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ABSTRACT 

We study the propagation of magnetohydrodynamic (MHD) waves through nonhomo­
geneous, self-gravitating, magnetic media representative of molecular cloud environments 
and focus on the issues of cloud support and line profiles. Since the general treatment 
of this topic is burdened by a complex mathematical formalism, we consider simplifying 
geometries which yield analytical solutions in the linear wave limit. In particular, we 
study both magnetoacoustic and Alfven wave propagation along the density gradient in 
a one-dimensional slab. Of specific relevance to molecular clouds, we find that the back­
reaction of the Alfven waves can provide a pressure along the direction of the magnetic 
field lines; this pressure can help support a density enhancement against gravitational col­
lapse. Furthermore, we find that the velocity amplitudes of these waves increase as the 
density decreases, in rough agreement with observational estimates of line-width vs density 
relations. 

Subject headings: hydromagnetics - wave motions - interstellar: molecules - stars: forma­
tion 

1 Compton GRO Fellow. 
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1. INTRODUCTION 


The observed inefficiency of star formation suggests that molecular clouds cannot 
be collapsing on free-fall timescales (Zuckerman & Palmer 1974). This point is further 
strengthened by the analysis of a cloud within the Taurus complex, which indicates no 
evidence for global collapse (Murphy & Myers 1985). In contrast, the thermal Jean's 
mass in a typical cloud is generally quite small compared to the actual physical mass, and 
consequently, thermal pressure can provide support against gravitational collapse only at 
the smallest scales (e.g., molecular cloud cores). On the other hand, magnetic fields with 
strengths of "J 10 - 100j.LG are now observed in molecular cloud environments (see, e.g., 
the reviews by Heiles 1987; Kazes et al. 1987, and references therein; Goodman et al. 
1989); thus, magnetic pressure is capable of providing the inferred large scale support 
(Chandrasekhar & Fermi 1953; Mestel 1965; Strittmatter 1966; Spitzer 1968; Mouschovias 
& Spitzer 1976; Mouschovias 1976). 

A shortcoming of the magnetic support paradigm is its inability to provide a static 
pressure along the field line direction. Since magnetic field lines in molecular clouds seem 
to be extremely well ordered (Schwarz et al. 1986; Goodman 1990), a static cloud should 
therefore exhibit a sheet-like morphology. Although such structure is sometimes observed, 
it is not a general feature of cloud complexes. This finding suggests that the underlying 
magnetic fields are dynamic. Indeed, it has been noted that the "observed" turbulence, 
which has itself been suggested as a possible support mechanism (Larson 1981; Bonnazzola 
et al. 1987), will excite a spectrum of magnetohydrodynamic (MHD) waves (Arons & Max 
1975; Elmegreen 1985; Falgorne & Puget 1986) whose outward propagation may provide 
a pressure contribution along the direction of the field lines (Dewar 1970; Shu, Adams, & 
Lizano 1987; Pudritz 1990). This mechanism is consistent with observed molecular line 
profiles (Falgorne & Puget 1986; Myers & Goodman 1988), whose widths imply supersonic 
(but subalfvenic) motion that would be highly dissipative in the absence of the fields. 

The overall goal of this paper is to study MHD wave support in molecular clouds and 
to consider the relationship between these waves and the observed molecular line profiles. 
A complete treatment of this problem requires an understanding of wave propagation (and 
dissipation) in self-gravitating, nonhomogeneous, magnetic media. The nonhomegeneity 
of the medium is an important element because observed clouds exhibit highly nonlinear 
structure (e.g., Wood, Daughterty, & Myers 1992; Wiseman & Adams 1992; Houlahan & 
Scalo 1992) and because wave propagation through nonuniform media has not been well 
studied. Unfortunately, the presence of a gravitational potential along with a realistic non­
homogeneous medium makes a completely analytical treatment of linear wave propagation 
intractable for most geometries (we note that most previous studies have ignored both 
self-gravity and the nonhomogeneity of the background state). In this paper we present a 
special case where such a treatment can be carried out. In particular, we consider linear 
magnetohydrodynamic wave propagation in a slablike geometry for both magnetoacous­
tic and Alfven waves. Since the damping rate of these waves is expected to be shorter 
than the cloud lifetime (Zweibel & Josafattson 1983), we include the dissipative effects 
of field-line diffusion through the neutral component. We point out, however, that other 
important dissipative mechanisms (such as the nonlinear processes discussed by Zweibel 
& Josafattson 1983) are not considered here. Although our results are relevant in many 



different contexts, we focus on the specific issues of overall cloud support and line-width 
vs density relationships. 

This paper is organized as follows. We present the general formalism for wave prop­
agation through a nonhomogeneous, self-gravitating medium in §2. In §3, we consider 
a simplifying one dimensional geometry which lends itself to the analytical treatment of 
magnetoacoustic wave propagation; we also determine the wave-background interactions 
which may contribute to the magnetic support across the field lines. In §4, we present an 
analogous format to §3, but for a simplifying geometry which lends itself to the analytical 
treatment of Alfven waves. We show that Alfven waves can provide support along field 
lines. We compare our results to observations in §5, and conclude with a discussion in §6. 
As a final comment, we note that although the simplifications made in this calculation 
limit the interpretation of our results, they are warranted by the benefits of an analytical 
treatment. Furthermore, our results may be directly applicable to clouds or parts of clouds 
with sheet-like geometries. 

2. GENERAL FORMALISM 

In this section we present a general formalism for wave propagation through nonhomo­
geneous density distributions. We idealize the molecular cloud environment as a slightly 
ionized fluid threaded by a magnetic field. The electrons are ignored in the fluid dynamics 
since they are not as strongly coupled to the neutrals as the ions and since they represent 
a negligible fraction of the overall mass. The presence of the electrons only serves to main­
tain charge neutrality. The grains are also ignored in the fluid dynamics since their effect 
is minimal when the neutral number density n ~ 104 cm-3 (Nishi, Nakano, & Umebayashi 
1991). However, grains do play an important role in the ionization balance, and are con­
sidered in this regard. We assume that flux-freezing fully couples the charged particles to 
the magnetic field, and consequently, that the neutral fluid is coupled (albeit indirectly) 
to the magnetic field through its interaction with the ion fluid. As long as the relative 
velocity between ions and neutrals is small (~ 10 km s-1), this interaction is dominated 
by Langevin scattering, which produces a force density exerted on the neutral fluid (by 
the ions) of the form 

(2.1) 

where P(i) and v(i) are the neutral (ion) mass density and velocity, respectively, and where 

(2.2) 

(for further discussion, see Draine, Roberge, & Dalgarno 1983; Shu, Adams, & Lizano 
1987; Shu 1992). 

The dynamical equations for the ion and neutral fluids are 

8v 
P at + p(v . V')v = -pV'1> - V'p + fni , (2.3) 

and 

(2.4) 
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respectively, where p( i) is the neutral (ion) gas pressure, <P is the gravitational potential, 
and B is the magnetic field. The minimal effects that ionization and recombination have 
on the dynamics are ignored. In the applicable limit that Pi «: p, bulk MHD wave motion 
occurs only if the neutrals are well coupled to the ions. We therefore consider waves with 
frequencies w lower than the neutral-ion collision frequency (-,Pi). Under these conditions, 
the first four terms in equation (2.4) are negligible, and the ion-neutral frictional force is 
balanced by the Lorentz force, i.e., 

(~ x B) x B 
rPPi(Vi - v) = . (2.5)

41i 

The physical meaning of equation (2.5) is that the Lorentz force drives the ions through the 
sea of neutrals. The equation of motion for the neutral fluid may therefore be expressed 
as 

av 2 (~ x B) x B 
P- +p(v·V')v=-p~<P-asV'p+ , (2.6)at 41i 

where an isothermal equation of state p = a;p with constant sound speed as has been 
assumed. The effects of magnetic diffusion through the neutrals is represented in the 
dynamics equation through B via the magnetic induction equation 

aB = V' x (v x B) + ~ x {[(V' x B) x B] x B} (2.7)
at 41irPPi 

With V' . B = 0 as an initial condition, the neutral fluid is thus described by equations 
(2.6) and (2.7), the continuity equation 

apat + ~ . (pv) = 0 , (2.8) 

and Poisson's equation 
(2.9) 


where we have neglected ionic inertia (pi «: p). 

To close the system of equations, the ion mass density Pi must be specified. The 
ion population depends on the complex balance between the ionization rate of neutrals 
( through cosmic rays, etc.), the subsequent production of molecular and metal ions, and the 
ion-electron recombination in the presence of grains. However, a reasonable approximation 
for the ionic mass density in molecular cloud environments is given by 

Pi = C pl/2 , (2.10) 

where 
(2.11) 


(Elmegreen 1979). In the presence of perturbations leading to compression or rarefaction, 
equation (2.10) is valid only for perturbation timescales which are are much longer than the 
re-equilibration timescale. In contrast, if the re-equilibration timescale is long compared to 

4 




the perturbation timescale, the ratio of the perturbed to unperturbed ion density is equal 
to the ratio of the perturbed to unperturbed neutral density, and the fluid will be ~ither 
overionized or underionized with respect to the corresponding equilibrium state. 

The primary ionization process in molecular clouds is cosmic-ray ionization, resulting 
in the formation of complex molecular ions. Although these molecular ions rapidly neu­
tralize via dissociative recombination, they also rapidly transfer charges with heavy metal 
atoms whose neutralization occurs via the slower radiative recombination process. As a 
result, metal ions dominate the ionic fluid (Oppenheimer & Dalgarno 1974; Elmegreen 
1979). For neutral number densities larger than n > 1 cm-3

, most recombination of met­
als occurs on grains (see Fig. 1 in Elmegreen 1979). For typical cloud environments (i.e., 
T = 10 K, a metal depletion factor 8 = 0.1, an ionization rate ( = 10- 17 s-l, grain radii 
of a = 0.32 f-Lm, and 1 cm-3 < n < 105 cm-3), the fraction of all grains that are charged 
with Q = -1 is ~ 0.9 (see Table I in Elmegreen 1979). Assuming that the bulk velocity 
due to the wave motion has no effect on the metal-grain collision rate coefficient, we find 
that its value is given by 

T ) -1/2 ( ) ( ) -1/2
aEg(Q = -1) = 2.6 x 10-4 cm3 s-1 -K a mE , (2.12)( 10 0.311m 30mH 

and the metal neutralizing timescale IN l/ngaEg is therefore approximately"oJ 

T 1/2 ( a )-1 ( mE )1/2
- , (2.13)( )10K 0.311m 30mH 

where mE is the metal ion mass, mH is the hydrogen mass, and ng is the grain number 
density. Since the unperturbed cloud is in charge equilibrium, the ionization rate must 
be equal to the recombination rate. The timescale required to re-equlibrate a perturbed 
system is therefore leq ~ IN. In contrast, the MHD wave timescale is given by 

1MH D ~ 106 yr (~) ( Va -1) -1 . (2.14)
1pc 1km s 

We therefore assume that MHD perturbations are always in ionization equilibrium. 

2.1 The Unperturbed Cloud 

We consider here the fluid state representing an unperturbed cloud (denoted by pa­
rameters with a 0 subscript) supported by either thermal or magnetic pressure. While 
the thermally supported cloud is static (but not necessarily stable), ambipolar diffusion in 
the magnetically supported cloud results in the gradual collapse of the neutral component 
and the gradual outward diffusion of the ionic and magnetic component (e.g., Shu 1992). 
However, the requirement that the neutrals are well coupled to the ions (see the discussion 
before equation [2.5]) implies that the diffusion timescales are longer than the the charac­
teristic MHD timescale. The parameters representing the unperturbed cloud are therefore 
assumed to be independent of time. With the further constraint that the drift velocity 

1 
Vd =Vi;O - Vo = 3/2 ('\7 x Bo) x Bo (2.15) 

47r,C Po 
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remains smaller than the ~fHD fluid velocity, the cloud is ~ell approximated by a static 
state (i.e., Vo =0), and is therefore described by the solutions to 

47rGpo = -a;~. [~po] + ~. [(~ x Bo) x Bo] , (2.16)
Po 47rpo 

along with a specified relation between the magnetic field and the density. 

2.2 The MHD Wave Equation 

Linear waves (denoted by parameters with a 1 subscript) propagating through the 
t ime-independent unperturbed cloud can be described by a superposition of temporally 
harmonic perturbations. We therefore consider solutions of the form 

p(x,t) = po(x) +PI(x)exp(-iwt), (2.17) 

where ~{PI} ~ Po, and where po is a real and known function. With similar assumptions 
for the remaining parameters v, B, and <P, the system equations are easily linearized to 
first order, and the results are given in Appendix A. Since we require Ivol "'" IVdl ~ lVII, 
all Vo terms are ignored. For a given wave frequency w, the solutions to these equations 
describe the spatial structure of the corresponding wave. 

As discussed in §2.1, the frequency w is constrained to be smaller than the neutral 
collision frequency ,Pi by the strong coupling condition. Requiring that the lengthscale 
of the wave is smaller than the lengthscale of the cloud (denoted by R) introduces a lower 
limit constraint. We therefore consider wave frequencies in the range,Pi ~ w ~ 27rVa / R, 
where Va is the Alfven velocity. Since we are interested in a scenario where waves are 
continously generated at an assumed location, the frequency is taken to be real. The 
effects of damping are therefore described by spatial decay in the wave amplitude. 

2.3 The Wave-Background Equation 

In order to study how the background fluid is affected by the propagation of the 
MHD waves (with frequency w), we consider here second order terms. Since these terms 
(denoted by a 2 subscript) result from the coupling of the real parts of first order terms, 
their temporal dependence is not purely harmonic, but also includes a time-independent 
component. We therefore consider solutions of the form 

p(x, t) = po(x) + ~{Pl(x)exp( -iwt)} + P2(X, t) (2.18) 

where P2(X, t) and po(x) are assumed real, po and PI are known functions. and where 
P2 ~{PI}2. With a similar assumption made for the remaining variables v, B , and 4>,"oJ 

the system equations are easily linearized to second order (see Appendix B). 

Since w is real, the harmonic parts of the second order terms average to zero over 
an Alfven time. This result implies that it is the time independent components which 
describe the overall effect that the wave has on the background fluid. As such, we time 
average the second order equations (denoted by ( )) with no loss of desired information. 
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We assume that the continuous propagation of waves through the medium maintains a 
static time-averaged state, so that 

(2.19) 


Furthermore, since to this order it is no longer valid to ignore Vo terms, we consider only 
a perfectly coupled fluid, i.e., we ignore all r terms and set Vo = o. The time-averaged 
second order equations are presented in Appendix B. 

3. I-D GRADIENT MAGNETOACOUSTIC WAVES 

In this section, we study magnetoacoustic waves in the linear limit. Finding general 
solutions to the linearized equations poses a rather formidable mathematical problem. In 
order to simplify this task, we consider a slab geometry for the unperturbed state, with 
only spatial dependence in the x direction, and with Bo = Boz. The Alfven speed is taken 
to be constant throughout the slab, thereby adding the constraint Bo oc p~/2. Although 
these simplifications clearly limit the applicability of the results, they allow an analytical 
treatment of the problem. 

3.1 The Static Solution 

In the present geometry, the solutions to equation (2.16) representing the unperturbed 
static cloud are found to be 

= (2a~ + v;) h2(~) (3.1 )Po 47rGR2 sec 1." 

and 
2a; + v;) 1/2 A 

Bo = va: ( GR2 sech(~) = , (3.2) 

where ~ = x IR, and R is the characteristic cloud lengthscale and is related to the column 
density a 00 by 

R = 2a; + v; (3 .3) 
27rGaoo 

As pointed out by Shu (1983), these solutions correspond to a state which is unstable to 
Rayleigh-Taylor instabilities on dynamical timescales, although he notes that the instability 
can be suppressed in a three-dimensional cloud if the lengthscale along the field is shorter 
than that of the instability. Given these caveats, we treat this case as a model from which 
to infer information about more realistic (and complex) geometries. 

The consequences of this oversimplified geometry are further evidenced in that the 
effects of ambipolar diffusion become more pronounced away from the central condensation, 
in direct conflict with observations (Shu 1992). This result is easily seen by noting that 
the neutral-ion coupling time (rPi)-l ---+ 00 as ~ ---+ 00. This divergence is also reflected in 
the drift velocity, which in the applicable limit that Va: ~ as, is well approximated by 

Vd ~ ~ sinh(~) x . (3.4)
11.5 
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We consider the consequences of this effect below. For now, we note that since Vo '" Vd/2, 
the omission of the \7 . [(vo . \i')vo] term in equation (2.16) is justified only as long as 
1(1 ~ 2, thereby constraining the range over which Po(() and Bo«() are valid. 

3.2 The Wave Solution 

The present geometry lends itself to the treatment of magnetoacoustic waves, and we 
consider the class of solutions where VI = VIxX and BI = BIzz. Indeed, this class of 
solutions is allowed, and described by the equations of motion (see Appendix A) 

2 + 2 82 2 + 2 8A - _ as VOl ~ 2 a" VOl nh(C) VIx 
VI x + 0 - w2R2 8(2 + w2 R2 ta ~ 8( + 

1 v; 8 [ 8 { 8 BIz BIz 3 PI }]:::; cosh(() - sech(()- -- - 3tanh(() - + - tanh(()- , (3.5)
I (wR)3 8( 8~ 8~ Bo Bo 2 po 

B Izi 8VIx i - = ---- + -tanh(~)vIx+
Bo wR 8~ wR 

i (VOI)2 8 { 8 BIz 3 h(C) BIz 3 anh(~)PI}- - - --- - tan ~ -- + - t ~ - (3.6)
;y w R 8~ 8~ Bo Bo 2 po' 

and 
PI i 8VIx 2 i- = ---- + -tanh(~)vIx , (3.7) 
po wR 8~ wR 

where Ao is a constant in x and ;Y =,Rep~/2 /wR. Notice that equation (3.5) is coupled 
to equations (3.6) and (3.7) via;Y. Since this parameter represents the ratio of the Alfven 
frequency to the neutral coupling frequency, its value must be greater than unity if bulk 
MHD motion is to be maintained (see the discussion before equation [2.5]). This result 
suggests that the first order equations may be solved iteratively. However, since;Y decreases 
with increasing (, the range of validity for an iterative scheme is constrained. 

To zeroth order in ;Y-I, equation (3.5) may be solved exactly, and the two linearly 
independent solutions for the velocity are given by 

Vl.± = Vl0 [k~ sinh(O 'f i cosh(O] exp(±ikRO + Ao , (3.8) 

where the constant Ao must be determined by invoking boundary conditions, and where 
the wavenumber k is related to wand R through the dispersion relation 

(3.9) 


Iterating once to get leading order corrections, and requiring that the full physical 
solution (including temporal dependence) is real and represent propagation in the positive 
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~ direction, we find a solution of the form 

Vlx =vlO { k~ sinh(Ocos( kR~ - wt + 1» + cosh(Osin(kR~ - wt + 1»+ 

(3.10)~ c~r [rvRcos(kR~ - w~ + 1» + rvlsin(kR~ - wt + 1»] } , 

where r vR and r vI are given in Appendix C, and where </J is the wave phase. With VIx 

known, we find the density and magnetic fields to be 

PI VIO {( 1 ) . po = wR kR + kR cosh(~)sln(kR~ - wt + </J)­

') 

k~ sinh(~)tanh(~)sin(kR~ - wt + </J) + 2 sinh(~)cos(kR~ - wt + </J)+ 

~ c~r [rpRcos(kR~ - wt + 1» + rplsin(kR~ - wt + 1»] } , (3.11) 

and 

BIz VIO {( 1 ) .Bo = wR kR + kR cosh( ~)sln( kR~ - wt + </J)­

k~ sinh(Otanh(~ )sin( kR~ - wt + 1» + sinh(~ )cos( k R~ - wt + 1» + 

~ c~r [rBRcos(kR~ - wt + 1» + rBIsin(kR~ - wt+ 1»] } , (3.12) 

where, again, the r terms are given in Appendix C. These solultions are valid to leading 
order in 1/;;;. 

Applying the condition that the wavelength must be smaller than the cloud scale 
height (i.e., kR ~ 27r » 1), one finds that PI/PO BIz/Bo "V VIx/Va, analogous to the"V 

case of classical planar magnetoacoustic waves. As such, we focus only on the wave density 
below, which in the present limit may be approximated by 

PI ~ VIO {COSh(~)sin( kR~ - wt + <1» + .2.. sinh( ~)cos( kR~ - wt + <1»­
~ Va kR 

~ cosh(Ocos(kR~ - wt + 1» + 2k~::ysinh(Osin(kR~ - wt + 1»} . (3.13) 

The wave amplitude (to this same order) is therefore 

1/2 
PI VIO 2 4. 2 3. 
po ~ Va [ cosh (~) + k2 R2 sInh (~) - kR;Y slnh(~)cosh(~)] , (3.14)

I I 
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indicating that magnetic diffusion has the expected effect of damping the wave. 

For purposes of illustration, we consider a fluid characterized by a" = 0.1 km s -1 and 
Va = 1 km S-I. We take VlO = O.lva, consistant with the static fluid assuption made 
in §2.1. Figure 1 shows the wave density profile to zeroth order in ;y-l (i.e., a perfectly 
coupled fluid) for kR = 3,6 and 10, where the boundary condition Pll€=o = 0 is used 
to determine the phase cP. It is evident that these solutions are valid only as long as PI 
is small compared to po. Notice that waves propagating down the density gradient will 
eventually become nonlinear and thereby produce shocks. 

In order to determine the validity of the iterative scheme, we introduce the parameter 
Tf == Ip1;:;I/PI;ol, where PI;:; is the part of the wave density due to first order (7)-1 correc­
tions, and PI;O is the wave density in the absence of the corrections. Figure 2 shows the 
value of Tf as a function of ~ for kR = 3,6, and 10. It is evident from this figure that the 
iterative terms are never small when kR ~ 6. This finding should not be surprising since 
the constraints imposed on w limit the validity of our results to 11.5 sech(~) > kR. As the 
perturbation wavelength decreases, so does the region for which the wave is not strongly 
damped; this statement is consistent with the aforementioned result that ambipolar diffu­
sion becomes more important away from the cloud center. We present the density profile 
with first order corrections in Figure 3 for the kR = 3 case. Comparing with Figure 1, we 
see that the inclusion of the ion-neutral drift terms results in both the damping of the wave 
and an increase in the wavelength. These effects are due to the decrease in the effective 
fluid density and the corresponding increase in the effective Alfven speed. 

3.3 Wave-Background InteractionJ 

In this section, we determine what effect the propagation of magnetoacoustic waves 
has on the unperturbed background state. From equation (B2) of Appendix B, the force 
density resulting from the wave propagation has four forcing terms (i.e., terms coupling 
two first-order parameters). These terms represent, in order of appearence, the waves~ 
change in momentum, a convective force (analogous to a ram pressure force), a self-gravity 
force, and a magnetic pressure force. Substituting the solutions found in §3.2, the first two 
terms are found to result in a compressive force (i.e., a force in the gradient direction), 
while the latter two terms are found to produce an enhancement force (i.e., a force opposite 
the gradient direction). The sum of these force components yields the full force density 

(3.15) 

where ( ) denotes the time-average over one Alfven time. Notice that the first two terms 
in equation (B2) are dominant, and the propagation of the magnetoacoustic waves pre­
sented in §3.2 always provides an effective force along the gradient direction, regardless 
of the propagation direction. This result implies that the overall effect of the waves is to 
compress the unperturbed state. We note that in the appropriate limit kR ~ 1, f2 scales 
as (kR) -4 « 1. This point is discussed further below. 
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The time-averaged mechanical momentum density 

(3.16) 


and the electromagnetic momentum density 

(3.17) 

of the wave are both constant in ~, thus the waves do not gain (or lose) momentum from 
(to) the background when averaged in time. This result is consistent with the assumption 
that the time-averaged state is static. For completeness, we note that (P mech) ~ (Pem). 

The density and magnetic field strength of the compressed state are given by the 
solutions to 

(3.18) 

and by the magnetic induction and continuity equations, which can only be satisfied by 
the solution 

v~o kR [ 1 2(V2 x) = - 2 w R 1 + k2 R2 1cosh (~) . (3.19) 

In order to get a fully analytical expression, a relation between (P2) and (B2z ) must 
be specified. As a simple example, we consider here the limit that B ~ 0, corresponding 
to planar sound propagation through a thermally supported slab. Equation (3.18) thus 
reduces to 

Using the method of variation of parameters, we find the general solution to be 

(3.21) 

where Al and A2 are constants. The form of the effective force (equation [3.15]) implies 
that (P2) must be an even function. Furthermore, conservation of mass requires that 

[0 (P2) d~ = 0 . (3.22) 
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These two constraints imply that the constants Al and A2 must be zero. 

The time-averaged density component (P2) is shown in Figure 4 for various physical 
parameters. As shown by equation (3.21), the resulting time-averaged state corresponds to 
a compression of the initially unperturbed state. The dependence of the second-order force 
on the wavelength is reflected in (P2) since vro/w2R2k2R2 ~ vro/a;k4R4 ~ 1. Since this 
quantity is small compared to unity, the waves have a minimal effect on the background. 
T he compression is therefore quite small even for large amplitude waves. From the form of 
the force density, it is evident that this result must also be true for the general case where 
B is nonzero. 

The compression resulting from the wave propagation is unique to the nonhomoge­
neous fluid in that wave dissipation is not required to provide a momentum transfer to 
the background. Furthermore, the second-order force on the fluid is not dependent on the 
propagation direction. It is reasonable to assume that the inclusion of dissipative effects 
will result in a pressure gradient along the propagation direction. 

4. 1-D GRADIENT ALFVEN WAVES 

In this section, we study Alfven waves in the linear limit. We present an analogous 
format to §3, but for a slab geometry assumed for the unperturbed state with only a z 
spatial dependence and with Bo == Boz. The divergenceless condition constrains Bo to be 
constant. As discussed in §4.3, we find that Alfven waves can help support clouds against 
gravitational collapse. 

4.1 The Static Solution 

We begin with the static configuration. In the present geometry, the solution to 
equation (2.16) representing the static cloud is found to be 

2 
a" 2( ) (4.1)Po = 27rGR2 sech ~ , 

where ~ == z/Rand R is a characteristic lengthscale that is related to the column density 
U oo by 

(4.2) 

This density distribution corresponds to a truly static, thermally supported state (i.e., 
ambipolar diffusion is absent, so that v d = 0). In contrast to an isothermal sphere, the 
thermally supported slab is never gravitationally unstable. 

4.2 The Wave Solution 

In this geometry we study of Alfven waves, and here we consider the class of solutions 
where VI = vIxi and BI = BIxi. Indeed, this class of solutions is allowed and results 
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in uncompressed ft.uid motion. Hence, the wave density PI = 0, analogous to the classical 
Alfven waves, and the velocity is described by the equation 

(4.3) 

where;Y == ,Re p~/2 /wR is the coupling parameter introduced in §3.2, and where we have. 
defined K R == wR /va le=o. With PI = 0, it is also possible to find the equation describing 
B lx , i.e., 

(4.4) 

Notice that the amplitudes of B lx and Vlx are coupled through the magnetic induction 
equation. 

The requirment that the wavelength is smaller than the cloud scale height implies 
that K R ;<: 27r ~ 1. Furthermore, the requirement that the waves are not quickly damped 
due to magnetic diffusion constrains ;Y to be larger that unity. We therefore consider a 
parameter space (a.." Va, w;~) where both of these conditions are satisfied. The relation 

:::;KR = 16 ~. sech(~) ( 4.5) 
Va e=o 

implies that a limited range of parameters will be consistent with our assumptions. With 
K R ~ 1 and ;Y ~ 1, equation (4.3) rpay be solved by assuming a solution of the form 
Vlx = VlxO exp(i<l». With kr == <1>', where denotes differentiation by ~, one finds (toI 

second order in KR and ;Y -1 ) 

ikR =iKR (1 + 8K~R2 ) sech(O + 8~Rcosh(O + ~tanh(O-
P"R 3KR 3
2\.~ sech(~) - i~sech(~) + i--::::;tanh(~) . (4.6) 
, 8, 4, 

Requiring that the full physical solution (including temporal dependence) be real and 
represent proapgation in the posi ti ve ~ direction, one finds 

VIx = cosh(~)1/2 exp(- K_R~) cos [I{R(l + .'"21 2)tan-l[sinh(~)]+VIxO 
2~ h R 

}:R sinh(~) - 3I~~ sinh(~) + ~ cosh(~) - wt + <1>] , ( 4.7)
8 '\. 8'0 4,0 
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where ::Yo represents ::y evaluated at ~ = 0, and 4> is the phase of the wave; this phase must 
be determined by invoking boundary conditions. An analogous treatment for the magnetic 
field component yields the full solution 

BIz = B IzO sech(~)1/2 exp(-2~oR~) cos [KR(l + K21R2) tan- I [sinh(Ol-

8:Rsinh(O - 3~:sinh(~) + 4~o coshW - wt + <pl. (4.8) 

Since equations (4.2) and (4.3) can also be solved nwnerically, the validity of these results 
are easily checked (see below). 

For illustrative purpose, we consider a fluid characterized by as = 0.2 km S-l and 
VOl le=2 = 1 km s-l. Since Vlx "V B lx cosh(~), we only present the analytical solution for 
B lx as a function of ~ (see Figure 5). In this case, the wave phase ¢ is determined by 
applying the boundary condition E 1x le=o,t=o = o. We consider frequencies corresponding 
to K R = 6 (::Yo = 7.5) and K R = 10 (::Yo = 4.5 ). Numerical solutions are also included. 
To illustrate the effects of magnetic diffusion, we also consider the same values of K R in 
the artificial limit ;Y --+ 00. These results are presented in Figure 6. Notice that magnetic 
diffusion plays a crucial role in the propagation of the waves, and that only a very narrow 
band of parameter space consistent with cloud environments allows wave propagation 
without strong attenuation. 

4.3 Wave-Background Interaction3 

In this section, we determine what effect the propagation of Alfven waves has on 
the unperturbed background state. From Appendix B and equation (4.8), we find that 
the second-order time-averaged force due to the wave action results only from a magnetic 
pressure gradient, and may be expressed as 

(f2) = ~R Bixo sech(~)tanh(~) z . ( 4.9) 
167r 

As in the case of magnetoacoustic waves (§3), this force is independent of the propagation 
direction. However, the effect of this force on the background fluid is to enhance the 
density away from the cloud center. Notice that the average force given by equation (4.9) 
is positive (for ~ > 0), whereas that due to the magnetoacoustic waves (equation [3.15]) has 
the oppposite sign. Since the time-averaged wave pressure, which is purely electromagnetic, 
is a constant in ~, i.e., 

Bl ) __ -BlxO VlxO Bo ~ h· h d(P) =_ (El X 
----2-- Z + Ig er or er terms, (4.10) 

47rC 47rC 

the waves do not gain (or lose) momentum from (to) the background when averaged in 
time. This result is consistent with the assumption that the second order time-averaged 
state is static. 
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The second order perturbation density (P2) is described by the equation 


d
2 

(P2) +'J h2(~)(P2) = (B;zO)2v~I~=o h(t)

2 _sec" B 2 cos " . (4.11 ) 

d~ po po 0 4a s 

Using the method of variation of parameters, the general solution is found to be 

(P2) (BIZO)2v;I~=o[ ( ?()] h( [ () ] ( 4.12) - = -B 2 cosh~) - 2sech~ ~ + Al tan ~) + A2 ~tanh ~ - 1 .
Po 0 4a s 

Since the force responsible for this density perturbation is symmetric about the origin, 
(P2) must be an even function. Furthermore, mass conservation requires that 

(4.13) 


These constraints imply that the constants Al and A2 must be zero. 

The total time averaged density as a function of ~ is shown in Figure 7 for various 
parameters. Notice that this function is independent of wavelength. Notice also that 
larger amplitude waves are capable of displacing and supporting a larger mass away from 
the equilibrium state. This result suggests that Alfven waves are capable of helping to 
support clouds against gravitational collapse along field lines. It should be pointed out, 
however, that our results are valid only as long as P2 ~ Po. Notice also that the presence of 
ion-neutral drift results in appreciable wave damping and subsequent momentum transfer 
to the background medium. Our results should therefore be taken as a lower limit to the 
overall density enhancement. 

5. APPLICATION TO OBSERVATIONS 

In this section, we consider our results in the context of the clumps observed in giant 
molecular cloud complexes. These structures are characterized by size scales L rv 2 - 5 pc 
and column densities (7(X) 0.01 g cm-2 , thereby implying central densities on the orderrv 

of n 500 cm-3. Furthermore, typical temperatures and field strengths are found to berv 

T rv 10 K and B rv 30j.LG, respectively (for a discussion on the physical properties of cloud 
environments, see e.g. Mouschovias 1987; Heiles 1987; Falgorne & Puget 1988; Blitz 1992; 
and references therein). 

5.1 The Magnetoacoustic Waves 

The geometry presented in §3, where we study magnetoacoustic waves, corresponds to 
a state of maximal magnetic support. Equations (3.1) and (3.2) therefore imply a relation 

2between the magnetic field and the total supported column density Bo = 47rG l / (7(X). By 
considering a slab with extension in y and z of length 2R, one finds that the mass supported 
by the enclosed magnetic flux is equal to the magnetic Jean's mass (Shu et. al 1987) . 

For typical clump column densities, the magnetic field strength at the slab center (in 
our model) is B ~ 30j.LG, in rough agreement with observations. Furthermore, the scale­
height R is not constrained to any specific value, and may be chosen to fit any observational 
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data. This finding confirm~ the well known resuLt that a static magnetic pressure is capable. 
of providing cloud support across the field lines. As such, the finding that magnetohydro­
dynamic waves may in fact compress the initially static fluid is not in contradiction with 
observations. Indeed, since the magnitude of the compression force scales as (kR)-4, the 
resulting effects must be negligible for the wave modes considered here. 

The propagation of MHD waves through a medium results in velocity fluctuations of 
the entire fluid. Assuming that the observed molecular lines have a characteristic width 
~v which scales as the amplitude of the fluid velocity (i.e., ~v '- lVII), we find that our 

results reproduce the observed parametric relation ~v '- P; 1
/2. Since the Alfven speed 

scales similarly (i.e., Va ex p- 1/ 2 ), it has been suggested that ~v also scales as Va (e.g., 
Elm egreen 1990). For the present case, however, the Alfven speed is constant throughout 
the cloud region, but the velocity amplitudes of our waves do increase with distance from 
the cloud center. In the limit that magnetic diffusion is ignored, we find 

1 2 1]1/2 
~v = VIO [(1 + k2R2 )cosh (~) - k2 R2 . (5.1) 

This result is consistent with the general observational feature that line-widths increase 
away from the cloud center, although the observed spatial relationship ~v ~1/2 is not"J 

found here (see, e.g., Myers & Fuller 1992). However, this discrepency is not surprising 
due to the limitations of our geometry. 

Several dissipative mechanisms exist in molecular clouds that may playa significant 
role in the propagation of MHD waves. Although we do not consider the important nonlin­
ear processes of wave steepening and mode-mode coupling (Zweibel & Josafatsson 1983), 
we do include the dissipative effects of magnetic diffusion. Notice that for these former 
effects the resulting damping lengthscale for waves produced at the origin is comparable to 
the wavelength. We note, however, that the density in physical clouds is observed to scale 
as P "J ~-1, corresponding to an ion density that scales as Pi ~-1/2. In contrast, the"J 

density of the magnetically supported slab is proportional to sech(~) "J exp( -~), and as a 
result, the dissipative effects in our model become much more pronounced with distance 
than in actual clouds. Indeed, consider that in real clouds, the neutral coupling scales as 

1 k- 1(pi,)-l "J ~1/2, whereas the characteristic Alfven time scales as w- "J ~. This"J 

finding implies that the damping effects in these environments become less important as 
the scaleheight increases. This behavior is opposite to what is found in the slab geometry, 
where the neutral coupling time (pi' )-1 exp( ~). Thus, it is clear that the ion-neutral"J 

dissipative effects have an artificial ~ dependence resulting from the assumed geometry, 
and the limiting case , ~ 00 may be more representative of actual physical situations. 
Alternatively, a cloud with an initial slab-like density profile may be strongly modified by 
the resulting wave pressure, and ultimately end up with a enhanced density profile more 
favorable to wave propagation. A proper treatment of such an effect is beyond the scope 
of simple linear theory, and should be the subject of future work. 
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5.2 The Alfven Wave" 

We now consider the case of Alfven waves. For the thermally supported slab presented 
in §4, equations (4.1) and (4.2) indicate that the observed column densities correspond to 
a cloud scale-height R ,..... 0.02 pc (along, the field line direction), in sharp contrast to the 
typical cloud scalelengths of ,..... 2 - 5 pc. Thus, nonthermal processes must be present 
and must provide a supporting pressure along the field line direction; the results of §4.3 
indicate that outwardly propagating Alfven waves are a viable candidate. Although the 
effects of wave damping due to ion-neutral slipping have been ignored, it is reasonable to 
assume that their inclusion only adds to the cloud support by providing a steeper pressure 
gradient. We emphasize, however, that our results are limited in that their validity breaks 
down when (P2) is comparable to Po. As a result, this simple linear theory is inadequate 
to calculate any appreciable cloud support. In light of this complication, a more complete 
semi-linear treatment of the problem is currently being considered. 

As discussed in §5.1, the propagation of l'vIHD waves through a medium results in 
velocity fluctuations of the entire fluid. Using the same assumption for the relation between 
the characteristic widths of the observed molecular lines and the fluid velocity, we find that 

(5.2) 


where we have taken the limit that magnetic diffusion is negligible. Although the general 
observational feature that line widths increase with "radius" is exhibited by our solutions, 
they do not fit the observed spatial relation ~V ,..... ~1/2. Notice that the Alfven speed Va 

has an even stronger dependence on ~ than does VI x. In contrast to the magnetoacoustic 

waves, these Alfven waves satisfy a parametric relation ~V ,..... p-;1/4. These results could 
partially be an artifact of the initial density profile, which is not characteristic of the 
observed clouds, and is expected to be strongly modified by the presence of these waves. 
It is interesting that the wave amplitude may be described by the relation ~v ,..... (p2)-1/2, 
in analogy to the observations. 

As with the magnetoacoustic waves, the effects of magnetic diffusion play an important 
role in Alfven wave propagation. For reasonable cloud parameters, these waves are found 
to damp on lengthscales shorter than wavelength. A discussion of the interpretation of 
these results is similar to that given for the magnetoacoustic waves in §5.1. 

6. SUMMARY AND CONCLUSIONS 

In this paper, we have studied how MHD waves propagate through nonhomogeneous, 
self-gravitating media representative of molecular cloud environments. In order to obtain 
analytic results, we have considered two simplifying slab geometries. In particular, we have 
considered magnetoacoustic wave propagation in a magnetically supported slab, and Alfven 
wave propagation in a thermally supported slab. Although these simplifying geometries 
are somewhat artificial compared to actual physical clouds, some general conclusions can 
be made: 

(1) 	The MHD wave component of the fluid velocity increases with decreasing density. 
Assuming that this velocity characterizes the molecular line widths, we find that this 
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result is in rough agreement with observations, although we do not reproduce the 
spatial relationship Av ex ~l /2. We stress, however, that magnetoacoustic wave prop­
agation in this geometry does reproduce the observed relation between density and 
linewidth Av "oJ p- 1/ 2 • For the Alfven wave propagation, we obtain the relationship 
Av p~1/4, which is in qualitative but not in quantitative agreement with observa­"oJ 

tions. 

(2) 	Alfven waves are capable of providing support along the field line direction, even in 
the absence of damping. The wave motion results in a second order time averaged 
back-reaction force which is exerted on the background fluid. For Alfven waves, this 
time-averaged force is capable of providing considerable density support. For the mag­
netoacoustic wave scenario, this force compresses the unperturbed state, although the 
overall effect is minimal since the magnitude of the force scales as (kR)-4. We stress 
that the back-reaction force does not result from wave-damping and is independent 
of the propagation direction. 

(3) 	Magnetic diffusion may play an important role in cloud dynamics and can result in 
strong wave dissipation and subsequent momentum transfer to the fluid. However, 
the results found for our simplified geometries are in conflict with observations in 
that the effects of magnetic diffusion become more pronounced away from the cloud 
center. In addition, we note that competing nonlinear dissipative mechanisms (i.e., 
wave steepening and mode-mode coupling) have been ignored, and should be included 
in future work. 

The idea that observed line-widths in molecular clouds is due to MHD wave motion has 
been discussed previously (Arons & Max 1975; Zweibel & Josafatsson 1983). This paper 
is an extension of previous work in that we calculate how velocity perturbations behave 
in nonuniform media. However, a complete treatment which simultaneously considers 
dissipation, nonlinearity, and nonuniformity is still needed. 
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APPENDIX A: FIRST ORDER EQUATIONS 

In this Appendix, we write down the linearized forms of equations (2.6) - (2.10) to 
first order. In the applicable limit that Ivd I ~ lVII, the Vo terms are justifiably ignored. 
Substituting solutions of the form given by equation (2.17), we find that the first order 
equations reduce to 

_ r7;r,. 2 r7 (PI) (V'XBI)xBO-ZWVI - -V'1'1 -a..,v - + 	 + 
Po 47rpo 

(V' x Bo) X Bl PI (V' x Bo) x Bo 
(AI)

Po 
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(A2) 


where 

Dl = \7 x [ 1 3/2 {[(\7 X B I ) x Bo] x Bo + [(V' x Bo) x B I] x Bo+ 
47r,CPo 

[(V' x Bo) x Bol 	X Bl - G:J [(V' x Bo) x Bol x Bo }] , (A3) 

-iwPI + V' . (VI 	PO) = 0 , (A4) 

and 
\7 2 <I>I = 47rGpI . (A5) 

These equations 	may be combined to yield 

2 2 2 [\7. (pO V I ) j
w V'. VI = -as V' po - 47rGV' . (POVI)­

V'. [(V' x {V' x 	[VI X Bon) x Bo + (V' x Bo) x {V' X [VI x BOn)j_ 

47rpo 47rPo 


V'. [V'. (POVI) (V' x Bo) x Boj_ V'. [(V' x D 1 ) x Bo + (V' x Bo) x Dlj , (A6) 
po 47r po 47r po 47rPo 

and 

(V' x {V' X [VI X 	 Bon) x Bo + (V' x Bo) x {V' X [VI x BOn)j_ 
W 

2V' x VI = - V' 	X [ 47rpo 	 47rpo 

V' X [V'. (POVI) (\7 x Bo) x Boj_ V' x [(V' x D 1 ) x Bo + (V' x Bo) x Dlj. (A7) 
Po 47r Po 47rPo 47rPo 

Notice that in the fully coupled fluid limit (i.e., , ~ 00) equations (A6) and (A7) decouple 
from the other first order equations. 

APPENDIX B: SECOND ORDER EQUATIONS 

In this Appendix, we write down the linearized forms of equations (2.6) - (2.10) to 
second order. For simplicity, we assume that the ions and neutrals are perfectly coupled, 
so that Vo = 0, and the , terms are ignored. Substituting solutions of the form given 
by equation (2.18) and time-averaging over one Alfven time, the second order equations 
reduce to 

2('tI) ('tI.r1i.) ()'tI.r1i. (V' x (B2 )) x Bo (V' x Bo) x (B 2 ) _ (f.)
as v P2 + po V'1'2 + P2 v '1'0 - 47r - 47r - 2 , (B1) 

where 

(B2) 
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v x 	((VI X B I) + (V2) X Bo) = 0 , (B3) 

V . ((VI PI) + (V2) PO) = 0 , (B4) 

and 
(B5) 

where ( ) symbolizes the time-averaging operation, and the time-average of a time d~riva­
tive is 	assumed equal to zero (see §202). 

These equations may be combined to yield 

In obtaining equation (B6), we have used the zeroeth and first order equations of motion 
to eliminate the gravitational potentials <Po and <PI, respectively. 

APPENDIX C: THE r PARAMETERS 

In this Appendix we define the r parameters introduced in §3.2. These are: 

2 	 2r pR 	= - k~ [~(1 + k R2)(3 + 2k2 R2)k2R cosh(O+ 

(4 -	 12k2 R2 + 2k4 R')sech(~) + (-38 + 20k2R2)sech3W + 40sech5W], (C3) 
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r BR = ~~ [(1 + k2R2)(2 + k2R2)k2R2cosh(O+ 

~(4 -17k2R2 + 3k4R4)sech(~) + (-28 + 16k2R2)sech3 (O + 32seCh5 (O] + 

~~~~ [~ (-3 - 5k2R2 - 2k4 R4 )cosh(0 + (1 - k 2R2 )sech(~) - 2sech3 (0] , (C5) 

and 

(C6) 
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FIGURE CAPTIONS 


Figure 1. The density profile of linear magnetoacoustic waves in a magnetically supported 
slab, where neutrals and ions are perfectly coupled. The sound and Alfven speeds of the 
fluid are as = 0.1 km S-1 and VOl = 1.0 km S-I, respectively. The perturbation velocity 
is characterized by VIO/VOI = 0.1, and the wave phase <p is determined by applying the 
boundary condition Plle=o,t=o = o. The solid curve corresponds to kR = 3; the short­
dashed curve corresponds to kR = 6; and the long-dashed curve corresponds to kR = 10. 

Figure 2. The parameter 7] == Ipl;:;I/lpl;ol as a function of ~, where PI;:; is the part of the 

wave density due to the first order ::y-l corrections, and PliO is the wave density in the 
absence of the corrections. The solid curve corresponds to kR = 3; the short-dashed curve 
corresponds to kR = 6; and the long-dashed curve corresponds to kR = 10. 

Figure 3. The dashed curve corresponds to the density profile for the same case as was 
presented in Figure la, but with first order =y corrections included (for kR = 3). For the 
purpose of comparison, the solution from Figure 1a is also included and represented by 
the solid curve; the dotted curves correspond to the amplitude of this density profile. 

Figure 4. The time-averaged second-order density profile (in arbitrary units) resulting 
from magnetoacoustic wave propagation in a magnetically supported slab. 

Figure 5. The magnetic field strength profile for linear Alfven waves in a thermally sup­
ported slab. The sound and Alfven speeds of the fluid are as = 0.2 km s-1 and VOl le=2 = 1.0 
km S-I, respectively. The wave phase 1> is determined by applying the boundary condition 
Plle=o,t=o = o. The two curves correspond to the following cases: (a) ]{R = 6 (::y = 7.5); 
and (b) K R = 10 (::y = 4.5). 

Figure 6. Same as Figure 5, but in the artificial limit that ::y ~ 00. 

Figure 7. The full time-averaged density profile (up to second order) resulting from 
Alfven wave propagation in a thermally supported slab. The solid curve represents the 
unperturbed state. The dashed curves correspond to the density profiles for the fol­
lowing cases: (a) (BlXO /Bo)(v;le=o/4a;) = 0.1; (b) (BlXO /Bo)(v;le=o/4a;) = 0.25; (c) 
(Blxo /Bo)(v;le=o/4a;) = 0.5. 
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