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Abstract 

A mass relation of p and al mesons is obtained from both Weinberg's first sum rule 

and KSFR sum rule. By applying SU(2)L X SU(2)R chiral symmetry, current algebra, 

and VMD two new sum rules of the amplitude of al ~ p7r are found. The expression 

of the amplitude of al ~ p7r is presented in the limit of P7r ~ 0 in terms of the new 

mass relation. 
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One of the most important features revealed, from quantum chromodynamics (QeD) is 

the chiral symmetry in the limit of mq ---+ 0 (q = u, d, s). For a long time, it is well known 

that the p and al mesons are chiral partners[l]. Two Weinberg's sum rules[2] of p and al 

mesons have been established 
F2 

1r (1)4' 

(2) 

where 

< OIVlLalp~ >= t~8abgp, 

< OIA:la~ >= t~8abga, 

and F1r is pion decay constant, F1r = 186MeV. The mass relation 

(3) 

is the consequence of Eqs.(1),(2), and the KSFR sum rule[3] 

(4) 

The determination of al meson has a long history. It was finally established in diffractive 

production[4] and charge-exchange production[5]. However, the extraction of the mass and 

the width of al resonance is troubled by the presence of a coherent background, attributed to 

the Deck effect[6]. The three -pion final state of T decay[7] presently offers the best conditions 

to study the al resonance parameters. The determination of mal and f( T ---+ alv) enables 

us to test the Weinberg's two sum rules directly. Let us test the Weinberg's first sum rule 

first. 9p is the coupling constant between p and I and it has been determined to be 

gp = 0.116(1 ± 0.05)GeV2 (5) 
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from f(p ---+ Z+Z-). Using rna = (1230 ± 40)MeV, Weinberg's first sum rule(Eq.(l)) predicts 

that 

ga = 0.145 ± 0.018Ge V 2 
• (6) 

On the other hand, ga can be determined from 

G2 3 2 2 

f( 28 2rnr ( rna)2( rna) (7)T ---+ a1 v ) = -cos cga-2 1 - -2 1 +2- . 
87r rna rnr rnr2 

The experimental data of the decay rate is[8] 2.14 X 10-13 (1 ±O.32)GeV and ga is determined 

to be 0.145 ± 0.033Ge V 2 • Therefore, Weinberg's first sum rule is in good agreement with 

the data. From Ref. [2] we have learned that Weinberg's first sum rule is a result of chiral 

symmetry, current algebra, and Vector Meson Dominance(VMD)[2]. We abbreviate chiral 

symmetry, current algebra, and VMD as CHCV. The agreement evidences that CRCV work 

well in studying hadron physics at low energies. 

On the other hand, the present value of rna and the values of gp and ga show that 

Weinberg's second sum rule(Eqs.(2),(3)) is not in good agreement with the data. However, 

Eq.(3) is widely quoted in the studies of meson physics. It is known that besides CHCV an 

additional assumption is invoked in deriving Weinberg's second sum rule. Therefore, it is 

significant to find the mass relation between the two chiral partners, p and al mesons, only 

based on CHCV. In order to do that let us rewrite Eq.(l) as 

(8) 

Substituting KSFR sum rule(Eq.( 4)) into eq.(8) we obtain 

(9) 

Using the values of ga and gp, it is found 

rna = 1.36(1 ± 0.17)GeV (10) 
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Theoretical prediction of Eq.(9) fits the data of rna better. One of the purposes of this short 

note is to point out that the combination of Weinberg's first sum rule and KSFR sum rule 

leads to a new mass relation of p and al mesons. 

Now we can ask a question that if we get rid of the additional assumption made in Ref. [2] 

what can we learn from Eq.(18) of Ref. [2](see Eq.(17) of this note)? The Eq.(18) of Ref. [2] is 

used to derive the second sum rule by invoking an additional assumption. In order to show 

that in the Eq.(18) of Ref. [2] a factor of two has been lost we start from the Ward identity 

presented in Ref. [2] 

(11) 

where 

-if.abcM~l/>' = Jd4 xd4 y < OIT{A~(x)Ab(y)Vc>'(O)}IO > exp{ -iqx - ipy}, (12) 

ipy8ab~V>'(P) = i Jd4 ye- < OIT{V:(y)Vb>'(O)}IO > . (13) 

Following Ref. [2] and setting q~ = 0 in Eq. ( 11 ), on the left hand side of the Eq. ( 11) only 

pion poles survive. In this limit, Eq. (11)now reads 

. M~l/>'I ­-ZEabcqp. ql'-+O ­

F7r Jd4 ye- ipY k. q{ B(yo). e-i(qo+ko)Yo < 7ra(k = -q, ko)IAb'(y)Vc>'(O)/O > 
2ko qo + ko - 'lc 

+ ()(~yo). < 1l"a(k = -q, ko)Iv".\(O)A;;(y) 10 > 
qo + 0 - 'lc 

k ()(yo) . < OIA;;(y)v".\(O)I1l"a(k = q, ko) > 
o - qo - 'lc 

k O( -Yo) . e,(ka-qa)ya < OlVc.\(O)A;;(y)l1l"a(k = if, ko) >}. (14) 
o - qo - 'lc 

In Eq.(14) the pion is on mass shell and in the chirallimit, ko = 1cJ1. \Nhen k = -qthere is 

k·q 1 1 
(15)

2ko qo + ko - ic 2' 

4 




and when k = qwe have 
k·q 1 

2ko ko - qo - ic 
1 

2 
(16) 

In the limit of qJ1. -t 0, the 4-momenta of the pion states in Eq.(14) are zero. Considering 

this fact and substituting the two equations(15,16) into Eq.(14), we obtain 

Comparing with the Eq.(18) of Ref. [2], there is an additional factor of two in Eq.(17). This 

new factor does not affect Weinberg's second sum rule. However, this factor is important 

for the study of this note. In Eq.(17) ~V(p) has p meson pole and ~:l(p) has both pion 

pole and al meson pole. The left hand side of the equation(17) should have these three 

poles. Therefore, multiplying both sides of the equation by p2 - m 2 and letting p2 -t m 2 , 

the corresponding pole term can be picked out from the equation, where m 2 is pion mass(in 

chirallimit pion mass is zero) , p meson mass, and al meson mass respectively. In order to 

find the poles the left hand side of the Eq.( 17) is rewritten as 

F7r Jd4ye- ipy < 7raIT{A~(y)V;(O)}IO >= 

Jd4y{B(yo)e-ikYiF7rkl/ < 7ra7rb(k)IVc'\O)IO > +B(Yo)eikY(-)iF7r kl/ < 7raIV;\O)I7ra > 

+()(Yo)e-ikYgpc~*(k) < 7raIA~(O)lp~(k) > +B(Yo)eikYgpc~(k) < 7rap~(k)IA~(O)IO > 

+()(Yo)e-ikYgac~(k) < 7raab"(k)IV;(O)IO > +()(Yo)eikYgac~*(k) < 7ralV:A(O)lab"(k) > H18) 

After using VMD, the following formulas are obtained 

< 7raly::A(O)I7rb(k) >= iEabcgpjp7r7r k:, 
mp 

< 7ra7rb(k)Iy::A(O) 10 >= - iEabcgpjp7r7r k:, (19) 
mp 

where jP7r7r is the coupling constant of the decay of p -t 27r in the limit of P7r -t O. Using 

VMD, other four matrix elements in Eq.(18) are related to the decay of al -t p7r. The vertex 
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of this decay can be written as 

(20) 

where A and B are functions of momenta of aI, p, and 1r. In Eq.(18), the 4-momenta of the 

state 17ra > are zero, therefore only the amplitude A contributes to these matrix elements of 

Eq.(18) and the amplitude A is defined in the limit of P7r = O. Using Eq.(20) and VMD we 

obtain 

< 7raIA~(O)lp~(k) >= -EabcgaA(m~)cl1(kt 1 2'2 
mp-ma 

< 7rap~(k)IA~(O)IO >= -EabcgaA(m~)cl1*(k)V 1 2. (21)2 
mp -ma 

In Eq.(21), due to k2 = m~, we have A(k2) = A(m~). In the same way, two other matrix 

elements of Eq.(18) are written as 

< 7ra Iy::A(O) lab" (k) >= -EabcgpA(m~) . 2 1 2 EI1 (k)\ 
ma -mp 

< 7raab"(k)Iy::A(O)IO >= -EabcgpA(m~) 2 1 2 EI1*(k) '\ (22) 
ma -mp 

It is necessary to point out that because of the linut of P7r = 0 in Eq.(17), the amplitude 

A is function of k2 where k is either the momentum of p or al. It has been found that 

k2 = m~ in Eq.(21) and k2 = m~ in Eq.(22). Substituting the six matrix elements(19,21,22) 

into Eq.(18), the pole terms on the left hand side of the Eq.(17) are found to be 
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By applying the VMD to the right hand side of the Eq.(17), the pole terms are obtained 

v A 1 v A 1 v A 
'p2P P . 2 (VA P p) . 2 (_gVA + P P ).
Z 1r -2- + zgp 2 2 -g + -2- + zgap2 _ m2 (24)

P P - mp P a 
m 

a 
2 

Multiply both sides of Eq.(l7) by p2 and set p2 = 0, the pion pole is picked out and the 

following relation is found 

(25) 


Multiply Eq.(17) by p2 -m; and set p2 = m;, the p pole is picked out and the second relation 

is obtained 

(26) 


Multiply Eq.(17) by p2 - m~ and set p2 = m~, the al pole is picked out and the third relation 

is derived 

(27) 


The first relation is well known from VMD [9]. It has been pointed out by Brown and 

Wess[lO], Schnitzer and Weinberg[ll] that the amplitude A determined in the soft pion 

limit(p1r ~ 0) is far away frorn the physical amplitude of the decay al ~ p7r and they have 

applied the hard pion approximation[lO,ll] in this decay. However, because Eqs.(26,27) are 

based on CHCV and CHCV are very general, then these two equations can serve as the 

constraints on effective chiral · theories in which p and al mesons are included. In other 

words, in the limit P1r ~ 0 the amplitudes of the decay al ~ p7r derived from an effective 

chiral meson theory must satisfy the two equations(26,27) obtained from CHCV. Use of the 

new mass formula(Eq.(9)) leads to the determination of the amplitude A in the limit of 

P1r ~ O. Following Schnitzer and Weinberg[ll] the amplitude A can be written as a simple 

polynomial in 4-momenta in the limit of P1r = 0 

7 




By using the new mass formula(Eq.(9)) and the two new sum rules(Eqs.(26),(27)) we obtain 

In the limit of P1r ---+ 0, the amplitude A is determined to be 

(28) 

This amplitude is in unphysical region and cannot be used to calculate the decay width of the 

al meson. On the other hand, the soft pion approximation( P1r ---+ 0) is used in deriving the 

KSFR sum rule (Eq.(4)) and Eq.(25) too and the coupling constant jP1r1r of the decay p ---+ 7r7r 

in the KSFR sum rule and the Eq.(25) is in unphysical region. However, both the KSFR 

sum rule and the Eq.(25) are in good agreement with the data. In Refs.[12] an effective 

chiral theory of mesons have been proposed and the physics of the pseudoscalars, vectors, 

and axial-vector mesons have been studied. The theoretical results are in good agreement 

with data and the Weinberg's first sum rule is satisfied analytically. This theory provides 

an explanation to that why soft pion approximation works on p ---+ 7r7r and doesn't work on 

al ---+ p7r. In this theory jP1r1r is almost independent of the momenta of pions, however, the 

amplitude A of al ---+ p7r strongly depends on P1r and there is cancellation in the amplitude 

A. Because of these two factors the soft pion approximation doesn't work on al decay. The 

theoretical significance of Eqs.(26,27,28) is that in order to satisfy CHCV, the amplitude A 

derived from any effective chiral theory must satisfy Eqs.(26,27,28) in the limit P1r ---+ o. As 

an example, the expression of A(Eq.(28)) can be derived from Refs.[12]. 

To conclude, a new mass relation between p and al mesons is presented in terms of both 

Weinberg's first sum rule and KSFR sum rule. In the limit of P1r ---+ 0, two new sum rules of 

al decay amplitude and the expression of the an1plitude of al decay are obtained based on 

CHCV. 
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