we 
have already included in the problem, we can make the following rough argument: We 
expect radiation pressure to reverse the infall for a magnetically collapsing core when the 
turnaround radius RR exceeds the magnetic radius RB. This condition can be written 
in the form 

( 4.3a) 
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where we have included a constant 1] of order unity. After inserting numerical values, we 
can write this result in the form 

(4.3b) 

where we have defined B = B 130/-lG and where we have set 1J = 1 = kB to obtain the 
numerical value. This relation defines the maximum mass of a forming star for a collapse 
flow which includes magnetic fields and radiation pressure. This maximum mass scale is 
a function of the initial conditions, defined here by the sound speed a and the magnetic 
field strength B; the result is shown in Figure 7. 

4.2 Critical Ma33 In/all Rate 

The approximations of this paper become invalid when the mass infall rate becomes 
too small. In order for infall to occur, the mass infall rate must be large enough to 
produce a ram pressure greater than the radiation pressure at the dust destruction front. 
This condition can be written in the form 

MVin > Lie, ( 4.4) 

where Vin is the speed of the infalling material evaluated at the radius rd. This condition 
implies that for sufficiently high luminosity L, the radiation pressure will dominate the 
total ram pressure and will terminate the infall. However, this constraint is not overly 
r~strictive. If we insert numerical values, the critical mass infall rate, denoted here as 
Me, becomes 

1 L5 2Me = 1.4 x 10-10M0 yr- / 4 M- 1 / , ( 4.5) 

where we have used equation [3.6] to evaluate the dust destruction radius rd. In order 
for infall to occur, the mass infall rate must exceed this critical rate. For example, for a 
massive star with M = 100, the luminosity is L = 1.2 X 106 and the critical mass infall 
rate is Me = 6 x 10-4 M0 yr-1. 

4.:1 Rotation and Time Con3traint3 

In obtaining the maximum masses of forming stars (§3), we have assumed that in
falling material which reaches the disk can eventually become part of the star through the 
process of disk accretion. Although disk physics is not completely understood, stability 
considerations suggest that this assumption is reasonable, provided that sufficient time 
is available for disk accretion to occur. In this section we show that the rather short 
lifetime of massive stars places an additional constraint on this process. 

Conservation of angular momentum causes incoming material to fall initially onto 
a circumstellar disk rather than directly onto the star. In the absence of disk accretion, 
this effect shuts off the mass flow onto the star. However, even in the presence of disk 
accretion, angular momentum can eventually shut off the infall because the time scale for 
disk accretion to take place becomes longer than the lifetime of the star. Very roughly, 
the shortest time scale for a disk accretion process is the dynamical time scale at the 
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outer disk edge. For a disk with radius Rc, the centrifugal radius, this time scale is 
roughly given by 

2 R~ (4.6)
7 = GM' 

where we have assumed that the outer disk rotation curve is nearly Keplerian. If we now 
enforce the constraint that this time scale 7 must be shorter than the lifetime 7* of a 
massive star, we obtain a constraint on the centrifugal radius of the form 

(4.7) 

We note that this constraint is necessary but not sufficient. A very massive star can 
significantly disrupt a circumstellar disk and thereby disrupt disk accretion and evolution 
(see Hollenbach et al. 1994). 

We can use the above result to obtain a maximum stellar mass constraint that is 
independent of the initial conditions. We have already shown that in order for radiation 
pressure not to reverse the infall, we must have RR = a 2 < 2Rc. Thus, a star can 
continue to gain mass through the combination of infall and disk accretion only when 
following ordering is satisfied, 

(4.8) 

Thus, when the radiation turnaround radius (RR a 2 ) exceeds the critical radius definedrv 

by the right hand side of this inequality, the ordering constraint cannot be met for any 
set of initial conditions (for any collapse model, isothermal or otherwise). Thus, the 
condition for the maximum stellar m ass can be written in the form 

( 4.9a) 

As usual, we can insert numerical values and rearrange this limit to obtain the form 

(4.9b) 

where we have defined 76 =7*/(106yr). As a reference point, note that 76 ::::::: 3.6 for a 
star with mass M = 100 (Ezer & Cameron 1967). The limit [4.9] represents the largest 
mass accessible to a star that forms within the collapse scenario considered here for any 
set of initial conditions. The left hand side of this equation is (almost) the luminosity to 
mass ratio in solar units; for massive main sequence in the mass range 100 - 200 Mev, 
this ratio is approximately 1-2 x 10\ i.e., slightly smaller than the numerical value on 
the right hand side. Thus, the maximum luminosity to mass ratio allowed for forming 
stars within this scenario is slightly larger than the L / M ratios for very massive stars. 

For completeness, we note that the time constraint considered here can be written 
as a mass limit which is independent of the effects of radiation pressure. For isothermal 
initial conditions, this limit can be written in the form 

(4.10a) 
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or, in terms of dimensionless quantities, 

(4.10b) 

For a given set of initial conditions a and n, the mass of a star that can form through 
the combined process of infall and disk accretion is limited by the constraint of equation 
[4.10]. Notice that this limit only becomes restrictive for high mass stars because of the 
dependence on the stellar lifetime 76. 

Finally, we also note that there exists yet another a related constraint on the mass. 
In the original molecular cloud core, gaseous material at sufficiently large radii is centrifu
gally supported in the initial state. This radius is given by R = a/n for an isothermal 
cloud core. Thus, the total mass that is available to fall inward is given by 

2a3 
M = :F (4.11a)Gn 

where we have used the mass profile for an isothermal cloud core and where we have 
introduced a factor :F to take geometry into account. Gas located in the polar directions 
is not centrifugally supported and can thus fall inwards. We thus obtain 

M = 21:F a~5 n-l 
. (4.11b) 

The reason why these two constraints [4.10] and [4.11] are nearly identical is that the 
time scale for stellar evolution of massive stars (about 106 yr) is about the same as the 
rotation period of a molecular cloud core. 
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5. SUMMARY AND DISCUSSION 


In this paper, we have generalized the infall collapse solution for star formation 
to include the effects of radiation pressure in the inner regime. Our results can be 
summarized as follows: 

[1] We have shown the effects of radiation pressure can be modeled using a modified 
potential. The radiation field is expected to be nearly spherically symmetric and creates 
an outward force. Furthermore, the radial dependence of the radiation pressure force 
is expected to decrease with radius faster than the gravitational force. As a result, the 
effects of radiation pressure can be incorporated using a modified potential of the general 
form 

v"ff = - G~ { 1 - g(r) } , 

where g(r) is a decreasing function of radius r. We have used the approximation 9 
Iar- / 2 which corresponds to assuming that the coupling between the radiation field and 

the gas is proportional to the Planck mean opacity and that the temperature distribution 
has the simple form T 1'-1/2.I"V 

[2] We have found an analytic solution (equation [2.13]) for the zero energy orbits 
of the m odified potential described above (see equation [2.6]). This solution provides the 
velocity field (equations [2.17 - 2.19]) and the density field (equation [2.21]) for infall 
collapse solutions which simultaneously include both angular momentum and radiation 
pressure. 

[3] The infall solution has three important radial scales: The dust destruction ra
2dius rd, the centrifugal radius Rc, and the radius RR = a at which radial orbits are 

reversed by radiation pressure. The characteristics of the orbits and the infall solution 
are 'determined by the ratios of these three radial scales. In order for angular momentum 
to playa significant role in the collapse, the centrifugal radius Rc must exceed the dust 
destruction radius rd. Similarly, in order for radiation pressure to play an important 
role, the turnaround radius RR must exceed the dust destruction radius rd. For the case 
Rc ~ R R, radiation pressure perturbs the orbits so that infalling material hits the disk 
at larger radii; however, the qualitative nature of the infall is similar to the case of no 
radiation pressure. In the opposite limit RR ~ R c , the orbits turn around before they 
impact the disk and infall effectively ceases. 

[4] This infall collapse solution implies a maximum mass scale for forming stars. 
For this solution, the condition for radiation pressure to halt the infall onto the central 

2star/disk system is given by a == RR > 2Rc. The resulting maximum mass scale is 
a function of the initial conditions for protostellar collapse (see Figures 5 and 6). In 
general, the constraints on the masses of forming stars (see equations [3.7] and [3.8]) 
are considerably less restrictive for rotating collapse with radiation pressure than for the 
case of purely spherical infall (equation [3.10]). Our results show that massive stars with 
M* 100 M0 can form for a wide range of initial conditions.I"V 

[5] We have argued that the constraint which limits infall onto the disk, RR > Rc, 
is more robust than its derivation. As a result, we can use this condition to find the mass 
limits on forming stars for a wide r ange of initial conditions and for different assumptions 
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about the coupling of the radiation field to the infalling gas (see §3.3). As the coupling 
of the radiation field falls off more quickly with radius, the effects of radiation pressure 
decrease, and stars of higher mass can form with a given set of initial condi tions. Similarly, 
as the equation of state becomes softer, stars of higher mass can form. These statements 
are quantified by equations [3.16] and [3.18]. 

[6] We have explicitly found orbit solutions for different assumptions about the cou
pling between the radiation field and the infalling gas. In particular, we have considered 
the two limiting cases in which the strength of the coupling decreases as slowly and as 
rapidly as possible (see Appendix B). 

[7] We have discussed the leading order effects of magnetic fields on a rotating 
collapse which includes radiation pressure. The net effect of magnetic fields is to prevent 
material from falling as far inwards (due to the Lorentz force). As a result, radiation 
pressure has le33 of an effect in the presence of magnetic fields. 

[8] We have shown that this scenario for forming massive stars (through the combi
nation of infall and disk accretion) breaks down when the natural time scale of the disk 
becomes longer than the lifetime of a massive star. This effect places a limit on the ratio 
of luminosity to mass (LIM) for forming stars. Although this limit is independent of 
initial conditions, it is not very restrictive: Stars with masses in the range 100 - 200 M0 
are allowed by a small margin (see equation [4.9] and §4.3). 

In some sense, the results of this paper show that radiation pressure has less impact 
on the infall than previous studies (with spherical infall) have implied. The basic physical 
reason for this difference is that previous studies have not simultaneously included both 
angular momentum and radiation pressure. For the typical range of parameters appli 
cable to protostellar collapse, angular momentum plays an extremely important role. In 
particular, the centrifugal radius Re (which determines the size of the angular momen
tum barrier) is much larger than the radius of the star or the dust destruction front. As a 
result, in order for radiation pressure to have a significant impact, it must affect infalling 
material at the (large) size scales of the centrifugal radius Re. 

The results of this paper can be tested observationally, although such tests are diffi
cult. The collapse solution of this paper predicts that the infalling envelopes of forming 
massive stars will be highly evacuated for radii less than the turnaround radius RR, and 
will have the general form as illustrated in Figures 2 and 3. Although the density distri 
bution of circumstellar material is not directly measurable, its form can be deduced (or 
at least highly constrained) by comparing radiative transfer calculations with observed 
spectral energy distributions and emission maps. For high mass stars, some work along 
these lines has already been done (Churchwell, Wolfire, & Wood 1990; see also Wolfire 
& Churchwell 1994). The former study shows that the dust envelope around a newly 

1017formed 06 star is highly evacuated within cm of the star and that the densityrv 

distribution must be fairly flat, i.e., the density must increase inwards less rapidly than 
p r- 1/ 2 • These results are in basic agreement with those of this paper. For this starrv 

4 X 1016(with mass M = 34 M0 and L = 2.5 X 105 L0 ), the turnaround radius RR = cm 
2 X 1018and the maximum centrifugal radius consistent with the stellar lifetime is rv 7;/3 

cm. Thus, a circumstellar envelope with a fairly flat density distribution (p r- 1
/ 

2 
) inrv 
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101 7 _1018the range r = cm arises naturally from our collapse solution for massive stars. 

Another testable prediction of this calculation is the presence of rather large amounts 
of mass (10 - 100 M 0 ) entering the circumstellar disks associated with high mass stars. 
For this collapse solution, most of the infalling material falls directly onto the disk rather 
than directly onto the star. If the disk accretion rate is at all slower than the enve
lope infall rate, then material piles up to form a massive disk. Such massive disks will 
have bright dust continuum emission at millimeter and submillimeter wavelengths. In 
addition, the. ionized (inner) edges of the disks will be bright centimeter wave sources. 
Existing studies have searched for massive disks associated with embedded protostars of 
low and intermediate mass; some studies provide supporting evidence for massive disks 
(e.g., Reipurth et al. 1993; Ho, Terebey, & Turner 1994), whereas other studies suggest 
that massive disks are somewhat rare (e.g., Terebey, Chandler, & Andre 1993; Andre & 
Montmerle 1994). 

Although this paper provides a significant generalization of the protostellar collapse 
problem, many unresolved issues still remain. This work has been limited to gravitational 
potentials which correspond to point masses, whereas realistic systems include both ex
tended components (i.e., disks) and time varying components (i.e, binaries). These issues 
should be addressed in future work. 
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APPENDIX A: ALTERNATE FORM OF THE ORBIT EQUATION 

In this Appendix, we briefly describe another way to express the orbit equation. This 
form is useful for evaluating the various expressions found in the text. We first define 

/1
X= -, (AI) 

/10 

and 
2[(r1/ 2(1 - /12) + a]2A = 0_1 (A2)

- 2(r(1 - /1~) + a 2 • 

Notice that the quantity A = 1 at the turnaround radius a 2 = RR. The orbit equation 
can then be written in the form 

(A3) 

where cos;j is defined by equation [2.12] in the text. The expression [A3] gives /1 as a 
function of the initial value /10. To obtain this form, we solved a quadratic equation 
which formally has two roots; the second root, which corresponds to using a minus sign 
in equation [A3], is not relevant. 
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APPENDIX B: LIMITING CASES FOR 

T HE RADIATION PRESSURE APPROXIMATION 


In this Appendix, we assess the severity of the approximation used in this paper to 
model the effects of radiation pressure. vVe have assumed that the radiation pressure 
can be incorporated using the form for the coupling given by equation [2.2]. In order to 
evaluate this term, we have made two approximations. The first is that we can use the 
Planck mean opacity for the weighted mean opacity KE and that the Planck mean opacity 
is linear in temperature. The second approximation is that we assume the temperature 

1 / 2distribution has the simple power-law form T f"V r- for the radii of interest in this 
1/ 2problem. Thus, the coupling term r- in this approximation. In general, we canf"V 

write the effective potential in the form 

v,,1f = - G~ { 1 - g( r) } (B1) 

where g(r) is an unspecified dimensionless function which describes the radial variation 
of the radiation pressure term relative to the gravitational potential. We expect that the 
function g(r) will vary faster than a constant (g = constant corresponds to a constant 
ratio of radiation pressure to gravity) but will vary less quickly than 9 r-1 The casef"V . 

considered in the text has the intermediate behavior 9 f"V r- 1 / 2 . 

As a start , we can solve for the orbits in the two limiting cases which bracket the 
expected behavior for the radiation pressure term. In order to solve the orbit equation, 
we must solve the integral, 

J dr [ ] -1/2J[g] = !::t.¢> = ,1 /2 
OO 

- 2r(1 - g) -, (B2) 
r r 

where, = Re(l - fL6) is proportional to the square of the specific angular momentum 
of a parcel of gas beginning at angle ()o. In the first case, where the coupling term varies 
slowly as possible, we take 9 = constant and obtain the solution 

( (1 - fL6) = (1 - fLl fLo)(l - g). (B3) 

This solution corresponds to reducing the gravitational constant by the factor (1- g). In 
the opposite limit, where the coupling varies as quickly as possible, we write the function 
9 in the form 9 = ~/r. After some algebra, this solution can be written in the form 

/] 2~ +,1 - cos [¢>(1 + 2~/,)1 2 = r ' (B4) 

where cos 4> = fLl flo. For any case, the orbital behavior should be bracketed by the 
solutions given by equations [B3] and [B4]. 

We now consider another way to look at the problem of different radial dependences 
for the coupling term g(r). If we change variables according to 

2 _ , 
x =-, (B5) 

2r 
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the integral J[g] can be written in the form 

{Xe
J[g] = 2 Jo dx [1 - 9 - x2]-1/2 , (B6) 

where we have taken the limits of integration to be spatial infinity (where r ~ 00 and 
x ~ 0) and Xe = -/2/2, which corresponds to the radial position (r = ,) at which a parcel 
of gas hits the disk in the case of no radiation pressure (g = 0). We want to determine 
the effects of relatively small departures from the case of no radiation pressure. We thus 
take the first variation of the functional J[g] about the "point" 9 = 0 to obtain 

(B7) 

We now consider a class of models for 9 of the form 

(B8) 

where the index n is confined to the range 0 - 2 (which corresponds to the expected 
radial behavior of g(r) as described above). We can evaluate the first variation EJ for the 
various models of the coupling given by equation [B8]. We find that EJ / f3 = 1, J2 - 1, 
and 1 - 1r /4 for the cases n = 0, 1, and 2, respectively. Thus, the exact form of the 
coupling does not greatly change the size of the action for a given value of;3. In other 
words, the functional form of the coupling 9 only changes the value of the orbit integral 
by a factor of two, provided that the coupling function has sufficiently non-pathological 
behavior (such as that given by equation [B8]). 
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FIGURE CAPTIONS 


Figure 1. Effects of radiation pressure on an infalling trajectory in the meridional plane. 
Solid curves show the projected orbits for a given initial angle 80 and for varying values 
of radiation pressure; shown here are curves for Q2 / Re = 0.25, 0.50, and 1.0. The dotted 
curve shows the orbit for the case of no radiation pressure Q = O. The star is located at 
the origin of the coordinates. (a) Initial angle 80 = 7r/ 4 (Po = v'2/2). (b) Initial angle 
80 = 7r/S. 

Figure 2. The "turn around surface" for varying amounts of radiation pressure. The 
dotted curves show the surfaces at which orbits are reversed due to radiation pressure. 
The different curves correspond to varying amounts of radiation pressure given by Q2 / Re 
= 0.25 - 2.0 in increments of 0.25. The solid curves show representative trajectories 
(orbits) with initial angles 80 in increments of 7r/16 (for the case with Q2/Re = 0.75). 

Figure 3. Density profiles including radiation pressure. The various curves show the 
density as a function of radius for angles 8 = 0, 7r/6, 7r /4, and 7r13. The horizontal axis 
shows the radius in units of the centrifugal radius Re; the vertical axis shows the density 
scaled to the value Pc, which is the density distribution from the spherical solution 
evaluated at the centrifugal radius (pc = CR;3/2). (a) Density distribution for Q2 / Re 
= o. (b) Density distribution for a 2 / Rc = 0.5. (c) Density distribution for a 2 / Rc = 
1.0. 

Figure 4. The asphericity function A(r) for varying amounts of radiation pressure. The 
function A is the ratio of the spherically averaged density profile (p) to the density profile 

3obtained for purely spherical collapse, i.e., A = (p) r / 2 C-I. The radius (plotted on the 
horizontal axis) is given in units of the centrifugal radius Re. The different curves are 
for varying amounts of radiation pressure with Q2 / Re = 0, 0.1, 0.3, and 0.5. 

Figure 5. Maximum mass of a forming star for purely isothermal collapse. This figure 
shows the plane of initial conditions, i.e., the sound speed a constitutes the horizontal 
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axis and the rotation rate n constitutes the vertical axis. The labeled curves show the 
m aximum mass of a star that can form with the given values of the initial conditions. 
The region in the upper left part of the diagram has no upper mass limit. 

F igure 6. Maximum mass of a forming star for purely logatropic collapse. This figure 
shows the plane of initial conditions, i.e., the pressure scale Po constitutes the horizontal 
axis and the rotation rate n constitutes the vertical axis. The labeled curves show the 
maximum mass of a star that can form with the given values of the initial conditions. 
The region in the upper left part of the diagram has no upper mass limit. 

F igure 7. Maximum mass of a forming star for an isothermal collapse flow which includes 
radiation pressure and magnetic fields. This figure shows the plane of initial conditions, 
i.e., the sound speed a constitutes the horizontal axis and magnetic field strength B 
consti tutes the vertical axis. The labeled curves show the maximum mass of a star that 
can form with the given values of the initial conditions. The region in the upper left part 
of the diagram has no upper mass limit. 
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