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ABSTRACT 

We study the linear evolution of small perturbations in self-gravitating fluid sys
tems in two spatial dimensions; we consider both cylindrical and cartesian (i.e., slab) 
geometries. The treatment is general, but the application is to molecular clouds. We 
consider a class of equations of state which heuristically take into account the presence 
of turbulence; in particular, we consider equations of state which are softer than isother
mal. We take the unperturbed cloud configuration to be in hydrostatic equilibrium. We 
find a class of wave solutions which propagate along a pressure supported cylinder (or 
slab) and have finite (trapped) spatial distributions in the direction perpendicular to the 
direction of propagation. Our results indicate that the dispersion relations for these two 
dimensional waves have similar forms for the two geometries considered here. Both cases 
possess a regime of instability and a fastest growing mode. We also find the (perpendic
ular) form of the perturbations for a wide range of wavelengths. Finally, we discuss the 
implications of our results for star formation and molecular clouds. The mass scales set 
by instabilities in both molecular cloud filaments and sheets are generally much larger 
than the masses of stars. However, these instabilities can determine the length scales for 
the initial conditions for protostellar collapse. 

Subject headings: hydromagnetics - wave motions - interstellar: molecules - stars: for
mation 
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1 . . INTRODUCTION 


It is widely believed that most current galactic star formation occurs in molecular 
clouds (cf. Shu , Adams, & Lizano 1987 for a review). Observations of these clouds reveal 
rich and complex structure (e.g., Myers 1991; Blitz 1993). In particular, filamentary and 
sheetlike structu res are common, which in turn exhibit a large degree of substructure of 
their own (e.g., Schneider & Elmegreen 1979; de Geus, Bronfman, & Thaddeus 1990; 
Houlahan & Scalo 1992; Wiseman & Adams 1994). Clumps and cores that provide 
locations for new stars to form are often found along filaments and sheets. Thus, the study 
of the evolution of molecular clouds and their substructure is important for understanding 
the processes involved in present day star formation. 

In this paper, we continue our study of the fluid dynamics of self-gravitating systems 
with an emphasis on wave motions in molecular clouds. In previous papers, we have 
shown that linear and nonlinear volume density waves can exist in molecular clouds and 
may be important in determining their substructure (Adams & Fatuzzo 1993; Adams, 
Fatuzzo, & Watkins 1993, 1994). This previous work has focused on the case of one 
spatial dimension (i.e., waves in a uniform medium). In this paper, we generalize our 
treatment to study wave motions in two spatial dimensions. In particular, we study waves 
propagating down the axes of molecular cloud filaments and sheets. 

Most previous work has focused on the case of wave motions and instabilities in uni

form density fluids (from Jeans 1928 to Dewar 1970, Langer 1978, Pudritz 1990). Some 
previous work on wave motions in isothermal molecular cloud filaments and sheets has 
been done; this work begins with clouds in hydrostatic equilibrium and hence nonuni
form density. Many observations show clumps which appear nearly equally spaced along 
filaments (e.g., Schneider & Elmegreen 1979; McBreen et al. 1979; Dutrey et al. 1991); 
this finding has led to the idea that the clumps may arise from a gravitational instability 
with a particular length scale. Less frequently, it has been proposed that the clumps may 
be peaks of density waves which propagate along the filament. In the linear regime, both 
cases are treated by a linear perturbation analysis. Larson (1985) gives a good review of 
the early progress in doing this type of analysis. More recent work includes Nagasawa 
(1987), who performed such calculations for an idealized isothermal filament, including 
an axial magnetic field. Other workers (Nakamura, Hanawa, & Nakano 1991, 1993; Mat
sumoto, Nakamura, & Hanawa 1994) have added further embellishments to this model 
(e.g., rotation). Until now, however, these studies have typically neglected the effects 
of turbulence or non-isothermal equations of state. In this present work, we consider a 
general barotropic equation of state of the form p = P(p). We concentrate this present 
discussion on equations of state which are softer than isothermal, since these may be the 
most relevant for molecular clouds (see §2). 

A secondary motivation for this work is to generalize the current theory of star 
formation, which typically begins with spherically symmetric clouds (e.g., Larson 1972; 
Shu 1977; Terebey, Shu, & Cassen 1984). Models of star formation built upon these 
collapse calculations are reasonably successful and predict spectral energy distributions 
of forming stars that are in agreement with observed protostellar candidates (Adams, 
Lada, & Shu 1987; Butner et al. 1991; Kenyon, Calvet, & Hartmann 1993). However, 
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departures from spherical symmetry are expected to occur on larger spatial scales, and 
the collapse of isothermal self-gravitating sheets (Hartmann et al. 1994) and filaments 
(Inutsuka & Miyama 1993; Nakamura, Hanawa, & Nakano 1995) has begun to be studied. 
The calculations of this paper help determine the length scales for producing initial 
perturbations in molecular cloud sheets and filaments. 

This paper is organized as follows. In §2, we present the basic equations and discuss 
generalizations of the isothermal equation of state. In §3, the equilibrium solutions of 
interest are presented and discussed. In §4, we present a general linear perturbation 
analysis followed by specific results for the filament and the slab for various equations of 
state. We conclude, in §5, with a discussion and summary of our results. 

2. GENERAL FORMULATION 

In this section, we present the basic equations used to describe self-gravitating fluids, 
such as molecular clouds. We also discuss an equation of state of particular interest, i.e., 
a generalized (non-isothermal) barotropic equation of state that heuristically includes the 
effects of turbulence in molecular clouds. 

In dimensionless units (see Appendix A), the equations of fluid dynamics with self
gravity can be written in the form 

apat + \7 . (pu) = 0 , (2.1) 

au 1at + (u· \7)u + p\7p + \77jJ = 0, (2.2) 

\7 2 7jJ = p, (2.3) 

where p is the density, u is the velocity, and 7jJ is the gravitational potential. The pressure 
p is taken to have a barotropic form, i.e., the pressure is a function of the density only, 

p = P(p). (2.4) 

Most previous theoretical studies of molecular clouds have assumed an isothermal 
equation of state, p = c;p, where C s is the isothermal sound speed. We generalize this 
equation of state by adding a term which attempts to model the "turbulence" observed 
in molecular clouds (see, e.g., Lizano & Shu 1989). The equation of state takes the form 

p = c;p + Po log(p/ p) , (2.5) 

where Po is a constant, which may be determined empirically, and p is an arbitrary ref
erence density (see Appendix A). In this paper, we shall always take our dimensionless 
variable p to be 1 at the center of equilibrim configurations, so that p = pc, the cen
tral density. The logarithmic nature of the turbulence term arises from the empirical 
linewidth-density relation .6v ex p-l/2 (Larson 1981; Myers 1983; Dame et al. 1986; 
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Myers & Fuller 1992). After transforming to dimensionless variables, this equation of 
state can be written 

p = P(p) = p + li:log(p), (2.6) 

where we have defined 
_ / 2 A 

Ii: = Po CsP, (2.7) 

which we refer to as the turbulence parameter. Typically, we are interested in clouds with 
densities of about 1000 cm-3 and thermal sound speed Cs 0.20 km/s. Observationalrv 

considerations suggest that po ranges from 10 to 70 picodyne/cm2 (Myers & Goodman 
1988; Solomon et al. 1987). Thus, molecular clouds are expected of have values of the 
turbulence parameter in the range 6 < Ii: < 50. In this work, we want to include both 
the isothermal limit and the pure "logatropic" limit where the turbulence dominates, so 
we use the expanded range 0 :S Ii: < 00. 

Before leaving this section, we note that there is some theoretical motivation for 
considering equations of state which are softer than isothermal. It has been shown that 
when a molecular cloud begins to collapse (on large spatial scales), a wide spectrum of 
small scale wave motions can be excited (Arons & Max 1975; see also Elmegreen 1990). 
Additional energy input and wave excitation can also be produced by outflows from 
forming stars (Norman & Silk 1980). Because the clouds are supported .by magnetic 
fields, these wave motions generally take the form of magnetoacoustic and Alfven waves. 
In any case, these small scale wave motions have velocity perturbations which vary with 
the gas density in rough agreement with the observations described above. These wave 
motions can be modeled with an effective equation of state which is softer than isothermal 
(see Fatuzzo & Adams 1993; McKee & Zweibel 1995). 

3. STATIC EQUILIBRIUM 

In this section, we present and discuss the static equilibrium solutions that we will 
use in our subsequent linear perturbation analysis. We consider the unperturbed state 
of the system to be one of hydrostatic equilibrium (u == 0). Thus, the unperturbed state 
must satisfy the usual equation, 

1 2 1
-'\7 p--'\7p·'\7p+p=O, (3.1 ) 
p p2 

where we have combined the force equation [2.2J and the Poisson equation [2.3J. In the 
following subsections, we find equilibrium solutions for both cylindrical and cartesian 
geometries. 

3.1 Hydrostatic Equilibrium for The Filament 

For the filament, we adopt cylindrical coordinates (r, cjJ, z) and assume azimuthal 
symmetry. Then the equilibrium equation becomes 

2
d po 1 dpo [P I1 

(po) 1 ] (dPO)2 P6 (3.2)
dr2 + -;. dr + P'(Po) - po dr + P'(po) = 0, 

4 




where the primes denote derivatives with respect to density, 

P'(Po) == [dp/dp]p=po , 

and so on. In the isothermal case p = P(p) = p, the equilibrium solution is well known 
(Ostriker 1964) and has the simple form 

2)-2Po (r) = (1 + r /8 (3 .3) 

For equations of state which include turbulence (I'\, -=1= 0), we find the solutions numerically. 

In Figure 1, we show the cylindrical static equilibrium solutions for various equations 
of state, i.e., for various values of the turbulence parameter 1'\,. Figure 1 shows two inter
esting trends. The first is that the filament becomes wider as the turbulence contribution 
is increased. This behavior is expected and simply reflects the fact that greater pressure 
can support more mass. The second trend is that the shape of the density profile also 
changes as the turbulence parameter increases. In particular, the asymptotic behavior 
of the isothermal equilibrium and that of the turbulent equilibria (I'\, > 0) have different 
forms. For large radii r, the isothermal equilibrium profile behaves like r-4 (see equation 

1[3.3]), whereas the turbulent equilibria behave as r- . It follows that the mass per unit 
length of the isothermal filament is finite, but that of the turbulent filament is infinite. 
For the isothermal equilibrium, the mass per unit length f--L of the filament is given by 

ex) (,,=1 )-2
271"r 1 + ~ r2 dr =871" . (3.4) 

The corresponding integral for any equation of state with turbulence (I'\, -=1= 0) diverges. In 
fact, the mass per unit length of a gaseous filament in hydrostatic equilibrium diverges 
for any equation of state softer than isothermal (see Appendix B). In practice, however, 
molecular cloud filaments have an outer boundary (at a finite radius R) determined by 
either pressure equilibrium with the background interstellar medium or by tidal effects. 
We expect the radius R to be large enough that the outer boundary condition has little 
effect on the modes calculated in this paper. In any case, although the mass per unit 
length of these filaments does not actually diverge, it does become much larger than 
that of the isothermal case by a factor of '"" R ~ 50. These results on mass scales have 
important implications for star formation, as we discuss in §5. 

3.2 Hydrostatic Equilibrium for The Slab 

For the slab, we use cartesian coordinates (x, y, z) and assume translational symme
try in the y- and z-directions. The equilibrium equation now becomes 

(3.5) 

For the isothermal case (p = p), this equation can be integrated analytically to obtain 
the well known solution (Spitzer 1942; Shu 1992) 

Po = sech2 (x/h) (3.6) 
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Again, for equations of state including turbulence, we find the equilibrium density profiles 
numerically. 

In Figure 2, we show the profile of slab equilibria for various equations of state. As for 
the cylindrical case considered above, the density profiles become wider and change their 
shape as the turbulence parameter K, increases. In this case, the isothermal equilibrium 
density profile has an exponential fall off at large distances (see equation [3.6]) and, hence, 

2has a finite surface density (J = 23
/ . When turbulence is included, the fall off is much 

slower. For the purely logatropic limit, the density profile has its asymptotic form given 
by the following transcendental equation, 

2p2 log[1/p] = 2" 
1 

. (3.7) 
x 

Although this density profile falls slightly faster than 1/x, the mass per unit area still 
diverges. 

As in the cylindrical case considered above, a qualitative difference exists between 
the isothermal equilibrium configuration and that of the purely logatropic (turbulence 
dominated) case. In the case of the filament, however, the mass per unit length diverges 
for all equations of the state which are softer than isothermal. In contrast, for the 
hydrostatically supported slab, the mass per unit area (the surface density) is finite for 
all equations of state except the softest case of the logatrope (see Appendix C). 

The equilibrium configurations with the turbulence parameter K, ~ 10 are the most 
physically realistic. For the purely isothermal case, both the cylindrical equilibrium 
(where p '" r- 4 at large radii) and the slab equilibrium (where the density falls off 
exponentially at large x) are too narrow compared with actual molecular cloud structures. 
The thicker equilibria resulting from including turbulence (K, 1= 0) more closely resemble 
true clouds. However, the mass per unit length of the filament and the surface density 
of slab both diverge for the K, 1= 0 cases. In practice, the cloud structures have outer 
boundaries where the internal cloud pressure drops to that of the ambient interstellar 
medium. Thus, the mass per unit length (and surface density) are large) but finite in 
practice. We discuss this issue further in §5. 

4. PERTURBATIONS AND WAVE SOLUTIONS 

In this section, we study perturbations about the hydrostatic equilibrium density 
distributions. After presenting the basic perturbation analysis (§4.1), we present results 
for clouds with both cylindrical (§4.2) and cartesian (§4.3) geometries. 

4.1 General Perturbation Analysis 

We now consider perturbations about the basic equilibrium states, po, found in 
the previous section. We let the subscript '1' denote first order quantities and find the 
following first order equations of motion for this system: 

(4.1 ) 
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aUI ·1 PI 
- + -\1PI - "2\1po + \1'lj;I = 0, (4.2)
at po Po 

\12'lj;I = PI . ( 4.3) 

In order to eliminate the velocity UI, we multiply the first order force equation [4.2] by 
po and take the divergence. We then use the time derivative of the continuity equation 
[4.1] to remove the velocity from the problem. We thus obtain the first order equation of 
motion 

a2 
PI 2 PI 2 1 PI ~ ~~/, 0 --- + \1 PI - -\1 Po - -\1PI . \1po +"2\1po· \1po + POPI + v po· v If/I = ,(4.4)at2 po po Po 

where we have used the Poisson equation in obtaining the penultimate term. After some 
rearrangement, this first order perturbation equation becomes 

a2 
PI 2 1--a2 + \1 PI - -\1Pl· \1po +2pOPI + \1po· \1'lj;I = o. ( 4.5) 
t Po 

We are interested in finding solutions to equation [4.5] which correspond to waves 
propagating down the center of a cylinder or along the center of a slab. We choose the 
i-direction to be the direction of wave propagation for both cases. On the other hand, 
the unperturbed equilibrium state (as given by the solution to equation [3.1]) will be a 
function of only the perpendicular coordinate (denoted as r for the cylindrical case and x 
for the Cartesian case). Notice that the coefficients appearing in the differential equation 
[4.5J depend only on the perpendicular coordinate. The equations are linear (in PI and 
'lj;I) and, with some care, can be separated (see Appendix D), i.e., we take 

PI == J(w)g(z)h(t) (4.6) 

'lj;I == ~(w)g(z)h(t), (4.7) 

where we have used w to represent the perpendicular coordinate (either x or r, depending 
on the geometry). We can separate the Laplacian operator by defining 

(4.8) 


where we have defined a perpendicular Laplacian operator \1i. For the case of cartesian 
coordinates, this operator is simply 

( 4.9a) 

whereas for cylindrical coordinates it takes the form 

a2 1 a 
\1i = a 2 + - -a . (4.9b)

r r r 
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As shown in Appendix D, we obtain traveling wave solutions in the i-direction, i.e., 

h(t) = hoe±iwt , (4.10) 

g(z) = goe±ikz , ( 4.11) 

where ho and go are constants. The equations for the dynamics in the remaining perpen
dicular direction take the form 

vif + [2 PI1 
(PO) _ ~] dpo df + [P'(PO)]-l dpo dcjJ + V(w)f = k 2 f , (4.12)

P'(po) po dw dw dw dw 

(4.13) 

where we have defined a function V: 

V( "") =[PI(pO)]-l { w 2 + 2po + pilI (Po) (7:; )2 + pll (po)V'ipo } . (4.14 ) 

The problem is made complete by specifying the boundary conditions. We take 

df dcjJ 
f = 1, dw = 0, dw = 0, at w = 0; (4.15) 

dcjJ
f = 0, dw = 0, at w = 00. ( 4.16) 

As formulated above, these equations constitute an eigenvalue problem with k 2 as the 
eigenvalue. There is an additional parameter in the problem, namely w 2 . In practice, 
however, we choose the value of the wave number k and find the value of the parameter 
w2 that makes k2 an eigenvalue. 

As is usual in eigenvalue problems, there can be multiple eigenvalues k2 correspond
ing to eigenfunctions with different numbers of nodes. Although w 2 is not strictly an 
eigenvalue, it can similarly have multiple values corresponding to eigenmodes for fixed 

2k2 . When the points (k, w ) that correspond to eigenmodes are plotted, they naturally 
fall onto a set of curves that are the branches of the dispersion relation. We shall always 
b e interested in the branch that has the smallest w 2 and corresponds to eigenfunctions 
with the fewest nodes. Note that it is not necessary for all modes on a particular branch 
t o have the same number of nodes. As we shall see below, the dispersion relation we 

2calculate has a minimum of w occuring at non-zero k, so that near this minimum there 
are w 2 values that correspond to two values of k; modes to the right of the minimum have 
no nodes, while modes to the left have one node. One interesting result of this behavior 
is that one can determine whether the k = 0, w 2 = 0 mode is on the lowest branch by 

2counting the number .of nodes in its eigenfunction (k = 0, w = 0 must be an eigenvalue 
in any case where there are a continuous set of equilibrium solutions with different central 
densities). If this mode has more than one node, then it is not on the lowest branch of the 
dispersion relation and there must exist at least one other mode with k = 0 and w 2 < o. 
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Among the cases we consider, this situation obtains only for a filament with a turbulent 
equation of state (see Figure 3). 

Before obtaining numerical solutions for this problem, we want to gain some basic 
intuition. We thus conceptually consider the simplest case in which the second and third 
terms in equation [4.12] are small, i.e., the equation of motion reduces to the form 

(4.17) 


This equation is, of course, simply the time independent Schrodinger wave equation 
(SWE). Although the quantity - V plays the role of the potential, the analogy is not 
exact because an additional parameter w 2 appears in the definition [4.14] of V. We are 
interested in solutions for which the wave function f decays to zero at large distances; 
these solutions correspond to bound states in the problem. We stress that this SWE 
analogy cannot be taken too far and that one must solve the full equation (as we do 
below); however, this analogy does provide a means of visualizing the dynamics of the 
problem. 

Another way to conceptualize the dynamics is to consider the molecular cloud fil
ament (or slab) to be somewhat like a wave guide. Modes with positive k2 and w 2 

correspond to waves which propogate in the ±i-direction but are otherwise trapped in 
the core of the filament or slab; in other words, the waves do not propagate in the per
pendicular direction. This situation is analogous to light traveling in a fiber optic cable; 
trapping of the waves occurs due to total internal reflection, which in our case is a result 
of the change in the index of refraction that accompanies the change in density. Modes 
with negative w 2 correspond to linearly unstable perturbations. Again, this analogy is 
not exact, but it does provide a means of interpreting the problem. 

4.2 Wave Propagation and Instabilities along a Filament 

In this section, we consider waves propagating along filamentary molecular cloud 
structures. In particular, we adopt a cylindrical coordinate system (r, ¢;, z) and assume 
axial symmetry. The waves are propagating along the axis of the cylinder in the i
direction. We take w = r and the perpendicular Laplacian Vi is gIven by equation 
[4.9b]. 

After adopting a particular equation of state and a particular value of the wave 
number k, both the eigenfunctions, fk(r) and ¢;k(r), of equations [4.12] and [4.13] and 
the corresponding parameter w~ are determined numerically using a relaxation method 
(see Appendix E). By varying the values of the wave number k, we can construct a 
dispersion relation for each equation of state. Here, we focus on equations of state of 
the form given by equation [2.6]; we thus have a one parameter family of equations of 
state (where we can vary the turbulence parameter K). The limit of vanishing turbulence 
parameter K ~ 0 corresponds to a purely isothermal equation of state. The opposite 
limit, K ~ 00, corresponds to a purely logatropic equation of state. The intermediate 
range K 6 - -50 is the most physically relevant.rv 

In Figure 3, we show the dispersion relations for various equations of state. We 
have scaled the wave number to account for the difference between the isothermal sound 
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speed, C s , which was used in the transformation to dimensionless variables, and the 
effective sound speed at the center of the filament, 

Ceff = [dp/dp]~~~ = (1 + K,)1/2 . 

Notice that for values of K, larger than about 3, the dispersion relation quickly converges 
to the limiting case of pure turbulence, which corresponds to K, -+ 00. We also note 
that our dispersion relation for the pure isothermal case agrees well with that obtained 
previously (Nag,asawa 1987) in a similar calculation. 

For all equations of state considered here, there exists a region of instability, 0 < 
k < kcrit , where w~ < O. For these unstable modes, the magnitude of IWk I determines 
the growth rate. Since each dispersion relation exhibits a minimum value of w 2 , say 
at k = kfast , there exists a fastest growing mode for each given equation of state. The 
wavelength of this fastest growing mode is simply Afast = 27r / kfast . This wav~length 
represents the length scale of the perturbations which grow the fastest; thus, we anticipate 
that clumps forming along a filament due to gravitational instability will have a length 
scale close to Afast. For example, for the isothermal filament we find 

-1/2 
CsAisotherm rv 0 777 c pc (4.18a)

fast ~. p [O.20km/s] [4 X 1O-20g / cm3 ] ' 

where Cs is the thermal sound speed, and Pc is the equilibrium central density. For the 
purely logotropic case, 

]1/2[ ]-1
,log 1 95 P Pc
Afast i=:::: • pc 

A 

2 3 (4.18b) 
[ 4 x 10-11 dyne/cm 4 x 10-20g/cm 

Unlike in the isotheqnal case, for the turbulent filament there is a timescale associ
ated with collapse of the filament as a whole. This timescale can be calculated using the 
growth rate for the k = 0 mode (see Figure 3). Since this timescale is generally larger 
than that of the fastest growing mode, we shall not be concerned with this issue here. 

In the isothermal case, this length scale of fragmentation leads to a mass scale for 
the fragmentation, since the mass per unit length of the equilibrium state is finite. We 
find the fragmentation mass scale to be 

,isotherm rv M [ C s ] 3 [ Pc ] -1/2 (4.19)Mfrag = f-lAfast rv 14.5 ev 0.20 km/s 3'
4 X 10-20 g/cm 

where Pc is the central density of the isothermal equilibrium. Notice that this mass scale 
is still much larger than that of a typical star (M* 0.5 Mev). The central densityrv 

we have used here corresponds to a number density n 104 cm-3, a typical value forrv 

the high density regions of molecular clouds (see, e.g., the reviews of Blitz 1993; Myers 
1991). Notice also that we expect the thermal sound speed to be greater than (or equal 
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to) 0.20 km/s and hence this estimate represents a lower bound. Next we note that a 
corresponding mass scale cannot be constructed for the cases which include turbulence 
because the mass per unit length of the equilibrium state is formally infinite. Thus, the 
mass scales set by the fragmentation of molecular cloud filaments are generally much 
larger than the masses of stars. 

A sample of the density eigenfunctions fk(r) is shown in Figure 4. They behave 
qualitatively as expected. The profiles are localized radially with widths roughly compa
rable to those of the equilibrium profiles, Po. Notice that the shape of the eigenfunctions 
is nearly independent of the wave number k. In particular, both unstable modes (those 

2with w2 < 0) and propagating modes (those with w > 0) have nearly the same shape. 
However, eigenfunctions with k < k fast have one node while those with k > k fast are 
positive definite. The eigenfunctions are only weakly dependent upon the equation of 
state (compare Figures 4a and 4b). 

Cross-sectional images of perturbed filaments are shown in Figure 5. The images 
consist of isodensity contours and an array of arrows which indicate the velocity field in 
just half of an image. The fastest growing mode for the isothermal filament is depicted 
in Figure 5a; a propagating isothermal wave, in Figure 5b. Figures 5c and 5d show the 
corresponding perturbations for a filament with turbulence (K, = 10). Notice the distinct 
phase relationships between the density and velocity field for the propagating and the 
unstable modes (compare Figures 5a and 5b or Figures 5c and "5d). Also, notice the 
difference in shape of the clumps between the isothermal and the turbulent filaments 
(compare Figures 5a and 5c or Figures 5b and 5d). 

Measuring the actual physical spacing, Afast, of clumps along a molecular cloud 
filament is rather difficult, since the uncertainty in the distance and orientation of the 
cloud is often large. A more easily measured quantity is the ratio 

F = Afast (4.20) 
RHWHM' 

where RHWHM is the half-width at half-maximum of the filament. The dependence of 
this ratio on the turbulence parameter, K" is shown in Figure 6. Notice that the ratio 
increases as the turbulence parameter is increased. The ratio F changes about 29% 
from the isothermal case to the limiting turbulent case, where p = log p. This ratio also 
provides a measure of the elongation of the clumps (compare Figures 5a and 5c), though 
such a physical feature of the clumps may evolve significantly once the perturbation 
becomes non-linear. 

In addition to increasing the length scale, turbulence also leads to an increase in the 
growth rate of the fastest growing mode. This finding is indicated by the the fact that, 
as the turbulence parameter K, increases, the minimum value of w2 (k) in the dispersion 
relation decreases. The dependence of the rate of growth IWfast I on the turbulence pa
rameter K, is shown in Figure 7. The growth rate for the limiting turbulent (logotropic) 
case is about 23% larger than for the isothermal case, where it is given by 

Iw~~~:herml ~ 6.26 x 10-14 sec-1 [ Pc J1/2 (4.21 ) 
4 x 10 - 20 g / cm 3 
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The corresponding time scale is given by t '" l/w '" 5 X 105 yr. 

The dispersion relation obtained here can be compared to results from other theoret
ical models. One alternate way to model wave propagation along a filament is to consider 
one-dimensional waves in a uniform medium with a modified gravitational force that falls 
off with distance. (Normally, one-dimensional perturbations in a uniform medium pro
duce gravitational forces that are independent of distance, while axial perturbations on 
a filament interact gravitationaly with forces that fall of roughly as the inverse square 
of the distance for large separations.) Yukawa potentials provide one means of realizing 
this behavior (Adams et al. 1994). In particular, we write the Poisson equation in the 
generalized form 

82 'ljJ _ 2 

8x 2 - m 'ljJ + p. ( 4.22) 


The Green's function for the operator 8 2 
/ 8x 2 

- m 2 has an exponential fall off and hence 
produces an exponential fall off in the gravitational force between (one-dimensional) point 
masses. The value of the parameter m determines the effective range of the force. The 
advantage of using such an approximation is to simulate the higher dimensional behavior 
of gravity while retaining a one-dimensional problem. As a result of this simplification, 
many nonlinear solutions and results can be found analytically for this model (see Adams 
et al. 1993, 1994). 

The dispersion relation for linear waves can be easily obtained in this theory. In 
dimensionless units, we obtain the form 

(4.23) 

In Figure 8, we show an analytic fit of this functional form to the numerical dispersion 
relation for the isothermal cylinder. We note that the Yukawa dispersion relation has the 
correct general form. However, the curvature of the function is not correct in the limit of 
small wave number k ~ 1. This result is expected because the Yukawa theory produces 
an exponential fall-off to the gravitational force at large distances (small wave numbers) 
and hence does not provide a good quantitative approximation. The Yukawa theory does 
provide a good approximation to the true two-dimensional theory at intermediate and 
large wave numbers, k ~ kfast . 

4.3 Wave Propagation and Instabilities in the Slab 

In this section, we consider waves propagating along molecular cloud slabs. Adopting 
a cartesian coordinate system (x, y, z), we assume that the cloud fluid is in hydrostatic 
equilibrium in the x-direction and consider wave propagation in the i-direction. The 
third (y) dimension is mathematically suppressed, and we are thus implicitly assuming 
that the slab has an infinite extent in the y-direction. Here w = x, and hence the 
perpendicular Laplacian Vi is given by equation [4.9aJ. The problem is solved using the 
same numerical technique as used in the cylindrical case (again, see Appendix E). 

The resulting dispersion relations for waves propagating through molecular cloud 
slabs are shown in Figure 9, where we have again scaled the wave number by the effective 
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sound speed Ceff. Notice that these dispersion relations are similar in form to those of 
the filament discussed previously (compare Figures 3 and 9; for the isothermal case, 
see also Ledoux 1951, Simon 1965, and Larson 1985). As in the case of filaments, the 
dispersion relations for slabs exhibit a region of instability. Also, the rate of growth Iw I 
of the instability achieves a maximum at a finite length scale, and decreases as the wave 
number k ~ 0 (i.e., as the wavelength ). ~ (0). Unlike the turbulent filament, however, 
the turbulent slab is marginally stable to perturbations of infinite wavelength. Thus, we 
need not be concerned that the turbulent slab-like cloud will collapse as a whole before 
finite instabilities grow significantly. We also note that the dispersion relations we have 
calculated are very similar (up to a scale factor) to that of an infinitesimally thin slab 
(see, e.g., Larson 1985); for a turbulent thin slab, the dispersion relation is given by w 2 

= (1 + K-)k 2 
- (jk/2. 

For perturbations of the slab, we find that the wavelengths of the fastest growIng 
modes for the isothermal and purely logotropic cases are given by 

-1/2 

Cs).isotherm "'-' 0 672 c Pc (4.24a)
fast ~. p [0.20 km/s] [ 4 X 10-20g/ cm3 ] ' 

~ ] 1/2 [ ] -},log 1 32 P pc
A fast ~ . pc 2 3 (4.24b)

[ 4 X 10-11 dyne/cm 4 X 10-20 g/cm 

For any equation of state stiffer than the logatropic case, a finite fragmentation mass 
scale exists for molecular cloud slabs or sheets. This mass scale is simply given by 

2 
).fast 

M frag = 7r -2- (j ( 4.25) 
( ) 

where (j is the surface density of the slab and where "fast is the wavelength of the fastest 
growing perturbation, and kfast is the corresponding wave number. For the isothermal 
slab we find 

3 [ ] -1/2Cs pc
Mfra ~ 21.1 MG ( 4.26) 

g [0.20km/s] 4xlO-20g/cm3 

Notice that, once again, this mass scale is much larger than that of a typical star
by a factor of 40 for a star of 0.5 MG. For equations of state softer than isothermal, 
this mass scale becomes even larger. In the logatropic limit, the surface density of the 
equilibrium configuration diverges and hence the mass scale of fragmentation becomes 
formally infinite. 

5. DISCUSSION 

In this paper, we have studied wave motions and instabilities in two spatial dimen
sions for self-gravitating astrophysical fluids. Although many of the results are general, 
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the application to molecular clouds is our primary motivation. We have accounted for the 
presence of turbulence in molecular clouds by adding a logarithmic term to the equation 
of state. We have found the hydrostatic equilibrium states and studied wavelike pertur
bations. Specifically, we have numerically determined the dispersion relations and the 
structure of the perturbations. 

5.1 Summary of Results 

We have found several results which describe wave motions in molecular clouds and 
which add to our general understanding of fluid dynamics in self-gravitating physical 
systems. These results can be summarized as follows: 

[1] We have studied the equilibrium configurations for self-gravitating filaments with 
various equations of state. The equilibrium configuration of the isothermal filament has 
a finite mass per unit length, whereas the mass per unit length diverges for any equation 
of state softer than isothermal (see Appendix B). 

[2] We have also studied the equilibrium configurations of molecular cloud sheets with 
varying equations of state. In this case, the surface density (mass per unit area) is finite 
for all equations of state stiffer than that of the logatropic limit (see Appendix C). The 
surface density for the logatropic case diverges very slowly (slower than logarithmically). 

[3] We have found the dispersion relations for waves in self-gravitating filaments and 
slabs. For perturbations of both the filament and the slab, the dispersion relations have 
the same general form for all equations of state considered here. The dispersion relations 
show that the square of the frequency w 2 is always positive at large wave numbers k, 
negative for small wave numbers, and obtains a minimum value for some intermediate 
wave number; this minimum implies the existence of a fastest growing wavelength. As 
the level of turbulence increases (i.e., as the equation of state becomes softer), both the 
length scale and the growth rate of the fastest growing instability increase. 

[4] The ratio of the length scale of the fastest growing instability to the size (width) 
of the filament also increases as the turbulence parameter increases. This ratio grows by 
roughly 30% from the purely isothermal case to the purely turbulent limit (K, ~ (0). In 
the linear regime, this effect also implies that the shape or profile of the clumps will be 
elongated by the presence of turbulence. 

[5] We have demonstrated that unstable and propagating perturbations show a qual
itative difference in their phase relationships between the density field and the velocity 
field. In other words, the velocity fields of the perturbations show a different form for the 
propagating and unstable cases (compare Figures 5a and 5b with 5c and 5d, respectively). 
Thus, the velocity field can be used to determine whether molecular cloud structure is 
best described by wave motions or instabilities (see §5.2). 

[6] We have compared the dispersions relations obtained from these two-dimensional 
calculations with those obtained from one dimensional "charge density" theories (Adams 
et al. 1994). These latter theories were developed to provide model equations which 
mimic the effects of higher dimensions while retaining the mathematical simplicity of 
a one dimensional problem. The dispersion relations for the filament are in reasonable 
agreement with those obtained from the charge density theory using a Yukawa potential; 
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this agreement supports the possibility that charge density theory will provide useful 
results for nonlinear waves in molecular cloud filaments. 

[7] We have found the mass scales associated with the fastest growing instabilities 
in molecular cloud filaments and slabs. For filaments, the mass scale of fragmentation 
is given by equation [4.19] for an isothemal equation of state; the corresponding mass 
scale diverges for any softer equation of state. For the slab geometry, the mass scale of 
fragmentation is given by equation [4.26] for the isothermal case. This mass scale becomes 
larger as the equation of state becomes softer and diverges for a logatropic equation of 
state. In general, the mass scales set by the fastest growing modes in both filaments and 
slabs are much larger than the mass of a typical star. 

The above results have important implications for the theory of star formation. In 
the current theory (cf. Shu et al. 1987), stars determine, in part, their own masses 
through the action of powerful winds and outflows. This theory thus assumes that the 
process of star formation has an unlimited (infinite) supply of material. In practice, the 
true supply of material will not be infinite, but will be much larger than the masses 
of the forming stars. However, star formation in isothermal molecular cloud filaments 
does have a finite mass scale, defined by the wavelength of the fastest growing instability 
and the mass per unit length (see equation [4.19]). Molecular clouds filaments which 
include turbulence have an infinite mass per unit length and hence an infinite supply 
of mass. Thus, the process of star formation can, in principle, be qualitatively different 
in isothermal filaments and those with softer equations of state. However, even in the 
isothermal case, the mass scale set by fragmentation is much larger than the mass of a 
typical star. 

For the case of molecular cloud sheets, the surface density a is essentially finite 
for all cases of interest. Since the analysis of this paper shows that such sheets will be 
unstable for perturbations with finite length scale '\, a finite mass stale M ,\2a forrv 

perturbations (star formation) always exists (see, e.g., equation [4.26]). However, this 
mass scale is generally much larger than the mass scale of forming stars. Thus, the idea 
that stars, in part, determine their own masses remains applicable for star formation in 
molecular cloud sheets. 

Although the instabilities studied in this paper do not directly determine the mass 
scales for star formation in molecular cloud filaments and sheets, they do determine (in 
part) the initial conditions for protostellar collapse. Thus, the results of this paper can be 
used as a starting point for collapse calculations in both cylindrical (Inutsuka & Miyama 
1993; Nakamura et al. 1995) and sheetlike geometries (Hartmann et al. 1994). 

5.2 Comparison with Observed Molecular Clouds 

The waves and instabilities studied here can be compared with observations. In 
particular, the theory makes definite predictions that can be used to help understand 
molecular cloud structure. 

The velocity field of the perturbations can be used to determine whether molecular 
cloud filaments (or slabs) contain propagating wave motions or instabilities. We have 
shown that the structure of the velocity field for propagating waves is strikingly different 
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than that of growing instabilities (Figure 5). For unstable (growing) perturbations, the 
velocity vectors point inward toward the peak of the density field. For stable (propagat
ing) modes, the velocity vectors do not converge at the peak of the density distribution. 
Although true observed velocity fields will look somewhat different than these figures 
due to projection effects, the basic difference between propagating and unstable modes 
should remain. 

Observations should be able to determine the degree to which molecular cloud fila
ments depart from the purely isothermal model. In other words, we should be able to to 
determine which equation of state best describes molecular cloud filaments. The initial 
equilibrium configuration is quite different for the isothermal and non-isothermal equa
tions of state used here. At large radial distances, the density distributions have the form 
p rv ,-4 for the isothermal case and p ,-2/(2-r) for softer equations of state with therv 

form P pr. For the purely logatropic limit, p rv ,-1. Thus, the difference between anrv 

isothermal model and a logatropic model (the difference between p rv ,-4 and p rv ,-1) 
should be easily determined from observations. 

Furthermore, the structure and appearance of the perturbations depend on the over
all level of turbulence. As the level of turbulence in the filament increases (i.e., as the 
turbulence parameter K, increases), the ratio of the clump spacing to the filament width 
(Figure 6) increases. The growth rate of the fastest growing instability (Figure 7) in
creases as well. Finally, turbulence increases the elongation of the clumps (Figure 5). 
The clump spacing, the filament width, and the degree of elongation of the clumps should 
all be observable with existing telescopes. 

The most quantitative analysis of periodic structure in filaments has been provided 
by Schneider & Elmegreen (1979) and Dutrey et al. (1991). More is needed. The models 
developed here and other similar efforts produce results which will allow such observa
tional work to determine the significance of turbulence and other physical processes in 
molecular clouds. 

5.:3 Directions for Future Work 

Although we have begun to study wave motions in two dimensions in molecular 
clouds, many directions for future work remain. This future work includes both the
oretical and observational studies. The observational work should test the theoretical 
predictions outlined in the previous subsection. In particular, measurements of the ve
locity fields in molecular cloud filaments will be particularly useful. 

The turbulence observed in molecular clouds is often assumed to arise from small 
scale magnetohydrodynamic motions, such as Alfven waves, within the clouds. In this 
work, we included the effects of such turbulence by incorporating a term in the equation 
of state which represents the efffective pressure due to turbulence. It is widely believed, 
however, that the large scale, time-averaged magnetic field also provides a significant 
fraction of the pressure support for molecular clouds. In fact, other studies (e.g., Naka
mura et al. 1991, 1993) have studied waves and instabilities in the presence of magnetic 
fields, but have not included the effects of turbulence. In the future, both aspects of 
t he problem (large scale magnetic fields and small scale turbulence) should be considered 
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simultaneously. 

Also, in future work, it will be interesting to investigate the behavior of perturbations 
assuming a wider variety of equations of state. For example, while we have focused here 
on equations of state that are softer than isothermal, stiffer equations of state should also 
be examined. For these equations of state, the equilibrium configurations of filaments 
have a finite radius, outside of which the density is zero. This type of structure can 
lead to qualitatively different types of perturbations; in particular, preliminary work has 
shown that it is possible to have modes which are trapped in the outer part of a filament 
(along the outer radius) instead of in its core. 

Other functional forms for the equation of state of a turbulent gas should be consid
ered as well. The logarithmic term used in this work was deduced empirically. Theoretical 
studies of turbulence in molecular clouds may lead to different formulations for the tur
bulent contribution to the pressure. 

We note that the clumps observed in molecular cloud filaments are not small per
turbations on an equilibrium filament. In general, molecular cloud substructure lies in 
the fully nonlinear regime. In our previous work, we began to study nonlinear waves in 
molecular clouds (e.g., Adams et al. 1993, 1994; see also Infeld & Rowlands 1990); how
ever, this work was restricted to one spatial dimension. Ultimately, we hope to include 
nonlinear effects in our two dimensional study of structure in molecular clouds. 
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APPENDIX A: 

TRANSFORMATION TO DIMENSIONLESS VARIABLES 


The Euler equations for the physical fields of a fluid can be written as 

apat + V' . (p u) == 0, (AI) 

au . 1 
at + (u· V')u+ pV'p+ V''ljJ == 0, (A2) 

V'2'ljJ == 47rGp, (A3) 
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where p is the density, u is the velocity, and p is the pressure of the fluid and 'lj; is 
the gravitational potential. In order to simplify the problem, we wish to transform to 
dimensionless variables. We perform the following transformation 

u~uu 

p~pp 

'lj;~u2'lj; 
(A4)

P ~ u2 pp 
t ~ it/u 

x~xx 

where i == u/(47rGp)1/2. Throughout this paper, we let p = pc, the central density of 
the equilibrium. For cases where the equation of state takes the form of equation [2.5] 
(including p= 0), we let u = Cs , the thermal sound speed. When we consider the equation 
of state of the form p = plog(p/p), we set u = (p/ p)1/2. With the transformation [A4], 
the fluid equations [AI-A3] are cast into the form [4.1-4.3]. 

APPENDIX B: MASS PER UNIT LENGTH OF FILAMENTS 

In this Appendix, we show that the mass per unit length diverges for any equation 
of state which is softer than isothermal. We begin by considering a class of equations of 
state of the form 

(Bl) 

With this form, equations of state which are softer than isothermal correspond to values 
of r < 1. The equation for hydrostatic equilibrium of a filament can be written in the 
form 

8 [ r-28p]
8r r p 8r + apr = 0 , (B2) 

where we have defined the constant a = I/Kr. Next, we define the effective power-law 
index q of the density distribution, 

r 8p 
(B3)q == -p 8r . 

The hydrostatic equilibrium equation can then be written 

(B4) 

If we consider the limit of large radius r, we expect the density distribution to approach 
a pure power law so that q ~ constant. In this case, the equilibrium equation reduces to 

(B5) 
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In order for this equation to have a solution, the second term must approach a constant 
value in the limit of large radius r (recall that r < 1 here). This requirement implies 
that the power-law index q must satisfy 

2 
(B6)q=2-r' 

a result which is valid for all equations of state with r < 1. Consequently, the index 
q < 2 and hence the integral determining the mass per unit length 

fJ =27f 1= prdr, (B7) 

is divergent. Thus, our initial claim is true: The mass per unit length diverges for any 
equation of state softer than isothermal. 

APPENDIX C: MASS PER UNIT AREA OF SHEETS 

In this Appendix, we show that the mass per unit area for a molecular cloud sheet 
will be finite for any barotropic equation state stiffer than that of the logatropic limit. 
The simplest way to prove this claim is to introduce Lagrangian variables. In particular, 
we define the surface density CT to be 

1x 

a(x) = p(x')dx'. (C1) 

The equation of hydrostatic equilibrium can be written in the form 

d'ljJ dP _ 0 (C2)dx + dCT - , 

where we now consider the surface density to be the dependent variable, consistent with 
our Lagrangian treatment. Next, we note that application of Gauss's law allows us to 
write the gravitational force in the form 

d'ljJ 

dx = CT. (C3) 


Using this result in the hydrostatic equilibrium equation [C2] and integrating, we obtain 
the result 

(C4) 


where the subscript '00' indicates that the quantities are to be evaluated in the limit 
x ~ 00. The total mass per unit area of the sheet is simply 2 CTOO ) where the factor of 2 
arises because we must consider both sides of the sheet (i.e.) both positive and negative 
values of x). As long as the equation of state is stiffer than the logatropic limit, then 
the pressure vanishes at spatial infinity (where the density p ~ 0). In this case, we can 
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evaluate equation [C4] at the midplane where 0" = 0 to obtain the total mass per unit 
area 0"tot of the molecular cloud sheet, 

O"tot = 20"00 = 2[2P( 0" = 0)P/2 . (C5) 

Thus, our claim is true: The mass per unit area of any molecular cloud sheet will be 
finite for any barotropic equation of state stiffer than the logatropic limit. 

APPENDIX D: SEPARATION OF VARIABLES 

We wish to separate the dependent variables in equation [4.5]. We assume a baro
tropic equation of state, p = P(p), so that the pressure perturbation may be written in 
terms of the density perturbation. 

Pl = P'(PO)Pl . (D1) 

After substituting this into equation (2.10), we have 

2 

1 't'"7 ,,/,
- 8 Pl , [" - po Po,] \7 po . \7Pl + \7 po . v 'f/l + A()Pl8t2 + Po \7Pl + 2Po r:v == 0 , (D2) 

where 
(D3) 

P6 == P'(po), etc., and r:v represents the perpendicular coordinate. Let Pl and 'l/Jl have 
the forms 

Pl(r:v,Z, t) = J(r:v)g(z)h(t) (D4) 

1/Jl(r:v,z,t) = cfJ(r:v)g(z)h(t). (D5) 

Equation [D2] then gives 

h"(t) = p.' [g"(z) + \7iJ(r:v)] + (2P~' _ ~p~) dpo J'(r:v) + dpo cfJ'(r:v) +A(r:v) = _w2 
h(t) 0 g(z) J(r:v) po dr:v J(r:v) dr:v J(r:v) , 

(D6) 
where the time dependence has been separated. (Recall that the equilibrium state is 
independent of both t and z.) From this we conclude 

(D7) 

From here we can procede to separate the z-dependence and the r:v-dependence. 

g"(z) \7iJ(r:v) ( P6' ) p~ J'(r:v) p~cfJ'(r:v) A(r:v) + w2 
__ k 2 --- = + 2po- -1 - + + -----'---- (DS)

g(z) J(r:v) P~ Po J(r:v) p~J(r:v) P~ , 

where p~ = dpo/dr:v. This gives 
g(z) == goe±ikz. (D9) 
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The remaining, non-trivial equation governs the structure of the perturbation per
pendicular to the direction of propagation. 

(DI0) 

where 
_ A(w) + W

2 

V (w ) - pI (Dll) 
o 

APPENDIX E: NUMERICAL METHODS 

In this Appendix, we briefly describe the numerical techniques used in this paper. 
We apply the relaxation algorithm and routines of Press et al. (1992) to numerically 
solve equations [4.12] and [4.13]. By iterating a Runge-Kutta algorithm, we construct an 
approximate solution for large wavenumbers k and use this solution as the initial "guess" 
for the relaxation algorithm. Then the relaxed solution for one value of k is used as 
the initial guess for relaxation at a smaller value of k. In this fashion, we iteratively 
find solutions for smaller and smaller values of k, until adopted numerical parameters no 
longer provide an accurate solution. We use a separate numerical algorithm for the case 
k = O. 

As usual, this algorithm involves representing the solution functions on a mesh of 
points. Here we use a mesh of equally spaced points. Say the number of points is m + 1, 
and the spacing between points is h. Then w j = j h, for j = 0,1,2, ... ,m. We apply 
boundary conditions at wo = 0 and at Wrn = mh ~ 1. We wish the final grid point at 
mh to be effectively at spatial infinity. So, when a solution is reached, the slope of the 
density at the "outer" boundary is checked. If it is larger than desired, indicating that 
the solution has not had sufficient room to decay, the quantity h is increased, and the 
relaxation procedure is repeated. 
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FIGURE CAPTIONS 


Figure 1. The radial density profile of the static equilibria of hydrostatically supported 
filaments with various equations of state. The solid curve represents the isothermal 
filament; the short dashed curve, the purely logotropic filament; the dashed curve, a 
filament with a small turbulent pressure; the long dashed curve, a filament with a large 
amount of turbulence. 

Figure 2. The vertical density profile of static equilibria of hydrostatically supported 
slabs with various equations of state. The solid curve represents the isothermal slab; 
the short-dashed curve, the purely logotropic slab; the dashed curve, a slab with a small 
turbulent pressure; the long-dashed curve, a slab with a large amount of turbulence. 

Figure 3. The dispersion relations for a molecular cloud filament for various equations of 
state, p = p + K, log(p). The abscissa is the wave number multiplied by the effective sound 
speed at the center of the filament. The ordinate is the square of the frequency. The 
value of K, is specified for each curve in the legend. Notice the effect upon the location of 
the zero and the minimum due to the variation in K,. 

Figure 4. A sample of the radial density eigenfunctions fk(r). Figure 4a shows eigen
functions for the isothermal filament. Eigenfunctions for a turbulent (K, = 10) filament 
are shown in Figure 4b. 

Figure 5. Cross-sectional images of perturbed filaments. Density contours indicate p = 
0.0,0.2,0.4, ... , 1.2.. Arrows indicate velocity. ( a) A propagating wave in an isothermal 
filament; (b) A propagating wave in a turbulent (K, = 10) filament; (c) The fastest growing 
instability in an isothermal filament; (d) The fastest growing instability in a turbulent 
filament. 

Figure 6. The ratio of the clump spacing Afast to the half-width at half-max of the 
filament, RHWHM. Points are shown for various values of turbulence parameter K,. 

Figure 7. The growth rate IWfast I of the fastest growing mode of the filament. Points are 
shown for various values of the turbulence parameter K. 

Figure 8. A comparison of the numerical dispersion relation for the isothermal cylinder to 
that obtained from the charge density theory (Adams et al. 1994) using a Yukawa poten
tial. The solid curve with points represents the dispersion relation obtained numerically 
in this work. The dashed curve shows a fit of the one-dimensional Yukawa dispersion 
relation to the numerical results. 

F igure 9. The dispersion relations for the slab for various equations of state, p = p + 
K, log(p). The abscissa is the wave number multiplied by the effective sound speed at the 
center of the filament. The ordinate is the square of the frequency. The value of K is 
specified for each curve in the legend. Notice the effect upon the location of the zero and 
t he minimum due to the variation in K,. 
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Den sity Perturbation of Isothermal Filament (p=p) 
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Density Perturbation of Turbulent Filament (p=p+ lOlog(p)) 
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Cross-sections of P erturbed Cylinders 
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Profile of Fastest Growing Mode vs. Turbulence Parameter 
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Fastest Growth Rate vs. Turbulence Parameter for Filament 
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Isothermal Filament Dispersion Relation: 1-D Yukawa theory fit 
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Sc a led Dispersion Relations of Slab: p == p + 1C1ogp 
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