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ABSTRACT 


This work consists of two parts. The first part deals with the study of decays of heavy 

flavor baryons (baryons containing one heavy quark). The form factors describing the 

decay of a heavy flavor baryon to a light baryon are studied in the heavy quark limit. 

The results for the form factors are used to calculate nonleptonic and semileptonic 

decays of the heavy flavor baryons. 

The second part of this work concerns the effects of Planck scale corrections (from 

higher dimensional gravity induced operators) on the low energy predictions of 50(10 ) 

and the supersymmetric SU(5) grand unified theories . In particular we show that the 

Planck scale corrections can allow a low Left-Right symmetry scale MR ;:::; T e V wi thin 

a 50(10) grand unified theory which is consistent with precision measurements of the 

Standard model gauge coupling constants at LEP. In supersymmetric SU(5) we show 

that the effects of gravity induced dimension six operators can dest.roy the prediction 

of o:.(Mz ) unless the color triplet higgs mass is constrained to be below 7 x 10 16Ge\/ 

IV 



TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ii 


ABSTRACT .... .. ... .... .. ...... . .. . .... .. .. .. ...... ..... .. . ... iii 


LIST OF TABLES ... . . . IV 


LIST OF FIGURES .. . . ... .. .... . .. ...... ......... ............ .. V 


INTRODUCTION ... . ............... .. ................... .. ...... . 


CHAPTER 1. GENERAL CONSIDERATIONS .. .. . . . . 4 


1.1 Electroweak (SU(2h x U(I)) interactions ... 4 


1.2 Strong Interactions .... . ............... . 6 


1.3 Heavy Quark Effective Theory ........... . ................ . . . .... 16 


1.4 The Effective HQET Lagrangian 19 


1.5 Soft Pion Techniques ... .. .. .. .. ... .. . .. . ........ ... .. .. ..... .. ........ 25 


v 


Bibliography .. 27 


CHAPTER 2. l/mQ CORRECTION TO FORM FACTORS . . . .. 29 


Bibliography . . ........... ... ... . . .. . .... ... . .......... 43 


CHAPTER 3. NONLEPTONIC DECAYS OF HEAVY FLAVOR BARYONS 45 


3.1 Introduction .. . .... ..... . 45 


3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . ..... . . . .......... .. . ... .. so 


3.3 Results ..... . . .... . .. ... . 57 


Bibliography .... .. 61 


CHAPTER 3. SEMILEPTONIC DECAYS OF Ac and Ab BARYONS . 63 


4.1 Introd uction .. . . .. ... ..... . .. . .. . . ........... 63 


4.2 Formalism 64 


4.3 Results .... . . ........ . . .. 67 


vi 



Bibliography ... .. .. .... ... . 75 


CHAPTER 5. GENERAL INTRODUCTION TO GRAND 


UNIFIED THEORlES .. . . . . . ............... . ...... . . . . .. .. ... . ... .... . .. _. 77 


5.1 Choosing The Gauge Group . . ... ..... .. . ..... ..... . .... ... ... . .. ...... 80 


5.2 Phenomenology Of General GUT .... .. ........... . ...... . ............ 81 


5.3SU(S) ... . . ... . ......... .. .... 84 


S.4 Supersymmetric GUT . . . . . . . . . . . . . . . . . . . . . _... 92 


5.5 SUSY GeT And Sugra Models .............. ... . . . 75 


S.6 50(10) group ... . .. .. .. .. .... 99 


Bibliography . ... .. . . . . . .... . . .. . .. . ... 102 


CHAPTER 6. EFFECTS OF HIGHER DIMENSIONAL 


OPERATORS IN 50(10) ... .... ........ .. .... . . . . . . .. . . . .. ..... . ....... 104 


vii 

Bibliography .. . . 123 

CHAPTER 7. EFFECTS OF HIGHER DIMENSIONAL OPERATORS IN Sl!SY 


SU(5) GUT .. . .. . .. . .. .. ... . ... ... . .. .. .... . .. . . . ...... . ...... .. ...... , . . . 127 


7.1 Results ..... . . ... . ...... . . . .. _. 132 


Bibliography ..... . " . . ... . . .. .. . ...... 109 


APPENDIX. SOME 50(10) RELATED RESULTS ........ .. 101 


A.l D Parity 137 


A.2 One And Two Loop f3 Functions . 138 


A.3 Generalized Pauli Matrices 141 


A.4 Left-Right Symmetric Model ..... 141 


VLll 



119 LIST OF TABLES TABLE 6.3 Higgs bosons at M{ 

TABLE 3.1 Decay rates for charmed baryon decays to a light baryon and a TABLE 6.4 Allowed regions of the gravity couplings that allow low MR 


pseudoscalar .. .. 58 for the D-nonconserved non-SUSY case 123 


TABLE 3.2 Decay rates for charmed baryon decays to a light baryon and a TABLE 7.1 Allowed ranges of (Y. for various MIT 136 


vector meson . . . . . . ..... .. .... . .. ... .. .... ............ . . ....... ..... ..... . 58 


TABLE 3.3 Decay rate and asymmetry for I\.c -+ p¢ . .. .. ...... .. ....... . . 59 


TABLE 3.4 Decay rate and asymmetry for I\.b -+ I\.J/1/J ... . ... .. 59 


TABLE 3.5 Form factors for I\.c ---. A at q;"ax .. 59 


TABLE 3.6 Form factors for I\.c ---. I\. at q2 = 0 .. .. . . .. . . . . . . 59 


TABLE 3.7 Form factors for I\.b ---. I\. at q;"ax . . . ... .. .... ....... . .... ..... ...... 59 


TABLE 3.8 Form factors for I\.b ---. I\. at q2 = 0 ... .. ...... . ...... . . ...... .. ... .. 59 


TABLE 6.1 Higgs spectrum at different mass scales ...... ..... . ..... ... . . 117 


TABLE 6.2 Higgs bosons at Mu . .. . . ... .. . ... . .. .. .. ...... . .... ........ .... . 118 


ix x 



LIST OF FIGURES 

FIG URE 1.1 The various stages in the construction of effective theories . .... .. . 11 


FIGURE 1.2 The expansion of G~1/!(Oi) in Feynman diagrams .... . . . . . 15 


FIGURE 1.3 Feynman rules in heavy quark effective theory . . . . .. ........ . . ... . 20 


FIG URE 1.4 The diagrams responsible for the origin of the 1/2mQ terms 


in the effective theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 


FIGURE 4.1 Semileptonic decay diagram . . . . . . . ..... ... . . ..... .... . 65 


FIGURE 4.2 Asymmetry a versus q2 for various T . . . . . . . . . 68 


FIGURE 4.3 Asymmetry a (q2 = 0) versus T . ...... . . . . . 69 


FIGURE 4.4 Average asymmetryies ( un polarized case) versus T .. . .•. . 70 


FIGURE 4 .5 Average asymmetryies ( polarized case) versus T ..... . . ... ... 71 


FIGURE 4 .6 Ratio of decay rates versus T .... . ...•.. • . . .. ......... . . .... 72 


xi 

FIGURE 5.1 Evolution of gauge couplings . 82 


FIGURE 5.2 Proton decay diagrams 85 


FIGURE 5.3 X and Y boson coupling to fermions 89 


FIGURE 5.4 Diagrams for L H mixing. . . . . .. . . . . .. ... . .. .. 91 


FIGURE 5.5 Particle content of MSSM 94 


FIGURE 5.6 Radiative corrections to the higgs mass in SUSY models 74 


FIGURE 6.1 Allowed regions for the gravitational couplings that allow 


low MR for the D-conserved non-SUSY case. 119 


FIGURE 6.2 Allowed regions for the gravitational couplings that allow 


low MR for the D-conserved SUSY case. 120 


FIGURE 6.1 Allowed regions for the gravitational couplings that allow 


low MR for the D-nonconserved SUSY case. 121 


FIGURE 7.1 Prediction for a.(Mz ) versus the colot triplet 


higgs mass Mtr in SUSY SU(5) GUT. . .. .. . ... . ..... . . ... .. . .. .. 133 


xii 



INTRODUCTION 

Heavy Quark Effective theory and grand unified theories are two major areas of 

research in particle theory. The discovery of additional symmetries in systems con­

taining a heavy quark has considerably simplified the study of such systems. One 

of the several important applications of the heavy quark effective theory (HQET) is 

the determination of CKM matrix elements with small theoretical error . HQET has 

been used extensively to study heavy mesons but not much work has been done with 

heavy baryons . In this work we study the decays of heavy flavor baryons in HQET. 

In chapter 1 we discuss the general features of the Standard model relevant to weak 

decays of hadrons and the heavy quark effective theory. 

Following the precision measurement of the Standard model gauge coupling con­

stants at LEP it has been observed that when the gauge couplings are evolved from 

their measured values at the Z mass then they appear to meet at a single point (indi­

cating unification of gauge couplings) in SUSY SU(S) grand unified theory. This has 

generated a lot of interest in the area of grand unified theories (G UT). The second 

part of this work deals with the effects of higher dimensional operators, induced by 

gravity, on the low energy predictions of grand unified theories . In chapter 5 we give 

an introduction to grand unified theories. 

The first part of this thesis is concerned with the the study of heavy baryon 

(containing one heavy quark) nonleptonic and semileptonic decays using the idea of 

Heavy Quark Effective Theory. In chapter 2 a heavy quark analysis of the heavy to 

light transitions in baryons is carried out up to order l/mQ where mQ is the heavy 

quark mass. In the infinite heavy quark mass limit only two form factors describe 

the transition of a heavy Lambda type baryon to another light baryon. A Lambda 

type baryon is a system where the heavy quark determines the spin and isospin of the 

heavy baryon as the light degrees of freedom in the heavy baryon are in a spin zero 

and isospin zero state. When the l/mQ corrections to the form factors are considered 

several new matrix elements have to be evaluated. These matrix elements are fixed , 

with the help of some simplifying assumptions, from the data on nonleptonic decays of 

charmed baryons. The calculated form factors are then used to study the nonleptonic 

( chapter 3) as well as the semileptonic decays (chapter 4) of the charmed and the 

bottom baryons. Of particular relevance is the semileptonic decay of the Ac as the 

CLEO experiment has data on this decay which can be used to test our calculation 

against other existing calculations. The semileptonic decay of the Ab is also important 

as this decay offers an independent extraction of the CKM matrix element lVubl 

The second part of this thesis involves the investigation of gravity induced higher 

dimensional operators in grand unified theories(GUT). In modern GUT's the uni­

fication scale is higher , typically of the order 10 16 GeV which is not very far from 

the effective Planck scale 2.4 x 10 18GeV and it is likely that quantum gravity effects 

will effect GUT predictions at low energies. This work considers two problems; the 

first (described in chapter 6) studies the effects of higher dimensional operators in 

a SO(lO) GUT Lagrangian breaking down to the Standard model through the Pati­

Salam and the Left-Right symmetric group. It is shown that in the presence of higher 

dimensional operators it is possible to satisfy the LEP constraints on the measured 

couplings of the Standard model and still have a Left-Right breaking scale of '" Te V . 

This fact has several important phenomenological implications. The second prob­

lem ( chapter 7) deals with the the effects of higher dimension operators in SC(5) 

SUSY(supersymmetric) GUT and considers for the first time effects of dimension six 

and higher operators on the prediction of the strong coupling constant at the Z mass 
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scale . It is shown that the the effects of higher dimensional operators can spoil the 

low energy prediction of 0', in SUSY SU(S) GUT unless the heavy color triplet higgs 

has a mass :5 7 x 1016 GeV. 
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CHAPTER 1 

GENERAL CONSIDERATIONS 

In this chapter we discuss some general ideas about weak decays of hadrons. The 

subject of low-energy semileptonic and nonleptonic interactions is fairly old with its 

experimental foundations already well established by the 1960's. Since the 1960s, 

very profound changes have occurred in our understanding of weak interactions. :---iew 

ideas based on the principle of local gauge invariance provide a unified description of 

the weak and electromagnetic interactions and inspite of striking differences in their 

observed characteristics, both the interactions have been shown to be two different 

manifestations of a single, more fundamental, electroweak interaction. The principle 

of local gauge invariance has also been applied to the strong interactions resulting in 

the construction of quantum chromodynamics(QCD) . QCD is closely related to the 

electroweak theory and it is hardly possible to separate them. This fact is clearly 

evident in weak decays of hadrons where the electroweak and the strong interactions 

are inextricably linked. QCD along with the electroweak theory constitute the the 

very successful standard model of high energy physics. In the next section we give a 

brief description of the standard model. 

1.1 Electroweak(SU(2)L X U(l)) interactions 

According to this model developed by Glashow- Salam - Weinberg [1] the chiral quarks 

transform under the operation of weak isospin as doublets if left-handed 

(11 )(~/)L'(;/)L'(:')L 
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and singlets if right-handed 

UR, dR, cR, sR, bR, tR ( 1.2) 

There is mixing among the left-handed quarks, 

d;) _ (VUd Vu 
• 

S - Vcd Vc~ ( 1.3) (
b' Vr. ~:) (;)Vtd 

where the matrix V is unitary. In the Kobayashi-Maskawa parameterization one can 

write [2] 
Cl S1C3 

S1S3 ) 
~V = -SIC2 C1C2C3 + s2s3e'~ Cl C253 - 52 c3 e' ( 1.4) 

( 
-SIS2 C1S2C3 - c2s3e'~ Cl S2S3 + c2c3ei~ 

where c.; = cos Oi( i = 1,2,3), s, = sin Oi(i = 1,2,3) and a non-zero value for {) signals 

the presence of CP violation. For quarks the charged weak current, the neutral weak 

current and the electromagnetic current are respectively, 

1; ~ ( • i) r L, V m (1.5 ) 

_ 1 4 2 (U)_ _ - 1 2 . 2 

(d)J: = (u t) [- r LI' - - sin OWII'] C + (d S b) [--rLI'+-SIll OWII') S 
2 3 t 2 3 b 

(1.6) 

2 _ (U) 1 _ _ (d)J;".f = '3 (ii c t hI' ~ - '3 (d s bhI' ; (1.7) 

where r L,RI' = II'( 1 ~ ,~) , These currents couple locally to the W± and ZO fields and 

the photon field A as 

Wl't JC + h.c. ZI'JN 1 e I' + __1'_ + AI'JEM 
[ 2.;2 sin Ow sin 20w I' 

where e is the electric charge, normalized in terms of the fine structure constant 0 as 

Lint (1.8) 

e2o = / 47r . For momentum transfer Q2 < < M&',z it is useful to work with effective 

nonleptonic interaction Lagrangian 

LNL 
C 
~ [J: J~t + 2pJ~J:] (1.9) 

5 

where 

C F 1TO _(~2 
r;:;. M2 ' 20 , p - AI ) v (110)

V 2 2 !~. Sill W i Y Z cos 0 

The effective nonleptonic interaction is modified in several important respects by 

QCD radiative corrections which will be discussed in the next section. The origin 

of quark masses and KM mixing angles as well as the mechanism of the breaking of 

electroweak symmetry are issues of great interest and will be addressed in the second 

part of the thesis. In the next section we discuss strong interactions and its effects 

on nonleptonic decays. 

1.2 Strong Interactions 

The strong interactions are believed to be described by a SU(3) gauge theory called 

QCD. The degree of freedom that is gauged to construct this theory is called color. 

Each quark, it is assumed, can exist in three different colored states. The quarks 

interact with each other by the exchange of colored gluons and the gluons, because 

they carry color also, can interact with each other. The QeD Lagrangian is given by 

LQCD ij(iP - M)q - ~F~F~v (1.11 ) 

where q represents the quark fields u,d,s,c,b,t and M is the quark mass matrix. The 

gluon field tensor F:" is related to the gluon field C: by 

F:" 81'C~ - 8v C: + f ABCC~C; (1.12) 

and the covariant derivative is defined by 

AA A 
pq 11'(81' - i9TCI')q ( 1.13) 

The matrices AA/2 are the generators of the SU(3)c in the triplet representation with 

Tr(AAAB) = 2{)AB· The fABC'S are the structure constants of the gauge group and 
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9 is the gauge coupling constant with an associated strong fine structure constant 

a. = g2 / 47r . In the quantum field theory, the Lagrangian writ ten above has to be 

supplemented by additional terms viz. the gauge fixing terms and the ghost terms 

which are needed to avoid divergence in the generating functional of the gauge theory 

as well as to maintain unitarity. Moreover, the bare parameters and the fields of 

the theory have no direct physical significance. In perturbation theory the Green's 

functions of these bare quantities diverge. It is necessary to renormalize the bare 

parameters and fields before they can be related to observable quantities . In an 

intermediate step the theory has to be regularized. The most common and convenient 

regularization scheme is dimensional regularization [3], in which the dimension of 

space time is continued to D = 4 - 2t with f -> O. The Green's functions of bare 

fields in the regularized theory are finite but di verge as f -> O. From the fact that the 

action 5 = f dDxL(x) is dimensionless, one can derive the mass dimensions of the 

fields and parameters of the theory. In particular the bare coupling constant lare is 

no longer dimensionless if D # 4; 

4-d
dim[gbare] --=f (1.14)

2 

In a renormalizable theory it is possible to rewrite the Lagrangian in terms of renor­

malized quantities such that the Green's functions of the renormalized fields are finite 

as f O. For QeD we can write the relations between the bare and renormalized--t 

quantities as 

qbare 
IZJ qren (1.15 ) 

Abare 1 
Z~Aren (1.16) 

gbare 1
Zi gren (1.17) 

mbare 
q m;en -l5mq (1.18) 
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For simplicity we have not considered the renormalizatioll of the gauge parameter( 

associated with the gauge fixing term) and the ghost fields 

Prior to the development of QeD the electroweak interactions, SU(2h x V(l) ( 

or the (2,1) theory) was used to derive the consequent traditional four fermion weak 

interaction Hamiltonian by contracting out all W propagators. Particular difficul­

ties were encountered in the nonleptonic sector as the quarks involved were strongly 

interacting and this badly distorted what was expected from the pure (2,1) theory. 

With the establishment of QeD as a theory of strong interactions it was now pos­

si ble to calculate the effects of strong interactions in weak decays. In 1974 Gaillard 

and Lee [4] and Altarelli and Maiani [5] laid down the basic rules for these calcula­

tions. The essential techniques ( along with the use of asymptotic freedom of QeD) 

were the renormalization group and the operator insertion technique to calculate the 

anomalous dimensions of four quark operators . In their calculations only the heavy 

W gauge boson was decoupled. In 1975 Vainshtein, Zakharov and Shifman [6] showed 

that if one decouples the c quark as well as the W boson substantially new structures 

are observed to be generated in [}'S = 1 effective Hamiltonian which were referred 

to as penguin operators. The four quark operators existing before QeD correction 

have a left-Ieft(L-L) chiral structure, penguin operators are four quark operators with 

L-R chiral structure. The work of SVZ was carried further by Gilman and Wise [7] 

who developed a systematic and rigorous method to decouple the heavy quarks. In 

this section we will consider briefly the construction of QeD corrected weak effective 

Hamiltonians. This subject is covered in details in Ref [8] . 

The basic framework for calculating the effective Hamiltonian for the weak decays 

of hadrons containing u, d, s, c, b quarks is the effective field theory relevant for scales 

J.L « M w , M z · The central idea of effective field theory is essentially one of approx­

8 



imation . Suppose we have a Lagrangian L1 which reproduces all the physics up to a 

certain energy scale. There is no guarantee that this Lagrangian will reproduce the 

physics at higher energies, which may be described by the Lagrangian L2 . We can 

say the L2 is effectively Ll at low energies or that L1 describes a low energy effective 

theory. L2 might loosely be called the complete theory (L2 could be an effective the­

ory itself of L3 at even higher energies; it need not be the complete or ultimate theory 

and so on) . Fields appearing in L2 whose corresponding particles are not produced 

in the low energy regime need not appear in L1 but the heavy fields can appear as 

virtual particles in low energy processes giving rise to higher dimensional operators 

(constructed out of the light fields) in the Lagrangian which are suppressed by the 

heavy particle masses. 

Since L1 is an approximation we can not use it to generate L2 but given L2 we 

can obtain the approximation L1 and the process for doing that is called decoupling . 

That decoupling works beyond tree level is not an obvious fact and it was Appelquist 

and Carrazone [91 who first demonstrated this in their decoupling theorem. The gist 

of the decoupling theorem may be stated thus: In a renormalizable field theory the 

heavy fields decouple from the light field low energy sector. The effective Lagrangian 

is obtained by disposing of terms with explicit reference to the heavy fields and re­

placing them with an infinite sum of purely light field terms inversely proportional 

to the powers of the heavy masses in the theory. The unsuppressed light field terms 

also undergo finite renormalizations. One ad vantage of working with an effective 

theory L1 at low energies instead of working with the full theory L2 is the consid­

erable simplification of the calculation of low energy processes. If we are using the 

Lagrangian L2 then we have to consider extra Feynman diagrams for each and every 

process considered . Now during the calculation of graphs containing heavy fields the 

9 

approximation A12 > > IPezternad 2 will have to be made continually. It soon beconles 

clear that it would be beneficial if this approximation could be made once and for all 

at the beginning of all calculations rather than during each and every calculation . [n 

an effective theory there are fewer particles to deal wi th and fewer Feynman diagrams 

to consider and so the final calculations are significantly simplified. 

The first step in the construction of the effective Hamiltonian is called matching. 

In this step the top quark and the weak gauge bosons are integrated out and the 

full theory is matched to an effective five quark theory. If we are interested in charm 

decays then we have to decouple the b quark also to construct an effective four quark 

theory and if we are interested in strange quark decays then we have to decouple 

the charmed quark also. For scales well below 1 GeV the quantitative description of 

strong dynamics in terms of quarks and gluons ceases to be useful and a description in 

terms of mesons and baryons having the symmetries of the QeD Lagrangian appear 

to be more appropriate. The various stages in the construction of effective theories 

is shown in Fig. 1.1. 

In general we can write the effective Hamiltonian as a linear combination of 

operators OJ 

Hell L:C.(mheavlI)O. (1.19) 

where mheavy is the mass scale where the decoupling takes place. To calculate the 

Wilson coefficients C. we make a calculation ( Green's function) with the full Hamil­

tonian and the effective Hamiltonian. We then match the results of the two theories 

to calculate C(mheavl/)' The C's are scale dependent but we know that if we calcu­

late the matrix element of Hell ( which is a physical observable) the result should be 

scale independent. This implies that the scale dependence of the Wilson's coefficient 

C i (ll) is such that it cancels the Il dependence coming from the matrix elements of 

10 
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Figure 1.1 : The various stages in the construction of effecti ve theories. 

the operators < Oi(Jl) >. This fact results in the Ci(Jl)'s satisfying a differential 

equation called the renormalization group equation(RGE) , which depends on how 

the operators OJ renormalize i.e. on the anomalous dimensions of the operators Oi. 

This RGE can be used to relate C i (ll) evaluated at different mass scales. In principle 

if we could write down the exact Hell by performing calculations to all orders in 

perturbation theory then the matrix element of the effective Hamiltonian would be 

scale independent and it would not be necessary to worry about what scale to choose 

in our calculation . In real life, however, this is not possible and we always work with 

a truncated perturbation series. So if we are calculating the matrix element of the 

effective Hamiltonian with external state momentum Pezt < < 11 then there will be 

large logarithms In( -5-) coming from higher order terms which we have neglected
Pczt 

because we are working with a truncated series. To avoid this problem we start at 

11 

the high scale Jl = mheavy We calculate the C,(Jl)'S by considering the matrix ele­

ment(or Green's function) of He!! with external state momentum Pext ~ mheavy This 

will prevent the appearance of large logarithms from higher order terms which have 

been omitted. Rigorously speaking the choice of the external momentum should be 

such that l)IPextl must be sufficiently small that terms of order IPe:z:t12/mLavll can be 

neglected. 2)IPexd must be at the same time be sufficiently large such that In( -5-) do 
Perot 

not invalidate the perturbation theory. Next we use RGE to evolve the Ci{Jl)'s from 

the heavy scale Jl = mheaVl/ to 11 = mlow where mlow is the energy scale where the 

low energy processes we are interested in take place. The effective Hamiltonian with 

Ci(1l = mlaw ) is the appropriate Hamiltonian to use when calculating matrix elements 

of external states with momentum Pezt '" Tnlow . We do not have to worry about large 

logarithms any more because their effects have been taken into account(sumrned up) 

by the RGE analysis of the Wilson's coefficient Cj(Jl). 

To consider a specific example we will outline the process for writing the effective 

Hamiltonian for charmed decays. We start from the top mass scale (mtop '" 175 GeV) 

For charged current interaction we can write the weak Hamiltonian as 

Hcc 9w (OifiVD')W/-, + h.c ( 1.20) v'2 

where 

u (1.21)m 
and 

D ( 1.22) (D 
where a is the flavor index and i is the color index and V is the CKM matrix. On 
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decoupling the top quark we get 

'"' II .fT-, i rl' n' \ !AI . " 0 f_ \11 (,-,i rl' n' \IV 
~ .0(1\'-'0 4 L'-'{j)" I' ~ L Uo\'''rop/roIHvoL LL/{3/YrI' (1.23) 
ofJ Q{3 

where the Wilson coefficient Bo(mtop ) 

B",(mtop) (1 - 6ot ) ( 1.24) 

Now we have to use the RGE to evolve down to the scale of the weak gauge bosons for 

which we need the anomalous dimension of the operator in the effective Hamiltonian. 

Since the W does not couple to the gluons the anomalous dimension of the operator 

is just the anomalous dimension of the charged current 'YJ which vanishes at the one 

loop level level in all gauges in MS(MS) scheme. This indicates that Ba(mrop) is 

scale independent; its value remains constant from the top mass to the W mass scale. 

This is also true for all heavy flavors below the W mass threshold i. e. the effect of 

decoupling heavy flavor are of two loop order. 

We next decouple the W boson by contracting the W propagator. The resulting 

Hamiltonian is the usual current x current Hamiltonian and so the structure of the 

effective Hamiltonian is of the form Eq. (1.19) where the O,'s are four quark operators. 

The RGE for the Wilsons coefficient is 

d 
[p. dp. 6,j - 'YjilCl o (1.25) 

where 

-I d Z 
"file ( 1.26) - Z'l P. dp. jle 

is the anomalous dimension matrix and the renormalization constants Zij are defined 

as 

OrT< ZijOjenom (1.27) 
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To solve the differential equation for the Wilsons's coefficients we need to calculate 

the anomalous dimensions of the four quark operators. In general given a four quark 

operator it is found that on renormalization this operator generates a set of operators 

OJ. Furthermore it can be shown that four quark operators only generate four quark 

operators and therefore to calculate Z = [Zi)1 we calculate G~1/I(Oi) where 

G~1/I(Oi)(XI' X2, X3, X4, y) < OjT( 1/'J(Xd~(X2)1/'J(X3)~(X4)Oi(y)jO > (1.28) 

Working in the Landau gauge(Z1/I = 1) it is easily shown, in the minimal subtraction 

scheme, 

G~tl)(Onp Zi2jG~~(0)) (1.29) 

where the subscripts (1) and p on the LHS of the equation refer to the one loop (-I 

term and the 0 subscript of the RHS side indicates it is the zero loop term. Z has 

been expanded perturbatively as 

Zij 6ij + Zi2j + 0(g4) ( 1.30) 

The various Feynman diagrams contributing to G~'" (OJ) are shown in Fig. 1.2 

From the diagram we see that the Green's function consists of 1PI( one parti­

cle irreducible diagrams) and 1PR (one particle reducible diagrams) which are the 

penguin diagrams. As a specific example we can consider the four quark operator 

responsible for Cabibbo favored charmed decays. The relevant four quark operator is 

0 1 (s'c'}t(u.1d1 h (1.31) 

It can be shown that the renormalization of 0 1 generates O2 given by 

O2 (s'c1)L(u'd)h ( 1.32) 
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Figure 12: The expansion of G~1/I(Oi) in Feynman diagrams. 

and the anomalous dimension matrix is given by 

, (-1 3) ( 1.33)
3 -1 

Finally we can now solve for the Wilson coefficient by solving the RGE. The solution 

at the one loop level can be written as 

a(m) * -1C i (J1.) \lid a(J1.) 1 0 (V )ljCj(m) (1.34) 

where V is the matrix that diagonalizes , and is defined as 

V-I,V = ,diagonal (135) 

and the running coupling constant a is given by 

41r 
(1.36)a(J1.) fio In(J1.2 IAbcD) 
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where 

{3o (33 - 2TIf) ( 1.37) 

with n f being the number of flavors in the effective theory. 

After having constructed the effective Hamiltonian, the next step in the calcula­

tion of weak processes is the evaluation of the matrix elements of this Hamiltonian 

between hadronic states. These calculations are non-perturbative in nature and no 

known calculational tools are known to handle this problem. There are several meth­

ods available in the literature which can be used to perform this step: lattice gauge 

theory, liN (N = number of colors) approach, quark models, chiral perturbation 

theory, QeD sum rules and in the case of heavy (b and c) quarks the heavy quark 

effective theory (HQET). In the next section we will discuss HQET in some details as 

this technique has been used quite extensively in the work on heavy baryon decays. 

1.3 Heavy Quark Effective Theory 

The study of heavy quark system is simple compared to systems composed of light 

quarks because of a crucial property of QeD viz. asymptotic freedom. The strong 

coupling constant gets smaller at large momentum or small distances because the 

familiar screening of the charge is overcompensated by the antiscreening of the charge 

due to the self interaction of the colored gauge field, a phenomenon unique to non­

abelian gauge theories. The domination of the antiscreening effect persists as long 

as the number of quark flavors does not exceed sixteen. The running of the strong 

coupling constant in QeD in the leading log approximation is given by by Eq. (136) 

where we set J1.2 = Q2 , Q2 being the typical momentum scale in the process. AqcD r.., 

0.2 GeV is the the QeD scale and roughly represents the energy scale that separates 
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the region of large and small couplings. At large distances(small Q2) the coupling 

gets strong, leading to nonperturbative phenomena such as confinement of quarks and 

gluons inside hadrons on a length scale RHadran '" 1/AQCD '" fm. When the mass of 

the quark is very heavy i.e mQ > > AQCD then Q is called a heavy quark. The quarks 

in the standard model fall in two groups; the u,d and s quarks are the light quarks 

while the c,b and t quarks fall in the heavy category. For heavy quarks a:,(mQ) is 

small and so the strong interaction over the length scale of the Compton wavelength of 

the heavy quark AQ '" l/mQ is perturbative. For a quarkonia system made of heavy 

quarks (e.g QQ), the typical length of which is of the order AQ/a:.(mQ) « Rhad , 

perturbative QCD is applicable and the spectra of such systems are very hydrogen like. 

In fact, after the discovery of asymptotic freedom the properties of the charmonium 

and bottomium system were predicted even before the discovery of these states. 

For a system containing a heavy quark and a light quark the situation is a little 

more complicated. The size of such a system is determined by 1/AQCD but the 

compton wavelength of the heavy quark is much smaller than the size of the hadron 

and this leads to simplification. The heavy quark in such a system is surrounded by 

a strongly interacting cloud of quarks and gluons and the only interaction this cloud 

(also called "brown muck") has with the heavy quark is through the emission of soft 

gluons with momentum much smaller that the heavy quark mass. This means that 

the light degrees of freedom cannot probe the quantum numbers of the heavy quark, 

for to do that would require a probe with momentum greater than or of the order of 

the heavy quark mass. The result of all this is that the light degrees of freedom in 

the hadron are blind to the mass and spin of the heavy quark and it can only see the 

long range color field produced by the heavy quark. In fact, in the rest frame of the 

heavy quark only the color electric field of the heavy quark is important as the color 
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magnetic field decouples when the mass of the heavy quark becomes large. In this 

heavy mass limit the dynamics of the light degrees of freedom are then completely 

determined by solving the QCD equations of motion in a static color field in the rest 

frame of the heavy quark (also the rest frame of the hadron) and the mass and flavor 

of the heavy quark plays no role at all. It therefore follows that hadronic systems, in 

the mQ ---. 00 limit, (which differ only in the spin or flavor quantum number of the 

heavy quark) should have the same configuration for the light degrees of freedom. As 

a result even without being able to calculate the configuration of the light degrees 

of freedom it is possible to find relations between properties of such particles as the 

heavy mesons 8, D, 8* and D* or the heavy baryons Ab and :\c. Stated differently, 

in the limit that the mass of the heavy quark goes to infinity ne\\' symmetries, viz. a 

spin and a flavor symmetry arise in the effective theory of the strong interactions at 

low energies and this results, as observed by Isgur and Wise [10]' in simple relations 

between the properties of heavy hadrons. 

The heavy quark symmetry is an approximate symmetry, and corrections have to 

be computed because the quark mass is not infinite. These corrections can be written 

as a power series in AQcD/mQ. The condition mQ > > AQCD is necessary and sufficient 

for the application of HQET and in that sense the situation is complementary to chiral 

symmetry which arises when the quark masses are much smaller than the QCD scale 

A QCD ' However it should be kept in mind that the heavy quark symmetry is not a 

symmetry of the full QCD Lagrangian but is a symmetry of an effective Lagrangian 

which is a good approximation to QCD in a certain kinematical regime, viz. where 

the heavy quark interacts with the light degrees of freedom through the exchange 

of soft gluons. In systems where the heavy quark symmetry is realized the heavy 

quark is almost on the mass shell with its momentum fluctuation around the mass 
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shell being of the order AQCD The corresponding change in the velocity of the heavy 

quark vanish in the infinite quark mass limit and so the velocity of the heavy quark 

is now no longer a dynamical degree of freedom but instead a conserved quantity. 

In the next section we briefly describe the construction of the effective theory in the 

infinite mass limit and the calculation of the l/mQ corrections. 

1.4 The Effective HQET Lagrangian 

We begin with a very simple derivation of the effective Lagrangian by looking at 

the Feynman rules for a heavy quark in QeD in the infinite mass limit. As already 

mentioned in the previous section, inside the hadron the heavy quark is almost on-

shell and moving almost with the velocity of the hadron. It is interacting with the soft 

degrees of freedom surrounding it via the exchange of soft gluons carrying momentum 

k ~- AQCD. We can therefore write the heavy quark momentum as 

PQ mQvl" + kl" (1.38) 

Here v is the heavy quark or the heavy hadron velocity with v2 1. It is quite 

straightforward to show that the heavy quark propagator can be expanded in l/mQ 

as 

i f; + 1 k i 
--- +0(-) -+ -P+ (1.39)

fQ - mQ v . k 2 mQ v . k 

where the the positive energy projection operator P± is defined by 

f; ± 1 
P± (1.40)

2 

has the following properties 

P~ P± (1.41 ) 
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P±P'f o (142) 

P+,I" P+ P+vl" P_ (1..13) 

It is easy to see that the last property of the projection operator P+ simplifies the 

QeD heavy quark gluon vertex 

ig,I"TQ 
-+ igvllTQ (1.44) 

where TQ are the generators of the color 5U(3) with the normalization Tr(TQTb) = 

(1/2)6ab 
. In the figure below we show the Feynman graphs for the effective theory. 

One can easily reconstruct the Lagrangian from which the above Feynman rule follows 

v,k 
1 1+ ~- ~ - J Cjiv·k 2 

v 
J ig (Ta) .. Va:

J1 

a,a 

Figure 1.3: The Feynman rules for the propagator and the vertex in the heavy quark 
effective theory. 

as 

L<1f hviv , Dhv ( 1.45) 

where 

DI" 01" - igTQ Al"o ( 1.46) 
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The effective quark field hv(x) 	is related to the actual quark field Q(x) as 

Q(x) ::::: e- ·mQv%h" (1.47) 

Formally we can derive the HQET Lagrangian by introducing a large and a small 

component field hv and Hv via the equations 

mQvhv(x) e· % P+Q(x) 	 (1.48) 

and 

Hv(x) eimQv 
% P_Q(x) 	 (1.49) 

so that the full quark field Q(x) can be written as 

Q(x) e-·mQv%[hv + Hv] 	 (1.50) 

It is easily verified that the large and the small components satisfy the following 

relations 

phv hv 	 (1.51 ) 

pHv -Hv 	 ( 1.52) 

In the rest frame of the heavy quark hv corresponds to the upper two components 

of Q while Hv correspond to the lower two components. For an on-shell quark Hv is 

of course zero. In field theoretic language while hv annihilates a heavy quark with 

velocity v, Hv creates a heavy anti-quark with velocity v. To describe a situation 

where the hadron contains a heavy anti-quark the sign of the momentum has to be 

changed and the small and the large components are switched. In terms of these new 

fields the QeD Lagrangian can be written as 

LQ h.viv· Dhv - flv(iv· D + 2mQ)hv + LM (1.53) 
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where 

LM h.vl{Jp Hv + H"i!J.ohv 	 (1.54) 

and 

DI" = DI" - vl'v· D 	 (1.55)p 

From an examination of the Lagrangian above we can interpret hv as a massless 

degree of freedom, whereas the fluctuation Hv propagates with mass 2mQTo obtain 

the effective Lagrangian we have to integrate out the heavy degrees of freedom Hv. 

This has been done by working with the generating functional for the QeD Green's 

function [11]. The same result can be derived at a classical level in the following 

manner. We first write down the equations of motion for the fields hv and Hu that 

follow from the Lagrangian written above. 

-iv· Dhv iPpHv 	 (1.56) 

(iv· D + 2mQ)hv ipphv 	 ( 1.57) 

One can now solve for Hv as 

1 
Hv 	 ( 1.58) (iv . D + 2mQ _ ie) iPphv 

This shows that the field Hv is of the order l/mQ. Substituting the expression for 

Hv in the effective Lagrangian we can write an effective non local Lagrangian 

- - . 1 
L~!f = hviv · Dhv + hvtPp (. . ) iPphv ( 1.59) 

tv . D + 2mQ - 1C 

Since the action of the D operator on the field h" brings in a factor of k, the non local 

Lagrangian can be expanded in a power series in inverse powers of l/mQ and we can 

write the effective Lagrangian as 

L~!f h."iv . Dhv + 1/2mQhv(iDp)2hv + 1/2mqh"aofJCof3hv + O(I/(mQlO60) 

22 



The origin of the 1/2mQ terms can be understood in terms of the diagram in Fig . 

1.4 When the heavy degree of freedom in the figure is contracted we end up with an 

/ 
Figure 1.4 : The diagrams responsible for the origin of the 1/2mQ terms in the effective 
theory. Time flows to the right and so the quark lines going in the negative direction 
of time represent the propagation of the Hv field . 

effective interaction 

- 1 
LI hvipp - -ipphv ( 1.61) 

2mQ 

It is straightforward to show that the term above generates the 1/2mQ corrections 

in the Lagrangian. The first term in the Lagrangian represents the kinetic energy 

originating from the offshell residual motion of the heavy quark while the second 

term which goes as rv S · B (where S is the spin operator and B is the color magnetic 

field) is just the hyperfine interaction . In the infinite mass limit it is now clear that 

the spin of the heavy quark decouples from the theory. The Lagrangian written above 

will be corrected by radiative corrections and we will consider this issue later. We next 

consider the problem of constructing operators , specifically currents,in the HQET at 

tree level. Consider the current V'" = ti,'"Q. First , we write the full heavy quark field 

as ( usinf Eqs. (1.52) and (1.60) ) 

Q(x) e-imQv cdotx(l + iPp + .. )hv(x) (1.62)
2mQ 
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and consequently, 

V'"(x ) = e-·mQvI q,'"(l + iPp + .. )hv(x) (1.63)
2mQ 

We can also expand the states in the full QCD ill terms of the states in the HQET as 

IM(v)) IM(v))HQET + _1_ JdyT(LI(y))IM(v))HQET (1.64)
2mQ 

and so finally we can write the matrix element 

1 
(AIV'"IM(v)) (Alqr'"hvIM(v))HQET + -2-(Alti,'"iPphvIM(v))HQET

mQ 

+ _1_ JdyT(q,'"hv(O)LI(y )I M(v ))HQET + . 
2mQ 

(1.65) 

where (AI represents any hadronic state. It is quite easy to conti nue this expansion 

to include higher orders in l/mQ. 

So far we have been dealing only at tree level and it is necessary to consider COD­

structing operators in the effective theory which at the matching scale give a similar 

physical description obtained in terms of the operator of the full theory including 

loop effects. [12] . It can be shown that 

ti,'"Q L Ci(P)Ji + _1_ L Bi(p)Oi + O(l/m~ ) (1.66) 
i 2mQ i 

where the equality sign in the above equation has the interpretation that the relation 

holds at the level of matrix elements. In HQET the operators J. form a complete set 

of local dimension three current operators with the same quantum numbers as the 

vector current in the full theory. In HQET there are two such operators 

J I = ti, '"hv J2 = qv'"hv (1.67 ) 

The set Oi also denotes a complete set of dimension four operators and they are listed 

in chapter 2. 
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1.5 Soft Pion Techniques 

escribing some of the soft pion limit results which have been utilized in the study 

of the nonleptonic decays of the heavy baryons. We also describe the basis for q2 

dependence of the form factors that has been assumed in our analysis. Soft pion 

techniques involve combining PCAC and the algebra of the currents. In the limit 

that the pion momentum goes to zero it is possible to relate the weak process Q ----+ 

fh: to the simpler transition Q ----+ (3 where Q and (3 are two hadronic states. In 

the limit of vanishing quark masses (for u,d,s quarks) the QCD Lagrangian has a 

SU(3h x SU(3)R symmetry which is spontaneously broken to the diagonal vector 

SU(3)v. The pseudoscalar mesons arise as the goldstone bosons in the theory and 

they can acquire mass when the SU(3h x SU(3)R is explicitly broken with a mass term 

for the quarks. It is possible to write down an effective Lagrangian consistent with 

the chiral symmetry of the theory. The Lagrangian can be written as an infinite series 

with the expansion parameter being the ratio of the momentum of the pseudoscalar 

meson to the chiral symmetry breaking scale (""' 1 GeV). In the soft meson limit we 

can truncate the series by including only a few terms and the PCAC relation can be 

derived from the resulting Lagrangian. If we define R as [13] 

Rk (7rk(q)(3IHw(O)IQ) (1.68) 

where Hw is the weak Hamiltonian, then in the limit qj.! ----+ 0 one can use the LSZ 

reduction technique to derive 

I".j2Rk -i((3I[~(O), Hw(O)]IQ) + iqj.!Mr (1.69) 

where Q{ is the axial charge and the commutator in the equation above is easily 

calculated once the transformation property of Hw is known and 

Mr i Jd4xeiqx8(xo)(P'IU~, Hw(O)llp) (1.70) 
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One can calculate and show that qj.!Mr for qj.! ----+ 0 is non zero when it receives 

contribution from intermediate states degenerate with the initial or the final states. 

The quantity qj.!Mr does not have a well defined limit in the soft meson and SU(3) 

limit but the combination of this term and the pole term has an unambigous limit in 

the soft q limit. This issue will be taken up again when the llonleptonic decays of the 

heavy baryons are discussed in chapter 3. 

The hadronic form factors are a crucial input in the calculation of the decay 

amplitude. A clear definition of these form factors can be found in the next chapter 

but here we briefly discuss the structure of the form factors in a qualitative way. 

Typically the form factors characterize matrix elements of the type ((3(p')IJj.!IQ(p)) 

where Jj.! is some current. Assuming that the form factors in this matrix element are 

analytic in the whole q2 plane (q = p' - p) except for cuts and poles on the real axis 

one can write a dispersion relation for the form factors of the form 

F(t) ~ JImF(t') (1.71 )
7r t' - t 

where t = q2 Now the imaginary part of the form factor is calculated by evaluating 

the absorptive part of ((3(p')IJj.!IQ(p)) and it can be shown [13] that this quantity goes 

as abs part""' Ln((3(p')II,,(O)ln) (nIJj.!10)64(p - p' + Pn) where 1,,(0) is some operator 

constructed out of the field describing the hadron Q. It is clear from this expression 

that only those states that have the quantum number of the current can contribute 

to the absorptive part. As a model for the form factors one can consider only one 

particle intermediate states in the sum above and then use the dispersion integral to 

calculate the form factors. 
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CHAPTER 2 

l/mQ CORRECTIONS TO FORM FACTORS 

In this chapter I address the problem of calculating l/mQ corrections to the form 

factors that describe the transition of a heavy flavour baryon into a light baryon. For 

transitions of a charmed (bottom) baryon into an light baryon a total of six vector and 

axial vector form factors completely specify the hadronic part of the matrix element 

in semi-leptonic charmed(bottom) baryon decays and the factorizable part in the two 

body hadronic decays of charmed(bottom) baryons. There exist several calculations 

in the literature on charmed baryon decays and some on bottom baryon decays where 

these form factors are calculated in specific models [2]. However, it is interesting and 

useful to study these form factors in the limit that the charmed quark or the bottom 

quark is treated as heavy, because in this limit it is possible to systemetically expand 

the form factors in inverse powers of the heavy quark mass. The usefulness of such 

an expansion stems from the fact that the sources of the various coefficients in the 

power series expansion can be identified and one can either make reasonable estimates 

of these coefficients or fix them from experimental data. Not all the coefficients in 

the expansion are independent as the symmetries of the heavy quark effective theory 

can be used to find relations among the coefficients. In the heavy quark limit the 

spin symmetry of the heavy quark results in relations among the form factors. In 

particular, the spin symmetry is very effective in reducing the number of independent 

form factors for the lowest lying charmed(bottom) baryons because the light degrees 

of freedom are in a configuration of spin zero. For heavy to light transitions of the 

form c(b) --+ q, where q is one of the light ( u,d or s ) quarks it is known that the six 
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form factors can be expressed in terms of only two indepelldent form factors in the 

limit of m c( b) ~ 00 [21 · In this chapter I estimate the l/mQ corrections to these form 

factors . In the next two chapters this result will be used to calculate the nonleptonic 

and semileptonic decays of the charmed and bottom baryons . 

As already mentioned in the previous chapter in HQET the Q.C.O Lagrangian 

for the heavy quark is expanded in inverse powers of the heavy quark mass. In the 

limit mQ --+ 00 the heavy quark field Q(x) is replaced by h,,(x) (31 : 

hv(x) = eimQ"xP+Q(x) (2.1) 

where P+ = ~ is the positive energy projection operator. The effective Lagrangian 

is written as 

LHQET = hv iv·D hv (2 .2) 

where DO = ao - ig.tQ A~ is the gauge covariant derivative. Corrections to the above 

Lagrangian corne from higher dimensional operators suppressed by inverse powers of 

mQ. Including l/mQ corrections we write [3 , 41 

L L + bL/2mQ (2.3) 

6L h (iD)2 h + 2!..h aofjGQfj h 
2 

where G°{3 = [iDa, iDfj] = ig.tQG~{3 is the gluon field strength. The equation of 

motion for the heavy quark is 

v · Dh" = 0 (2.4) 

One also has to expand the currents that mediate the weak decays of hadrons . 

In our case we are interested in currents of the form ij r Q. At the tree level the 

expansion of the current in the HQET gives 

1 . 
ij r Q --+ ij r h + -ij r tp h + ... (2.5)

2mQ 

30 



- - ----where r is any arbitrary Dirac structure. 

The vector and axial form factors in the weak decays of charmed baryons are 

conventionally parametrized in terms of 6 form factors, Ii and 91l defined by ( al­

though here we are considering charmed baryons it is understood that the results are 

applicable to bottom baryons also) 

(B'(P', S') I it 'YI' Q I Be(P, s)) UB,(P',S')[J"I' - i~(J!Wql.l
mBc 

h+-ql']UBe(P, s)
mBc 

(BI(pl,S') I rJ'YI''Y5 Q I Be(p,s)) UB'(P', S')[91'Y1' - i~(Jl'l.Iql.l
mBc 

+~ql'b5UBe(P, s) (2.6)
mBc 

where ql' = pi' - p'l' is the four momentum transfer. In our case it is convenient to 

write a different parametrization of form factors. 

(B'(p', 5') I it 'YI' Q I Be(P, s)) = UB'(p', 5') [F1'Y1' + F2VI' + ~plil] UBc(P, S)
mB' 

(B'(p',s') I rJ'YI''Y5 Q I Be(P, 5)) US' (pi, S') [G 1 'YI' + G2v i' 

G3
+-pl''] 'Y5 UBc(V, S) (2.7)

mB' 

where vI' is the velocity of the heavy baryon. The two sets of form factors are related 

by 

F2 F3]11 F1 + (mBc + mB') [2mBc + 2mB' 

12 F2 F3 

mBc 2mBc 2mB' 

h F2 F3 

mBc 2mB 2mB' ] 
c G G 

2 + _ 3 
91 G 1 - (mBc - mB') LmBc 2mB' 
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92 G 2 G 3 

mB, 2mB, 2mB' 

93 G 2 G 3 ----- (2.8)
mBc 2mBc 2mB' 

In the limit mQ --> 00, the spin symmetry allows one to write 

(B' I it r hv I Be) = UB' [e 1 + Pe2] rUBe (2.9) 

where (}1, (}2 are Lorentz-invariant and r is any arbitrary Dirac matrix, with 

pUB, (V,s) = UB,(v,s) (2 .10) 

Note the normalization of UB" the baryon spinor, is VB,UB, = 2M where ,"v[ is the 

effective mass of the baryon in HQET and is given by 

M = mQ + A (2.11) 

The physical mass of the baryon is given by 

mB, M + O(1/mQ) (2 .12) 

The spinors UBc are therefore related to the physical spinors UBc by 

UBc Z-;) /2UB, (2.13) 

where 

ZM ~c = 1 + O(l/mb) (2.14 ) 

Since we are interested only in l/mQ corrections we can take ZM ~ l. Setting 

r = 'YI', 'Yil'YS in Eq. (2.9) we get the following relations. 

F? 01 - e2 

FO 2(}22 

FO o3 
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CO 
I 01 + O2 

CO 
2 202 

CO 
3 o 	 (2.15) 

where FO i , C? are the zeroth order form factors in the I/mQ expansion. Eq. (2 .15) 

lead to the following relations between the form factors [21 · 

C? F~ + Ff C~ = Ff C~ = 0 F~ = 0 (2.16) 

or equivalently, 

91 = II 92 = 12 93 = -12 	 h =-12 (2.17) 

We next turn to 1Ime corrections to these relations . As we noted in chapter 1, the 

two sources of lime corrections are from the current and the effective Lagrangian. 

The first source of lime corrections comes from the expansion of the currents in 

powers of lime . The matrix element of interest here is 

(B' I ij r ip h I Be) = uB,4>",r,,("'uBc (2 .18) 

where the form of the R.H.S of the above equation follow from spin symmetry. The 

general form of <p", is 

4>", = (4)llV,,, + 4>12V~ + <P13"(",) + P(<P2I V", + 4>22< + 4>23'Y",) (2.19) 

Using the equation of motion for the heavy quark we have the following conditions. 

(B' I ij 1V ' D h I Be) UB'V·4>UBc = 0 

(B' I ij "(5 iv . D h I Be) UB'V . 4r/UBc = 0 (2 .20) 

which results in 

4>11 + w 4>12 -4>23 = x 

<P21 + W<P22 -</>13 = Y (2 .21) 
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where w V· v', v' being the velocity of the baryon B' . Note x and yare defin ed 

through Eq. (2 .21). The corrections to the form factors due to the corrections to the 

current can now be easily written down from Eq . (2 .19) . 

[ ( ~ ) (4)11 + 4>21) - : - (~) x]
6FI 

2mc 

2[4>21(~)+2x+:l
6F2 

2me 

2[-til.-fu+~1w w w
6F3 

2mc 

[(~) (<PII - 4>2d + ~x + :]
bC I 

2me 

2 [-4>21 (~) + 2x + :]
6C 2 

2me 

2 [- til. + ~ + ~l w w w6C 3 	 (2.22)
2me 

using the equation of motion one can derive two relations between the 4>'s . We start 

with 

(B' I i81"(ij r hv) I Be) = (B' I [i(81" + ig,taA:)ij] r hv + ij r [i(81" - i9.taA~)hv] 1 Be) 

UM - mQ)vl" - mB'v~l (B' I ij r hv I Be) (2.23) 

where M is the heavy baryon mass in the HQET limit. We can rewrite the above 

identity as 

(B'I (iD:q) r hv + ij r (iDl"hv) I Be) 	 (Avl" - mB'v~) 

(B' I ij r hv I Be) (224) 

-	 1\ 

where ,\ = M - me' With r = "(I" r and using the equation of motion for the light 

quark q one can write 

(B' I it "(I" riDI" hv I Be) 	 [Avl" - (MB' - mq)v~] 

(B' I ij "(I" rhv I Be) (2.25) 
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With r= 1 one obtains, 

w - 1 (2W + 1 ) (4W - 1)(<7>11 - <7>2d-- - -w- y - -w- x 
w 

= F~(A- ~B') + F~(ll.- ~B' w) (2.26) 

where F~ , F~ are the vector form factors in the me -t 00 limi t and !nB = m B' - m q , 

while with r= 1'5 one obtains, 

w + 1 (4W - 1) (2W - 1)
(<7>11 + <7>2d ---z;- + -w- x + -w- y 

o - /\ 0 (- /\ )GI(A+ mB') - G2 /1.- mB' W (2.27) 

where G~, G~ are the axial vector form factors in the me 00 limit. One can now-t 

solve for <7>11, <7>21 in terms of F~, F~, G~, G~, x and y 

We note that at W = 1 
/\ 

G~(w = l)(A- m'B) 
y = -	 - x (2.28)

3 

We see therefore that at w = 1 the corrections to the form factor can be expressed 

in terms of the zeroth order form factors and x. If we further assume that x '" y with 

both x and y being small in the spirit the of 1/mQ expansion, then 

G~(A- ~B')
x"'-----".-'-------'- (2 .29)

6 

so all the corrections to the form factors can be expressed, at w = 1, in terms of the 

zeroth order form factors . ( Note that for heavy-heavy transition A -::::!n B, up to order 

1/mQ and so x -:::: 0 which is what is expected. ) 

The second source of 1/mQ corrections comes from 8L/2mQ and one has to cal­

culate 

_l_(B' IiJ dy T{q r hv(O), 8L(y)} I Be) >HQET
2mQ 
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Using spin symmetry we can write the corrections from the kinetic energy operator 

as 

_1_ / B' Ii Jdy T {q r hv(O), it (iD)2 h(y)} I Be) (2.30)
2mQ \ 	 HQET 

A(w) (B' I q r hv(O) I Be) (2.31)
2mQ 

Clearly this correction only renormalizes the zeroth order form factors. \Ne also note 

that we can replace the zeroth order form factors in Eqs. (2.22) and (2.23) by the 

renormalized form factors because the corrections are of the order 1/(2mQ)2 which 

we neglect. 

The corrections from the chromomagnetic operator can be written as, using spin 

symmetry, 

_1_ / B' Ii J dy T {q r hv(O), ~ h (>ofjG°!3 h(y)} I Be)
2mQ \ 2 HQ£T 

1 + p) op T; h (2.32)fiB' Xo{3 r -2- SUB, were( 

_ ( + P )bol'll-l'lll'o) + ( J. )bov~ -1';3v~)
Xoll - XII XI2 4 X21 + " Xn 4 

I'QI'Il _ !3o 
and s0{3 = I' 1 

4 

The corrections from the chromomagnetic operator to the form factors are then 

[(Xli - X12]
6.F1 2 

X21 ( X22]6.F2 	 [- 2XII - X12 + 2 + 2w - 1) 2 
[-(X21 + X22)]

6. F3 
2 

[(Xli + X12)]
6.G I 2 
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X21 ( X22]6.G2 	 [2 X II - X 12 - 2 - 2w + 1) 2 
((X22 - X21)]

.6.G3 2 

Therefore we see that for corrections from the chromagnetic term there are four new 

matrix elements that have to be calculated to estimate the l / mQ corrections . 

It is straightforward to include radiative corrections in our analysis. For instance 

the relations between form factors in the mQ -+ 00 limit get modified in the presence 

of radiative corrections to [5] 

CI(J-l) 	 ]GI 	 (2.33)[ CI(J-l) + C2(J-l) [FI + F2] 

G2 
CI(J-l) F2 _ C2(J-l) FI [1 + CI(J-l) ] 

CI(J-l) + C2 (J-l) C1(J-l) C1(J-l) + C2 (J-l) 

G3 F3 = 0 

where C 1(J-l), C2 (J-l) are the Wilson's co-efficients that occur in the short-distance 

expansion of the currents. At the l/mQ level there are extra operators that arise 

namely [S, 6] 

0 1 q vI' iP h" O2 = q iDI' hv 0 3 = q (-iv· D) "(I' hv 

-I' 
0 4 q (-iv· D) vI' hv o~ = q (-i D ) hv (2.34) 

0 6 mq q "(I' hv 0 7 = mq q vI' hv 

and the chromomagnetic operator also gets renormalised. It is straightforward to 

calculate the matrix elements of operators 0 1 - Os using equations (2.15) and (2.20) . 

The matrix elements of the operators 0 6 and 0 7 will just renormalize the zeroth 

order form factors. Radiative corrections are typically'" 5% and we neglect these 

corrections in our calculations. 

To use the above results in phenomenology one has to make estimates of the 

six new quantities x, y, XII, X12, X21, and X22 . These quantities are uncalculable in 
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HQET and one has to use other techniques (QeD sum rules for example) to calculate 

them . In this work we do not address the problem of calculating these quantities but 

we try to get some estimates of the quantities using reasonable assumptions. 

Starting with the corrections coming from the expansion of the current, a reason­

able assumption is the one made in Eq. (2.29). Even for w near 1 Eq. (2.29) can be 

used to estimate x provided x is a slowly varying function of w. 

For w near 1 and making the approximation x(w) "V y(w) "V x(W = 1) ~ y(w = 1) 

equations (2 .26) and (2 .27) reduce to 

w-1 
(¢ll - ¢2d-­

w 
F~(A- ~B') + F~(.'f..- ;"8' w) - G?(A- (n8') 

F~(1 ­ w) ;"8' 

(¢ll + ¢21t + 1 
w 

G~(.'f..+ ~B') - G~n·- ;"8' w) 

+ [1 ­ ~] ~ (A - ;..8' ) 

For the factorized two body hadronic decays of charmed baryons taking, for example, 

Ac -+ A1T and Ac -+ Ap we find w '" 1.25 and w "-' 1.12 respectively and so the above 

approximation is more reliable for nonleptonic decays involving a vector boson in the 

final state. We see that as far as corrections from expansion of currents are concerned 

the largest correction is '" G?(A+ ;"8' )/ 2mc '" 0.6G? which is quite significant. 

For the corrections from the chromomagnetic operator even at w = 1 there are four 

unknown functions Xll, X12, X21 and X22 . We do not have estimates of these functions 

but the contribution of chromomagnetic operators have been calculated to be small 

in the case of mesons [9]. In the case of heavy-heavy transitions in baryons the matrix 

element of the chromomagnetic operator vanishes to first order in l/mQ [10]. In the 

case of heavy to heavy transitions at w = 1 there is a normalization condition which 

comes from the conservation of the flavour conserving vector current in the limit of 
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equal hadron masses [7, 8]. This absolute normalization relation involving the form 

factors can be used to find relations among matrix elements that arise as corrections 

to the form factors in the l/mQ expansion at w 1. In the case of heavy-light 

transitions, however, we do not have such a normalization condition. There have 

been attempts to use HQET in c ---> s transitions treating both c and s quark as 

heavy [11, 12]. The basic assumption involved in such an analysis is the following; in 

HQET on the scale of the heavy quark mass the light degrees of freedom have small 

momentum spread about their central equal velocity value. For strange baryons or 

mesons this is not true. In the limit of equal hadron masses we would then have the 

normalization condition at w = 1: 

FI + F2 + F3 which implies (2.35) 

F? + F~ 1. (2.36) 

We therefore get the condition that 

oFI + OF2 + OF3 = 0 in the limit of equal hadron masses (2.37) 

In this work we do not assume the validity of a l/m. expansion, but we make the 

assumption that that Eq. (2.37) is valid up to the order we are working in, even 

for unequal hadron masses or at most the R.H.S of Eq. (2.37) '" x/2mc for unequal 

hadron masses. This is indeed the case in heavy to heavy transitons where, for 

example, both Eqs. (2.36) and (2.37) are true for Ab ---> Ac up to l/mb for unequal 

hadron masses and is a consequence of Luke's theorem [7]. In our case it is unnecessary 

to use Eq. (2.36) to estimate the chromomagnetic corrections. Further making the 

assumption XII'" XI2 '" X21 rv X22 one obtains using oFI + OF2 + OF3 = 0 

XII = X12 = X21 = Xn = ~ 
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where we have set all the x's equal to get an estimate of the chromomagnetic correc­

tions. Then the corrections to the form factors at w = 1 can be written as 

6.FI = 0 ~GI = ..£ 

6.F2 = -~ ~G2 = :e..£ (238)
6. F3 = ..£me ~GJ = 0 me 

me 

We see that the corrections from the chromomagnetic operator are rather small since 

x/2mc '" few percent of G~. Note that if we had used oFI + OF2 + oFJ x/2merv 

the order of the corrections to the form factors would still be same as in the above 

equation. Therefore we have been able to express the l/me corrections to the form 

factors at and near w = 1 in terms of the zeroth order form factors Flo and F2
o. Away 

from the zero recoil point, w = 1 or q2 = q~ax' one may chose a dipole form for the 

q2 dependence and write a generic form factor F as [12] 

F(q2) = F(q~~x) (1 _ q;"ax / 
2 (2.39)

(1 -~)2 mFF

where mFF is the appropriate pole mass. We see therefore that we can study heavy 

to light transitions in charmed baryons in terms of only two form factors evaluated 

at the zero recoil point. Note that in the limit me ---> <Xl there are also two indepen­

dent form factors. However because of l/me corrections the relations in Eqs. (2.16) 

and(2.17) are no longer valid. As an application of our results we can study the 

various asymmetries in exclusive semi-leptonic decays of Ae. The asymmetries are 

expressed in terms of helicity amplitudes which in turn can be expressed in terms 

of the form factors [12]. Since all the form factors are expressible, including lime 

corrections, in terms of F? and Ff, all the asymmetries can be expressed as functions 

of 11/FP. We can write the form factors in Eq. (2.6) as 

11 1 + a + (mBe + mB') [T :b/3 _ a + b/3]
FP 2 Be 2mB' 

12 _ T + b/3 + a + b/3 
FpmBc 2mB, 2m'B 

40 

http:and(2.17


h r+b/3 a+b/3
--- + - -­

F~mBc 2mBc 2m'B 

91 	 , . ,2b ( , \ rr - a - pb/3 pb/31 
1 + r T :3 - \mBc - mB) l- 2mBc 1­F~ 2m'BJ 

r - a - pb/3 pb/3~ 
F?mBc 2mBc 2mB 


93 r - a - pb/3 pb/3 

(2.40)

F?mBc 2mBc 2mB 

where 

" 6r mB' 
ZI = (A+ ~B') Z2 = (A- ~B') r = F~/I1 p = -1 + r Z2 

(ZI + ~Z2) + r(zi + ~Z2)
a = ---"----------''--- (1 + r) Z2 (2.41)

b = - 2mc2me 

In the above equation we have included corrections from the chromomagnetic operator 

although the maximum correction from this source is 2b/3 rv -0.04G? and so may be 

neglected 

A fit to the data on the semi-leptonic decay of Ae performed by taking into ac­

count the l/me corrections would result in a value for the ratio F20 / F?- To calculate 

the absolute decay rates one needs F? and F~ separately. This may be fixed from 

the measurement of absolute decay rates in semileptonic or hadronic decays of the 

charmed baryons, though for hadronic decays one has to contend with extra theoret­

ical uncertainties . These issues will be discussed in the next two chapters. 

Summarizing, in this chapter we have calculated the l/mQ corrections to the weak 

hadronic form factors which characterize charmed and bottom baryon decays. Using 

certain assumptions about matrix elements we can estimate these l/mq corrections 

at or near w rv 1 in terms of two form factors ~, Fr With a dipole form for the 

form factors one can extrapolate these form factors to arbitrary q2. One can now use 

these results to study the weak decays of charmed baryons involving the transition of 

a heavy quark into a light quark. In the next chapter it will be shown that some of 
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the assumptions made in this chapter about the matr ix el ements that represent the 

l/mQ corrections have to be relaxed to be consistent with experimental data. 
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CHAPTER 3 


NONLEPTONIC DECAYS OF HEAVY FLAVOR 

BARYONS 


3.1 Introduction 

There is now a fair amount of experimental data available on charmed baryon decays 

while more data on bottom baryon decays will be available in the future . There 

are already several calculations of these decays in the literature. A crucial input in 

the calculation of the semileptonic as well as the nonleptonic decays of charmed and 

bottom baryons are the hadronic form factors . These form factors can be calculated in 

specific models like the quark model or the MIT bag model [1, 2] . Another approach, 

as discussed in the previous chapter, is to use HQET to find relations among form 

factors for baryons containing a heavy quark. For instance we saw in the previous 

chapter that in the heavy-ta-heavy transition of the type Ab ---> Ae all form factors 

are expressible in terms of one Isgur- Wise function and a HQET mass parameter A 

up to order l/mQ where mQ is the c or b quark mass. For a heavy to light transition , 

for example of the type Ae ---> A, the use of HQET in the limit mQ -+ 00 allows one 

to express all the form factors in terms of only two form factors [3]. 

As we showed in the previous chapter, in heavy to light transitions l/mQ cor­

rections can be important, especially for the charm sector. Pure HQET analysis of 

these l/mQ corrections in the heavy to light transitions does not lead to interesting 

phenomenology as there are too many form factors and there is hardly any predictive 

power left [6, 7]. However, as shown in the previous chapter, using a combination 
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of HQET and some reasonable assumptions, all the form factors up to l/mQ cor­

rections can be expressed in terms of only two form factors evaluated at maximum 

momentum transfer. A specific choice for the q2 dependence of the form factors(e.9 , 

a monopole,dipole etc) can be used to extrapolate to arbitrary values of the four 

momentum transfer q2 In this limit, therefore , there are two inputs, the zeroth order 

form factors F~ and F20 at maximum q2 or w = V. Vi = 1, where v and Vi are the initial 

and final baryon velocities. In this chapter we wiD use a slightly modified version of 

the model for the form factors developed in the previous chapter to study the noo­

leptonic decays of charmed and bottom baryons. To proceed with our calculations 

we need the zeroth order form factors F~ and 11 at maximum q2 or alternately F~ 

and r = F~ / F~ at maximum q2. The best way to fix these inputs would be from 

measurements of semi-leptonic decays. For instance the asymmetry measurement in 

Ae ---> A///I could be used to fix r . There are measurements of Ae ---> _\Z+//I form 

factors by the CLEO collaboration [1] but the fit to data in these studies assumes the 

KK(Korner Kramer) model [2] for the form factors and hence is not general enough 

for our use. The KK model, described in the next chapter, treats both the charm 

quark and the strange quark as heavy. 

\Ve next examine the data on non-leptonic decays of charmed baryons. The 

theoretical description of these processes is model dependent and to that extent an 

extraction of F~(w = 1) and r = F~(w = 1)/F~(w = 1) using non-leptonic data would 

also be model dependent . Using current algebra we can use the value of the decay rate 

of Ae ---> E7r° to fix the non-factorizable contribution to the Cabibbo favored charmed 

baryon decays. Next, we can use the values of the decay rate and asymmetry of 

Ae -. A7r+ to fix Fp and r = F~ / FP at w = 1. We calculate the decay rates aod 

asymmetries of the Ae and the :::e charmed baryons decaying into an uncharmed 
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baryon and a pseudoscalar or a vector meson. In our calculations we use SlJ(3) 

symmetry to relate the form factors in the c -> s transition to c --+ u transitions . 

Using the flavor symmetry of HQET one can use the same inputs F?(w = 1) and 

T, extracted from the charm sector, in the bottom sector to study the decays of the 

bottom baryon. Below we describe the basic features of the current algebra model 

that we employ in the calculation of the non-leptonic decays of the charmed and 

bottom baryons. 

The starting point of non-leptonic decay calculations is the QCD corrected weak 

Hamiltonian . This effective currentxcurrent Hamiltonian gives rise to the following 

quark diagrams [9] : the internal and external W-emission diagrams, which result in 

the factorizable contribution, and the W-exchange diagrams which gives rise to the 

non-factorizable contribution. The W-annihilation diagram is absent in baryon decay 

and the W-loop diagram does not contribute to Cabibbo allowed decays . In the large 

IVc limit the non-factorizable contribution is no longer color suppressed because of Nc 

W-exchange diagrams . This combinatorial factor of Nc cancels a similar factor in 

the denominator. 

The factorizable part of the decay amplitude is expressed in terms of six form 

factors. For the decay of the charmed baryon into an uncharmed baryon and the light 

pseudoscalar, to a very good approximation, only two form factors contribute for a 

pion in the final state . When the pseudoscalar is replaced by a vector meson four of 

these form factors contribute. We use the pole model to calculate the non-factorizable 

part. This model assumes that the non-factorizable decay amplitude receives contri­

butions primarily from one particle intermediate states and these contributions then 

show up as simple poles in the decay amplitude . The various intermediate single 

particle states are the ground state positive parity baryons which contribute only to 
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the parity conserving amplitude, the parity violating amplitude being small[101 .The 

parity violating amplitude may receive contributions from excited negative parity 

baryons. In the limit that the momentum of the pseudoscalar q --+ 0, the parity vio­

lating piece of the amplitude reduces to the usual current commutator term of current 

algebra. Even though in charmed baryon decay the final state pseudoscalar meSOD 

is not soft, we will still work in the soft-meson limit and represent the parity violat­

ing piece of the amplitude by the current commutator term. It is important to Dote 

that using SU(3) symmetry all the weak matrix elements between the positive parity 

baryon states can be expressed in terms of only ODe matrix element and therefore in 

this model the non-factorizable contribution is completely determined by ODe weak 

matrix element between positive parity ground state baryons. Hence the prediction 

for the asymmetry parameter for decays, which have DO factorizable contribution (eg, 

.\c --+ ~+7r0), is independent of the baryon-baryon weak matrix element and depends 

only on the baryon masses. 

It is relevant to compare our model with some of the recent models employed 

III the calculation of Cabibbo favored charmed baryon decays. In our model we 

use a completely different model for the form factors than has been used in other 

models to calculate the factorizable piece of the decay amplitude. Regarding the 

non-factorizable contributions, we have assumed that the current commutator term 

represents the parity violating non-factorizable amplitude even in the case of charmed 

baryon decays where the pseudoscalar momentum q is far from zero. Large corrections 

to this current algebra result have been calculated in Ref. [11] and Ref. [12]. These 

corrections depend on the model used to estimate the baryon to baryon weak matrix 

element and the corrections calculated in Ref. Ill] and Ref. [121 are quite different. 

Phenomenologically both these calculations fail in their prediction of the asymmetry 
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measured in the decay Ac -+ ~01T+. This is also true for another recent calculation on 

nOD-leptonic cha rmed baryon decays using a spectator quark model by Korner and 

Kramer [13]. However, the central value of the measured asymmetry for the decay 

.\c -+ ~01T+ compares very well with the current algebra prediction. This seems to 

indicate that, at least for the decay, Ac -+ ~01T+, the correction to the current algebra 

result is small. In the light of the experimental results we have therefore adopted 

the position that the major contribution to the non-factorizable parity violating part 

of the amplitude comes from the current algebra commutator term. The advantage 

of such a scenario is that the only parameter needed to specify the non-factorizable 

contribution is a single baryon-baryon matrix element which can be fixed from the 

decay rate of a process like '\c -+ ~+1TO (which has no factorizable contribution) and 

we do not have to rely on model dependent calculation of the weak matrix element. 

The decay Ac -+ P<P is Cabibbo suppressed and has only a factorizable contri­

bution. The same form factors that characterize the c -+ u transition in Cabibbo 

favored decays can also be used for this decay. 

For the Ab decay we ignore the non-factorizable contribution. For the form factors 

III this decay we have used the same value of F?(w = 1) and F~(w == 1) used in 

charmed baryon decays as these are the form factors for mQ -+ 00 at w = 1 and so 

by heavy flavor symmetry they are the same for the charm and bottom sector. 

The chapter is organized in the following way. In the next section we outline our 

model for the calculation of the various charmed and bottom baryon decays while in 

the third section we present our results. 
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3.2 Model 

Non-Leptonic Decays: Here we develop the formalism for the Cabibbo favored 

decay of a charmed baryon into an uncharmed baryon and either a pseudoscalar or a 

vector meson . This formalism will also be used in the decay Ab -+ J /l/; A We start 

with the decay of a charmed baryon into a baryon and a pseudoscalar. The amplitude 

for such a decay can be written as 

M(B, -+ BfP) == iUB,(A + B"(5)UB. (3 .1) 

In the rest frame of the parent baryon the decay amplitude reduces to 

M(B, -+ BfP) == ixk,(5 + PCT.q)xB. (3 .2) 

where q is the unit vector along the direction of the daughter baryon momentum and 

5 == J(2mc (Ef + mf)A and P = J(2mc (Ef - mf)B with Ef and mf referring to the 

final baryon energy and mass. The decay rates and various asymmetries are given by 

2Im(5·P) 1512 _ IPI2 r _ - 81Tmc2Q (1512+ 1P12); Q == 2Re(5· P) 
1512 + IPI 2 (J = 151 2 + IPI2 and "( == 1512 + IPI2 

(3 .3) 

where Q is the magnitude of the three momentum of the decay products. The starting 

point of our dynamical analysis is the QCD corrected effective weak Hamiltonian for 

Cabibbo favored decays 

GFHw = ;;, VCI Vud(c+O+ + c_O_) (3.4)
2v2 

with O± = (sc)(ud) ± (sd)(uc) where we have omitted the Dirac structure "(,,(1 - "(5) 

between the quark fields inside each parentheses. VCI and Vud are the usual CKM 

matrix elements while 4 are the Wilson coefficients evaluated at the charm quark 

mass scale. In our model we write the decay amplitude as 

M(B, -+ BfP) == M(B. -+ BfP)fac + M(B, -+ BfP)nonfac (3.5) 
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From the structure of the Hamiltonian, factorization occurs with a 7r+ and kO in the 

final state. The factorizable contribution is given by 

~ r [ C2 + _ _M(B; ~ B,7r+) 2)2 ~eJVud CI + N) < 7r ludlO >< B,lscIB; > (3.6) 

G F CI ­
M(B; ~ B,kO) 2)2VCJ VUd [C2 + N) < KOlsdlO >< B,luclBi > (3.7) 

where CI Hc+ + c) C2 Hc+ - c) with Ne being the number of colors. 

The Ne suppressed terms come from the Fierz reordering of the operators O±. For 

a satisfactory description of non-leptonic decays of mesons it was found that the 

Fierz ordered contribution should be omitted [14]. This can be justified in the liNe 

expansion method with Ne ~ 00 [15] . We shall therefore also work in the large Ne 

limit. The matrix elements of the current between baryonic states that appear in the 

equation above are parameterized in terms of form factors . We define the six vector 

and axial vector form factors through the following equations 

(B'(p', s') I q -yl" Q I BQ(p, s)) - (' ')[1 I" . 12 1""UB' P, s I-Y - I-a q"
mBc 

h+-ql"]UBQ(P, s)
mBc 

(B'(p',s') Iq -y1"-y5 Q I BQ(p,s); UB'(P', S')[901" - i~al""q"
mBc 

+~qllh5UBQ(p, s) 
mBc 

(3 .8) 

where qll = pi' - p'lI is the four momentum transfer, BQ is the baryon with a heavy 

quark and B' is the light baryon. In chapter 2 we studied the form factors for heavy 

to light transitions involving baryons in HQET including corrections up to I/mQ . 

We found that at w = 1, in addition to the two zeroth order form factors form 

factors ~ and J1, there were five other unknown matrix elements, four of which 

represent corrections from the chromomagnetic operator . In chapter 2 we made some 
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assumptions about these unknown matrix elemeuls and we were able to express all 

the form factors in terms of F~ and Fr Without making any assumptions about the 

corrections coming from the chromomagnetic operator we write the form factors as 

II r + bl3 a' + bl 3]l+a+(mBQ+mB') -----­
[11 2mBQ 2mB' 

_1_2 r+bl3 a"+bI3 
---+--­

F~mBQ 2mBQ 2mB' 


h 
 r+bl3 a'lI+bI3 
--+--­

F?mBQ 2mBQ 2mB' 

91 2b pbl3 Pb'/3][r - a ­
1 + r + - - (mB - mB') + -­

F~ 3 Q 2m8Q 2m8' 

92 r - a - pbI3 pb" I 3 

F~mBQ 2m8Q 2mB' 

r - a - pb13 pb'" I 3 ~ (3.9)
F~mBQ 2m8Q 2mB' 

where 

A mBQ - mQ 

1\ 

mB' mB' - mq 

ZI (A+~B') 

Z2 (A- ~B') 

F~/F~ 
(zJ + ~Z2) + r(zi + ~Z2)

a 
2mQ 

1\ 

6r mB' 
p 

1 + r Z2 

(1 + r)
---Z2 (310)

2mQ 

and mBQ and mB' are the heavy and the light baryon masses while mQ and mq 

are the masees of the heavy and the light quark respectively. The model used here 

corresponds to a' = a" = 0, pb' = pb( 1 + 2m8' Im8Q) and pb" = pb. The quantities 
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a'" and pb'" are now calculable since the four matrix elements that represent the 

chromomagnetic corrections are determined by our choice of a' ,a" ,pb! and pb". The 

expressions for a'" and pb"! are 

2mBQ pb mB' Ia'" a+a [1- + --­
mBQ - mB' a mBQ 

p'''b pb [( 2mB' 4mB,2)pb 4mB,mBo ]-+ --+ - a 
3 3 3mBQ (mBQ - mB' )mBo (mBo - mB,)2 

The choice of the model described above is dictated by the fact that it works well 

phenomenologically and the fact that an expansion in l/mQ is valid. The condition 

for the validity of the l/mQ expansion is that ITI :S 1. To connect these assumptions 

with the ones made in Ref. [7], we review the assumptions made about the corrections 

coming from the chromomagnetic operator in chapter 2. We consider mB' /mBo to be 

small and we relax some of the assumptions about the chromomagnetic corrections 

in chapter 2. While we retain 6FI + 6F2 + 6F3 = 0 (Eq (2 .33) of chapter. 1) we 

only assume (at w = 1) XII '" XI2 '" XI but do not constrain X21 and Xn. The above 

assumptions lead to XI (w = 1) = x(w = 1)/me [7]. The model for the form factors 

used in this work corresponds to X21 = Xn = X2 = -a in the limit mB' /mBo is small. 

So we see that the model employed here is almost identical to the model in chapter 

2(except for XI not equal to X2) in the limit mB' /mBo is small. For the decays of 

charmed baryons considered in this paper the difference between the two models can 

be significant given the fact that mB.jmB is no longer small . For bottom baryono 

decays we expect the two models to yield essentially identical results. Imposing the 

constraint on T we find that we can fix I and 9 from the measured asymmetry and 

decay rate of I\.e -4 1\.1["+. Taking into account the experimental errors, the form 

factors f and g are such ,that (9 - 1)/9 :S 0.35 if I < 9 and (f - 9)/ I :S 0.35 if 9 < f. 

Note that in the me -4 00 limit the form factors f and g are equal. The inclusion of 
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l/m e corrections destroys this equality, and so the inequalities above represent the 

size of the 1/me corrections. We also assume F? (w = 1) > 0 in our analysis. The 

factorizable contributions to the decay amplitude can now be written as 

p2 
A/a<: G;VeoVudlpCk[(m/ - mi)/l(mp2) + h(m/)m ]

v2 m. 
p2

B/ae G; Veo VudlpCk[(m/ + mi)91(mp2) + 93(mp2) m ] (3.11)
v2 m. 

where CI(C2) refer to 1["+ ( kO ) emission, Ip is the pseudoscalar decay constant and 

11,3 and 91,3 are the form factors defined in Eq. (3.8) and mp2 is the pseudoscalar 

mass. In our analysis we have used the SU(3) results 

I ~!I. 1[1 {2=004=0 =+"=01 - -c ­ I -c ­
3 I = - 3 I - -v-~/IAcP~ _ 

(4 =:cOAr.0_~I/·c+Ar.+ 
= V3 /1 = 2/1=:cOA/\ (3.12) 

It is important to note that strictly we should use the SlJ (3) relations for the zeroth 

order form factors since the l/mQ corrections involve the baryon masses and hence 

break SU(3), but this effect is small and is therefore neglected in our analysis. 

For the non-factorizable term we will use the pole model and current algebra 

as outlined in the introduction . Following Ref. [16] we write the non-factorizable 

amplitude R(q) as 

R(q) = RBorn(q) + R(q) (3.13) 

The usual approximation is to assume 

R(q, q2 = m~) ~ RBorn(q, q2 = m~) + R(O) (3.14) 

Finally using reduction techniques for the amplitude one obtains 

2 2) -Vi [PV] 2 2 - )R(q, q = mp ~ T < BI Qs, H IBe> +RBorn(q, q = mp) - R(O) (3.15 
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where Q5 is the axial charge, I P is the pseudoscalar decay constant and 

Rc(O) Iim[- 12iql"MI" + RBorn(q)] (3 .16) 
q-O I" 

with MI" defined in Eq. (1.72). Clearly the first term in the amplitude above con­

tributes to the parity violating amplitude while the remaining terms contribute to 

the parity conserving amplitude as the parity violating amplitude is small [10]. (In 

the case of non-Ieptonic hyperon decays < BIIHpvlBi >= 0 in the SU(3) limit [16]). 

Note in the case of charmed baryon decays, as opposed to the hyperon decay case, the 

contribution from Rc(O) is no longer small compared to RBorn(q, q2 = rn~). Hence in 

our model we have 

Anonlac -12 < BI[Q5 , HPV]IBc > (3.17)
Ip 

< B"IHpclB > rnB + rnB' 
Bnonlac - [g B" B' P ------'-----'-------­

rnB - mB" rnB" + rnB' 
< B'IHpc lB'" > rnB + rnB' 

+gBB"'P I (3.18) 
ma' - rnB'" rnB + rnB'" 

The first term in the expression for B is the s-channel pole contribution while the 

next term is the u-channel pole contribution . The strong pseudoscalar meson-baryon 

coupling gB"Bj,P can be related via the Goldberger-Treiman relation to the axial 

vector form factors gA B' ,B" as 

1 A 
gB',B" = Ip(mB,+rnB")g B',B" (3.19) 

The axial form factors gA Bi,Bj are of two types, those between non-charmed baryons 

and those between charmed baryons. For the first type we use SU(3) parameterization 

with 

D + F = 1.25 DjF ';:;; 1.8 (3.20) 
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where the DjF ratio is taken from a fit to hyperon semileptonic decay [1 7) . The 

second type of form factors are between charmed baryons and it is reasonable to use 

SU (4) symmetry and use the same D and F in this case also. The justification for 

this lies in the fact the the transitions are 6.C = 0 and so the baryon wavefunction 

mismatch in the overlap integral is small[12] . For the weak matrix element between 

the positive parity baryons we will use the following SU(3) relation 

a~+hc+ = a~coho = a::OA::O = jIa=.os::o = jIa~c+~+ = -lIa~co~o . (3.21) 

where aB"B, =< BIIHpclBi >. Using the above SU(3) relations the non-factorizable 

term is completely specified in terms of one weak matrix element which we choose to 

be a::OA::::O, and which we fix from the measured decay rate of Ac -+ E+1r° 

For the decay where the meson in the final state is a vector meson we can write 

the decay amplitude as 

M(Bc -+ BI V) = iUB,f°I"l'rI"(a + b"(5) + 2(x + Y'Y5)Pll"luB (3.22)
c 

where PII" is the four-momentum of the parent baryon aild f°l" is the polarization of 

the vector meson . The kinematics for this decay have been worked out in details in 

Ref. [18]. We can write down the factorizable contribution as 

altU. 
G F V V I [( 2 m I + m. 2 rr. co ud vmv c" II mv ) + ---h(mv )1
v2 m. 

bltU. 
GF V V I ( 2 rn I - m. 2 rr. co udIvmv c" gl mv ) + -­. -g2(mV )]
v 2 rn. 

XltU. 
GF h(rnv2)

rr.VcoVudIvmvc,,[--,-]
v2 m. 

GF g2(mv 2) 
Ylac. rr. Vc,s VudIvmvc" [--, -] (3.23)

v2 rn. 

where CI(C2) refer to p+ (ROO) emmision, Iv is the vector meson decay constant, mv 

is the vector meson mass and 11,12 and gl, g2 are the form factors. For the pole term 
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http:Y'Y5)Pll"luB(3.22


we will work in the approximation that p generates isospin and so the couplings 9BBV 

are pure F-type. Similar results apply to the decays A, -+ p¢ and Ab -. J /w.'I.. with 

the appropriate changes in the QCD correction factor and the CKM matrix elements. 

Before we present our results in the next section we list the various inputs used 

in the calculations. We begin with the calculations of the non-leptonic decays of 

the charmed baryons. As outlined in the introduction a fit to the decay rate and the 

asymmetry for the decay A, -+ .'1..11'+ is used to extract I1(w = 1) and r . The extracted 

values are F~(w = 1) = 0.46 and r = -0.47. The values for the Wilson coefficients 

C I and C2 were taken ~ 1.32 and -0.59 respectively [ll] and we have used m, = 1.4 

GeV and m. = 0.2 GeV[19] . We found that the non-factorizable contribution could 

be expressed in terms of the single matrix element a=:OA=:O . The measured decay rate 

of A, -+ E+rro is used to extract a=:OA=:O = - 5.48 x 10- 8 GeV . For the vector meson 

decays we use, following Ref. [11], fp = fK- = 0.221 GeV. For the mode A, -+ p¢ 

we have used Jt/J = 0.23 GeV for the ¢ decay constant. For the Ab decay we have 

used iVebi = 0.040 [22], C2 ~ 0.23, fJN = 395 MeV, and pole masses mv '2:: 5.42 GeV , 

mA '2:: 5.86 GeV[l] . The quark masses were taken as mb = 4.74 GeV and m. = 0.20 

GeV [19] . 

3.3 Results 

Starting with the results on the non-leptonic decays of the charmed baryons, in Table 

3.1 and 3.2 we give the predictions for the decay rates and asymmetry for the non­

leptonic decays Bi -+ B I P and Bi -+ B I V. In Table 3.3 we show the predictions 

for the mode A, -+ p¢ and in Table 3.4 we show the predictions for Ab -+ J /t/JA. In 

Table 3.5 and Table 3.6 we show the form factors for the A, -+ A transition while in 

Table 3.7 and Table 3.8 we show the form factors for the Ab -+ A transition. 
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Table 3.1 : Decay rates (xlO ll s - I ), branching ratios (x10 - 3 ) and asymmetry pre­
dictions for Cabibbo favored Bi -+ BIP decays. The asterisks indicate the input 
values. 

Process fn BRn r Expt 0Th , QE~t 

A, -+ Arr+ 0.40 7.9· 0.40 ± 0.11 -0 .94· , -0.94~Ol~[20] 
A, -+ E°1l'+ 0.44 8.7· 0.44 ± 0.10 - 0.47 , -­
A, -+ E+1I'° 0.44 8.7 0.44 ± 0.12[20] -0.47, -0.45 ± 0.31[20] 
A, -+ pKo 0.68 13.4 1.05 ± 0.20 -0.91, -­

A, -+ =:0 K+ 0.25 4.9 0.17 ± 0.05 0,-­ J 
=:~A -+ =: 11'+ 0.17 1.6 -­ 0.06 , - -
=:~A -+ =:u1I'+ 0.88 31 0.03 , -­
=:~A -+ =:011'0 0.62 6.1 -­ -0.89 , -­

=:~A -+ E+ K O 0.31 3.1 -­ -0.005, -­
,::::~A -+ AKu 0.42 4.1 -­ - 0.76 , -­
,::::~A -+ EOKo 0.23 2.2 -­ 0.006 , - -
,::::~A -+ E+ K 0.24 2.3 -­ 0,-­

-

Table 3.2: Decay rates (x 1011 S-I), branching ratios (x 10 - 3) and asymmetry predic­
tions for Cabbi uo favored Bi -+ B I V decays 

Process fn BRn r Erpt BRErpt QTh QErpt 

A, -+ Ap+ 0.55 11 < 2.1 < 42[23] 0.46 - ­
A,-+Eop+ 0.15 3 -­ -­ 0.0 -­

A, -+ E+ pO 0.15 3 < 0.6 < 12[21] 0 -­
A, -+ pK·o 0.57 11.3 -­ -­ 0.45 -­

A, -+ =:0 K·+ 0.002 0.8 -­ -­ 0 - ­
=:~A -+ =­ p+ 1.3 12.8 -­ -­ 0.54 -­
=:~A -+ '::::0p+ 0.88 31 - - -­ 0.46 -­
.::::~A -+ ::::opo 0.11 1.1 -­ -­ 0 - -

=-~A -+ E+ K·o 0.36 12.8 - ­ - - 0.47 -­
=:~A -+ AK.o 0.10 1 -­ - - -0.56 -­
'::::~A -+ EO K·o 0.17 1.7 - ­ -­ 0.37 -­
.::::~A -+ E+K. 0.016 0.15 -­ -­ 0 -­
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In conclusion in this chapter we have studied the non-Ieptonic two body decays 
Table 3.3: Decay rate (xlOlls- I

) , branching ratio relative to pK-1[+ mode and 
of charmed and bottom baryons involving transition of a heavy to light quark basedasymmetry predictions for I\. e -> p¢ 

on a model for form factors that includes order l/mQ corrections.r Th1 BR 
002 , BR ;:::: 0.01 

Table 3.4: Decay rate (xlOlls- I 
), branching ratio relative to the total decay width 

and asymmetry predictions for I\.b --> J /'1/; I\. decays 

Table 3.5: Form factors at the point q;"= for Ae --> I\. 

Table 3.6: Form factors at the point q2 = 0 for I\.e --> I\. 

Table 3.7: Form factors at the point q~x for I\.b --> I\. 

Table 3.8: Form factors at the point q2 = 0 for I\.b --> I\. 
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CHAPTER 4 

SEMILEPTONIC DECAYS OF Ac AND Ab 


BARYONS 


4.1 Introduction 

Recently there has been a measurement of the form factors in the semi-Ieptonic decay 

Ae -+ Ae+ Ve [1], where a fit to the data was done using the model of Korner and 

Kramer [2]. This model, as we mentioned in the previous chapters, is constructed 

within the framework of HQET, but treats both the charm quark and the strange 

quark as heavy and considers only the 11m. expansion, keeping me -+ 00. Even 

though the model has only one input parameter, use of 11m, expansion is ques­

tionable and the omission of lime corrections is also not justified. For a heavy to 

light transition, for example of the type Ae -+ A, the use of HQET in the limit 

mQ -+ 00 allows one to express all the form factors in terms of only two form factors 

[3]. SeIDileptonic decays of Ae have been studied in this limit [2, 4]. In the previous 

two chapters we constructed a model for the form-factors which takes into account 

I/mQ corrections for heavy-ta-light transitions of the A type baryon . In this chapter 

we use the form factors to study the decays Ae -+ Aiv and Ab -> plv. 

This chapter is organized in the following way. In the next section we present 

the formulae for the calculation of asymmetries and decay rates for the semi-Ieptonic 

decays Ae -+ Alv and Ab -+ piv while in the third section we present our results . 
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4.2 Formalism 

Here we present the formalism for the semi-Ieptonic decays of :\e -+ Aiv and Ab -+ piv. 

The hadronic part of the amplitude is the matrix element of the weak quark currE:nt 

between baryonic states that is parameterized in terms of form factors which have 

already been defined in the previous chapters . 

We have shown in the previous chapters that we can write the form factors in the 

above equation in terms of two form factors FI and F2 provided some assumptions 

are made about the I/mQ corrections. For both Ae and Ab semi-Ieptonic decays 

we will work in the approximation that the lepton mass is negligible. To make the 

kinematics of the decay Ae -+ A,ivi transparent we can imagine that this decay 

proceeds via Ae -+ A. W' followed by W' -> iVi. Following [2] we define the helicity 

amplitudes which are given by 

H>'2,>'W 	 H~ , >. w + H:',>.w 

+(_)HV,(A ) H~1:~>.w >' 2,>'W 	 (4 .1) 

where A2, Aware the polarizations of the daughter baryon and the W-boson respec­

tively. In terms of the form factors the helicity amplitudes are given by 

Hi;2 ,O a_ [(MI + M2)/l + ;:c 12] V(q2) 


H~2.0 a+ [-(MI - M2)gl + L g2] A(q2) 

mBc 

Hi;2,} {iQ; [-II - (Ml + M2 
) 12] V(q2) 

mBc 

~ [ 	 (Ml - M2)] 2H~2 , } 	 V2Q+ gJ - g2 A (q ) (4.2) 
mBc 

where 

Q± (MJ ± M2)2 _ q2 a±= ~ VQ2 
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1(1_~)2 (1-~ )2 
V(q2) 

m FF 

A(q2) = (1 - ~)2 (43)
(1- +,.)2 

mm FF FF 

where M1 , M2 are the parent and daughter baryon masses and mj'; are the appropri­

ate pole masses and q is the momentum transfer. The decay Ac ~ A,lvi is analyzed by 

looking at the two sided cascade decay Ac -+ A.[-+ P7r-] + W[-+ lvd . The normalized 

four-fold joint angular distribution for the decay Al -+ A2[-+ a(4 +) +b(O-] +W[-+ lvd 

is given, following the notation in Ref. [2], as 

dr 1 q2pC 2 

B(A2 -+ a + b)---4-M IVQ1,Q21 
2 m+ T2

dq 2dXd cos 8d cos 8 A 2 (27r) 24 I 

+T3] (4.4) 

where 

3 2 2 3 2 2
T, [-(1 ± cos 8) IHI /HI (1 + O:A cos 8 A) + -(1 =f cos 8) IH_ ,/2-d

8 8 

(1 - O:A cos 8 A)] 

T2 ~ sin2S[IHI/2012(1 + O:A cos SA) + IH_I/2012(1 - O:A cos SA)]
4 


T3 =f 3;;:;-0:" cos Xsin S sin 8,,[(1 ± cos S)Re(H-1 /20H;/21)

2v2 


+(1 =f cos S)Re(H_I /20H~I /2 -I)] 


where p = ~/2MI' the upper and lower signs in the above equation hold for 

the [-VI and l+vl leptonic final states respectively and VQ1 ,Q2 is the CKM element for 

the QI -+ Q2 transition. The polar angles defined in Ref. [2] are shown in Fig. 4.1. 

By integrating over two of the angles one can look at the following distributions 

dr 
ex 1 + O:O:A cos SA 

dq 2dcosSA 
dr 

ex 1 ± 20:' cos 8 + o:/lcos S2 
dq 2d cos S 

dr 37r2 
ex 1 =f 32J2"YO:A cos X (4 .5)

dq2 dX 
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Figure 4.1 : The decay process Al -+ A2[-+ a(~ +) + b(O-] + W[~ Iv,]. The polar 
angles 8 A ! 8 and X are shown in this figure . 

The first distribution in the above equation gives the polar angle distribution for the 

cascade decay A, ~ p7r-. The second distribution is the polar angle distribution for 

the decay W ~ lVI, while the third distribution is the azimuthal angle distribution 

The asymmetries are given by the expressions below [2] and will depend only on the 

ratio FNw = 1) / F~ (w = 1) in our model for the form factors 

2IHI /2 d2 -IH_I/2 _d 2+ IHI /2 012 -IH_ 1/ 2 01
2 

0: 
IHI/2 112 + IH_l/2 _,,2 + IHI /2 01 2+ IH_l /2 01

IHI /2 112 - IH_ 1/ 2 _11 2 
0:' 

IHI/2 d2+ IH-'/2 _d2 + 2 (IH,/2 012+ IH_I/2 01 2 ) 

IH'/2 112 + IH_ I/2 _112 - 2 (IH,/2 01 2+ IH_I/2 01 2)0:" 
IHI /2 112 + IH_ 1/2 _11 2+ 2 (IH /2 012+ IH- '/2 01 2 )

'
2 Re(H-1 /2 oH;/2 1 + Hl/2 OH:I/2 -I) 

( 4.6 ) "Y 
IHI/2 112 + IH-I /2 _d2+ IHI /2 012+ IH_l /2 012 

for unpolarized Ac· For polarized Ac one has similar decay distributions and we refer 

the reader to Ref. [2] for the relevant details. We give here the expression for th e 

asymmetries 

IHI/2 112 -IH_I/2 _11 2 -IHI /2 01 2+ IH_l/2 01 2 
O:p 

IHI/2 d2+ IH_I/2 _11 2+ IHI /2 012+ IH-I /2 01 2 

"yp 
2 Re(HI/2 OH:I /2 0) 

(4 .7)
IH' /2 d2 + IH-I /2 _,,2 + IH1/ 2 01 2+ IH_I /2 01 2 
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As q2 --+ q2 max all the polar asymmetries vanish while the azimuthal asymmetries 

r --+ 2./2/3 and rP --+ -1/3. At the q2 = 0 point however the limiting value of 

the asymmetries a, ap and IP depend on the dynamics as shown below while the 

asymmetries Q', I and a" go to zero 0,0 and -1 respectively. These asymmetries were 

studied for different representative values of the ratio TKK = 12/11 [2] which is related 

to the ratio T = Ff(w = l)IF?(w = 1) via TKK = TI(2 + T) . The fit, performed by 

Ref. [1], to the semileptonic decay data on he --+ h,e+ve uses the Korner Kramer(KK) 

model to extract TKK and the asymmetry a [1]. Since, as already mentioned in the 

introduction, the KK model does not include lime corrections and the use of 11m, 

expansion is questionable, a more correct approach would be therefore to do a fit to 

the semi-leptonic data including lime corrections to extract the ratio T(TKK) and 

hence the asymmetries. 

4.3 Results 

In our analysis we have studied the semi-leptonic decays for ITI ~ 1 and 0 ~ F?(w = 

1) ~ 1. In chapter 3 we found the lime expansion to be valid for ITI ~ 1 and from the 

study of non-leptonic two body charmed baryon decays F?(w = 1) ~ 1 was obtained 

( we assumed F?(w = 1) > 0 ). In our analysis we found that the 1/mQ corrections 

depend on the value of T. As far as the 1ImQ corrections to the form factors are 

concerned for the he decay the lime corrections to the form factors are> 50% for 

T ~ -0.62. For hb decays the 11mb corrections are small and are greater than 30% 

for T :S -0.5. Fig. 4.2 shows a(q2) versus q2 for different T values. 

We note that for -0.5 :S T :S 1 the asymmetry a is not very sensitive to T. This 

feature is common to most of the calculated integrated asymmetries. In Fig. 4.3 we 

show a(q2 = 0) versus T. 
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Figure 4.2: Asymmetry Ct versus q2 for various r. 

In the KK model or in general with me --+ 00, Q(q2 = 0) = -1 for all T. Fig 

4.3 shows the effect of including lime corrections . Fig. 4.4 and Fig. 4.5 show the 

predictions for the integrated asymmetries for different T for unpolarized and polarized 

he and except for r we see that the integrated asymmetries are insensitive to r in the 

range -0.5 :S T :S 1. 

The lime corrections to the integrated asymmetries again depend on the value 

of r and can be as large as 40%. 

The decay rates depend on both T and F?(w = 1) . Instead of calculating the 
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Figure 4.3: Asymmetry a(q2 = 0) versus T. 

individual decay rates for !I.e ----> !l.lv and !l.b -+ plv, to reduce the uncertainties from 

these sources we calculate the ratio of the decay rates which will depend only on T as 

the factor F~(w = 1) cancels. Fig. 4.6 shows this ratio as a function of T with and 

without 1/mQ corrections with a monopole and dipole form for the form factors . 

We see that the 1/mQ corrections are small for the dipole form factors. The ratio 

above will receive corrections of the order'" 11mb and higher where mQ is the c or 

b quark. An estimate of these corrections will depend on the value of T which can 

be extracted by performing a fit to the !I.e -+ !l.e+ 1/£ data. The final result can be 
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Figure 4.4: Average asymmetries (unpolarized case) versus r. 

written as 

Vub 12f(!l.b -+ plv) = ~(T)[l + ~l(T) + ~2(T) + ··· ··· ]1 Vc.o (4 .8) 
f(!l. e -+ !l.lv) 

where ~ is the ratio with mQ -+ 00 and ~j(T) represents the corrections to the ratio 

due to 1/mQ corrections to the form factors . Since we do not know T we make an 

estimate of the ratio above by using the value of T extracted from nonleptonic charmed 

baryon decays with dipole form factors [61 i.e T = TO = -0.47(TKK = -0.31). We 

write 

T TO ± ~T 
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Figure 4.5: Average asymmetries (polarized case) versus r. 

Ro(T) :::::: Ro(To) ± 6.T~(TO) (4.9) 

where ~(TO) is the derivative of Ro(T) at T = TO = -0.47, and where 6.T may also 

include experimental uncertainties in extracting T. So an estimate of the ratio defined 

in Eq. (4 .8) can be made through the following approximation 

f(Ab --+ pill) I 1 Vuh 2 ( 
. ) :::::: Ro(To)[1 ± 6.T ~(To)1Ro(TO) + 6. 1 (TO) + 6. 2 (TO) + .. .. . I-v1 4.10) 
Ae --+ Aill c.s 

For monopole and dipole form factors we then have 

f(Ab --+ plll) :::::: 196.65[1 ± 0.786.T + 0.02 + 6.2 (TO) + ··· ··· 11 VVuUbl2 (4 .11)
f(Ae --+ Alll) 
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Figure 4.6: Ratio of Ab --+ pill and Ac --+ Alll decay rates versus r. 

and 

Vub 2f(Ab --+ pili) :::::: 83.41[1 ± 0.946.T - 0.15 + 6. 2 (To) + .. .. .]1 Vc.s I (4.12)
f( Ae --+ Alll) 

Naively we can set 6.2 (TO) :::::: 6. 1(To)A./2mQ and so we see that 6. 2 (TO) ,(, .05 for the 

dipole form factors and 6.2 (TO) is negligible for the monopole form factors. Measure­

ment of the ratio R can be used to extract lVubl/lVc.sl. Clearly the largest uncertainty 

in R comes from the assumed q2 dependence of the form factors and to reliably ex­

tract lVubl/lVul using R the q2 dependence of the form factors must be measured. 

The assumptions made in the calculation of the form factors at w = 1 can be tested 
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by studying the decay distribution in Ac -+ ALII. With enough statistical power such 

a study could determine the q2 dependence of the form factors . Once the assumptions 

for the form factors at w = 1 is tested successfully by doing a fit to the Ac -+ ALII decay 

distribution, and r and information on the q2 dependence of form factors extracted, 

we can use the ratio in Eq. (4 .8) to determine /Vubll/Vul with a small error. 

It is interesting to compare this method of extracting /Vub 1I/Vc.s 1 and hence /Vubl 

with other methods of extracting /Vubl. One method is to use semileptonic inclusive 

B decays and study the decay distribution near the end point of the spectrum in the 

narrow window 2.3 :S E, :S 2.6 GeV [11]. However, in this region the b -+ U transition 

is subject to large QCD radiative corrections, as well as large non-perturbative cor­

rections which are entangled with each other, and theoretical calculations are model 

dependent. Another way to extract /Vubl is through the study of exclusive B decays 

[12] and this approach is similar to our approach with the difference that we are 

working with baryons instead of mesons. The calculations of form factors in exclu­

sive decays of B mesons are done in specific models, like the quark model, or with 

a chiral Lagrangian with a heavy meson . In Ref. [13] it is suggested that /Vubl may 

be extracted from the ratio of the lepton distribution in B -+ 7rlll and D -+ 7rlll 

with a theoretical uncertainty of 10-20 %. The relevant form factors are calculated 

up to order 1/mQ in the soft pion limit and they (the form factors) are expressed 

in terms of unknown matrix elements. Certain assumptions are made about these 

matrix elements to estimate the uncertainty in their calculations. In Ref. [14] the 

ratio of the lepton distribution in B -+ plll and D -+ pill at maximum q2 is used 

for an extraction of /Vub l. The 1/mQ corrections are calculated in the quark model 

and the theoretical uncertainty in the measurement of /Vubl is small. However, at 

maximum q2 the decay rates vanish. Actual measurements are performed away from 
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maximum q2 where additional form factors contribute adding to the theoretical un­

certainty in the measurement of lVub I. .\nother approach to measuring lVub I, which 

is the mesonic counterpart of our method, is given in Ref. ([15i) where experimental 

data on D -+ k semi-Ieptonic decay are used to calculate the B -+ 7l' semileptonic 

decay. The q2 dependence of the form factors is assumed to be of the monopole type, 

no l/mQ corrections are considered and the extraction of /Vubl is found to depend 

on the value of fD. and fB whose values are not known very accurately. Since most 

approaches to extracting /Vubl from B meson decays are model dependent and can 

involve significant theoretical uncertainties, extraction of lVubl using heavy baryon 

decays is interesting as it is possible that theoretical uncertainties in heavy baryon 

decays might be small. 

The predictions for the decay rates for r(Ac -+ ALII) and r(,Alb -+ plll) are subject 

to significant l/mQ corrections and may not be reliable. !':evertheless we give the 

predictions for the decay rates for r = -0.47 and FO(w = 1) = 0.46[6] obtained in 

chapter 3. 

r(Ac -t ALII) 5.36 X 10 1°5­ 1 ( 4.13) 

r(Ab -+ plll) /Vub I26 .48 X 10 12 
5 . 

1 (4 .14) 

The Particle Data Group gives r(Ac -+ Ae+ X) = (7 .0±2.5) X 1010
5-

1
. A measurement 

of f(Ab -+ plll) is likely to be made at LEP in the future. The numbers for the 

individual decay rates are calculated using /Vc.sl = 0.9745 [9]' the pole masses mv ~ 

5.37 GeV and mA == 5.80 GeV[lO] and the quark masses mb = 4.74 GeV and mu = 

0.005 GeV[8] 

In conclusion in this chapter we have studied the semileptonic decays of charmed 

and bottom baryons involving heavy to light quark transition based on a model for 

form factors that includes l/mQ corrections . We also suggest a method for determin­
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ing lVubl/Wc<l· 
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CHAPTER 5 


GENERAL INTRODUCTION TO GRAND 

UNIFIED THEORIES 


The Standard Model of particle physics has now a strong experimental basis. The 

Standard Model consists of QCD, which provides a consistent picture of both the 

dynamics and symmetries of the strong interactions, and the electroweak interaction 

which represents the unification of the electromagnetic and the weak interactions. All 

the interactions are described by gauge theories and mediated by vector bosons. The 

Standard Model represents an impressive unification in our ideas of the strong, elec­

tromagnetic and weak interactions. There are, however, some unanswered questions. 

Although the model combines the weak and the electromagnetic interactions in the 

group SU(2) x U(I) there is an arbitrary parameter that describes the coupling of 

the two groups. Furthermore there is no understanding of why the electric charges 

come in discrete units of e/3. With the addition of the strong interactions the group 

is enlarged to SU(3) x SU(2) x U(I) with no connection between the strong coupling 

and the electroweak couplings. The Standard Model also contains sixteen other pa­

rameters besides the thre€ gauge couplings viz. the six quark and three lepton masses, 

three mixing angles and a phase parameterizing CP violation, the two boson masses 

Mw and MHigg• and finally ()QCD which describes potential violation of CP in the 

QCD Lagrangian. There is no understanding of the matter structure in the Standard 

Model with no explanation of the mass spectrum or the existence of three families. 

These questions suggest that the Standard Model is not a fundamental theory but is 

at best an effective theory derived from an underlying fundamental theory. One can 
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then consider two scenarios The first is that some or all the fields of the Standard 

Model may be composite and there is some more fundamental level of structure . The 

second possibility is that the fields of the Standard model are fundamental but are 

related by additional symmetries broken at some high energy scale . The second ap­

proach leads to grand unified theories . Some of the questions posed above about the 

Standard Model can be answered if a simple group can accommodate the strong and 

the electroweak interactions, because then there is only one coupling constant and 

all internal quantum numbers are quantized. To achieve this SU(3) x SU(2) x U(I) 

must be embedded in a larger simple group, the so-called grand unified group. The 

Standard Model then emerges as an effective theory of the original grand unified 

theory at the low energy scale'" 100 GeV. 

The first attempt at lepton-quark unification was made by Pati and Salam [1] 

who unified the quarks and leptons within the group SU(2)L x SU(2)R x SU(4)c by 

extending the color gauge group to include the leptons. While this model explained 

charge quantization there were still three coupling constants 92L,92R and 94c in the 

model. The first GeT based on a simple group, the group SU(5), was proposed by 

Georgi and Glashow [2]. There has been a lot of activity in grand unified theories 

(GUT) following the precise measurement of the Standard model coupling constants 

at the Z mass scale at LEP. It was shown by Amaldi et. al.[3] that if one extrapolated 

the measured Standard Model couplings to the GUT scale in supersymmetric SU(5) 

grand unified theory (SUSY SU(5) GUT) then they meet at a single point, signifying 

unification. The minimal nonsupersymmetric SU(5) cannot be made consistent with 

the LEP measurements and the proton decay results. 

The basic rules to be followed for the construction of a GUT are the following: 

1) Choose a suitable gauge group G . The requirement of gauge invariance then 
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specifies the gauge bosons of the theory. 

2) Choose the fermion representation so that the standard SU(3) x SU(2) x U(I) 

low energy structure emerges. The couplings of the fermions to the gauge bosons are 

then fixed by local gauge invariance. 

3) Assign the scalars of the theory in the appropriate representations and choose 

the proper couplings so that a phenomenologically acceptable pattern of symmetry 

breaking of G to SU(3) x SU(2) x U(I) is achieved. We choose the minimum num­

ber of scalar representations necessary to provide the necessary symmetry breaking 

described above. 

4) Specify the Yukawa couplings of the theory so that an acceptable pattern of 

fermion masses and mixings emerge after spontaneous symmetry breaking. 

Grand unified theories solve some of the problems of the Standard Model. Charge 

quantization is explained and in GUT all the coupling constants of the Standard 

Model are related. However there is still no good explanation of the family struc­

ture. There is no prediction for the KM angles unless extra discrete symmetries are 

assumed. There is also no improvement in the scalar sector as more parameters are 

needed in the scalar potential than are present in the Standard Model. The appear­

ance of a large mass scale (Mx) where unification takes place explains why proton 

decay is slow but in GUT there is no explanation of why this scale should be so much 

greater than the weak scale. In nonsupersymmetric guts the existence of two very 

different mass scales leads to the hierarchy problem as it becomes necessary to fine 

tune parameters in the scalar potential to one part in 1013 - 1014 . Finally grand 

unified theories do not include gravity even though the unification scale is close to 

the Planck mass. 
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5.1 Choosing The Gauge Group 

The Standard Model (SU(3) x SU(2) x U(l)) has four diagonal generators correspond­

ing to T3 and T8 of color , T3 of weak isospin and Y the hypercharge generator. The 

observed particles carry definite values of these quantum numbers. Any group that 

contains the Standard Model should therefore have at least four diagonal generators 

or in other words it must have a rank of at least four. Furthermore the group should 

have complex representations necessary to accommodate the SU(3) complex triplet 

and the complex doublet fermion representation . The possible rank four groups are 

[SU(2)]\ [0(5)]2, [G 2 ]2, 0(8), 0(9), Sp(8), F4 , [SU(3)]2 and SU(5). The first two do 

not contain SU(3) and the next five do not have complex representations, and so, are 

ruled out as candidates for the GUT group. For the case of [SU(3)]2 the SU(2) x U(l) 

would come from an SU(3) and so the charge operator would be a traceless generator 

of SU(3). This would mean that the sum of quark charges would be zero which is 

inconsistent with the charges of the observed quarks. Hence SU(5) emerges as the 

unique rank four candidate for a grand unified group . 

Of course we can also consider groups with rank greater than four and there 

are certain shortcomings of the SU(5) group to motivate such considerations. If we 

insist on the GUT group being simple then we have limited classes of simple groups 

at our disposal. They are SU(n + 1) , SO(2n), SO(2n + 1) and Sp(2n) where n is 

a positive integer and then there are the exceptional groups namely G2 , F4 , £6, £7 

and £8 ( the subscript represents the rank of the group) . If we further insist that 

the group have complex representation then the only possibilities are SU(n + 1), 

SO(4n + 2 = 2(2n + 1)) and £6- It should be pointed out that it is possible to 

construct GUT's with fermions in the real representation provided we allow extra 

mirror fermions in the theory. This would then require the explanation of why the 
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mirror fermions are heavy and the conventional fermions light. The necessity of mirror 

fermions in real representations can be seen very ea.<;ily by the following argument. In 

GUT it is convenient to express all fields in terms of a definite chirality. So instead 

of working with lh and 1/JR one works with 1/JL and wI. = 02 1/JR or with 1/JR and 

1/J'R = CJ21/Ji· In terms of left handed fields the fermions in the Standard Model have 

the following transformation under the SU(3) x SU(2) x U(l) 

h N9 x [(3,2,1/3) + (3, 1, -4/3) + (3, 1,2/3) + (1 , 2, -1) + (1, 1, 1)] (5.1) 

where N9 is the number of generations. In terms of the right handed fields one can 

write 

f'R N9 x [(3,2 , -1/3) + (3, 1,4/3) + (3, 1, -2/3) + (1,2 , 1) + (1, 1, 1)] (5.2) 

In a real representation h and its conjugate representation fi transform in the same 

way ( their transformations are equivalent). This also means that the transformation 

of hand CJdi = f'R are similar ( note CJ2 acts on the Dirac space and not on the 

symmetry group space) . Clearly the fermionic representation written above does not 

satisfy the condition that hand f'R are equivalent. To remedy the situation we have 

to add mirror fermions FL to h such that FL transforms as f'R(Fi == fd so that the 

representation h + FL is now real. 

5.2 Phenomenology Of General GUT 

Two crucial predictions from GUT are gauge coupling unification and the prediction 

for proton decay. In the following figure we show the unification of coupling constants 

observed recently after the precision mea.<;urement of the gauge couplings at LEP. 

Once the gauge couplings are known at a certain energy scale then one can use the 
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Figure 5.1: Evolution of the coupling constants in minimal and supersymmetric SU(5) 
GUT. 

renormalization group evolution (RGE) to evolve the couplings up to the unification 

scale . If we define 

a- 1(Mz ) (al(Mz), a2(Mz ), a3(Mz )) (5.3) 

with 


3 cos2 Ow 

aJ

1(Mz ) (5.4)
"5 aem(Mz ) 

sin2 Ow
a:;I(Mz ) (5.5)

aem(Mz) 

aJ(Mz ) a.trang(Mz ) (5 .6) 

and 

Q-l(Mx) O'xl(l, 1, 1) (5 .7) 
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where ax is the gauge coupling at the unification scale then we can write the evolution 

equation ( at one loop) as 

a- 1(Mz ) a- 1(Mx) + iJln Afx (5_8)
Mz 

where iJ contains the beta functions for the three gauge couplings_ From the above 

equation if one is given any two of the coupling constants (generally 0'1 and 0'2) then 

the third ( generally a.) can be predicted and one can also predict the unification 

scale_ If one uses the beta functions for the suspersymmetric SU(5) GUT then the 

10 16gauge couplings have been observed to meet at Mx '"V GeV. Minimal nonsuper­

symmetric SU(5) seems to be ruled out by this kind of analysis . One can also obtaill 

gauge unification with other GUT groups which have additional intermediate scales 

and extra particles, for example, like the group SO(10) . 

The next crucial prediction of GUT's is that of nucleon decay. The origin of 

this process in general GUT can be understood in the following manner. A general 

GUT contains several heavy fields besides the particles in the Standard Model. These 

heavy particles have mass '"V Mx which is the unification scale . When the heavy fields 

are integrated out to construct the low energy effective theory we end up with the 

Lagrangian of the Standard model as well as higher dimension terms suppressed by 

the heavy mass scale. We can write the effective Lagrangian as 

Left L Gi ( ~ )d-401 (5 .9) 
I,d x. 

where 01 are SU(3) x SU(2) x U(I) and Lorentz invariant operators and d is the 

dimension of the operator. These operators are constructed out of the light fields 

viz. the light fermions, the gauge bosons and the light Higgs. Mx. is generic for 

the exchange particle mass that generates the operator 01. To construct ali possible 

operators with the correct invariance properties it is convenient to define a F parity 
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[4] . Let (a, b) denote the representation of a given state under the two SU(2) groups 

that define the Lorentz transformation. Lorentz invariance requires ( _1)20 and (-1 )2b 

to be multiplicatively conserved. Similarly invariance under weak isospin requires 

(-1 )2T to be multiplicatively conserved . One can define F parity by 

F (_1)2T+20 (5 .10) 

AU allowed operators should have F = 1. The F quantum numbers of the fields in 

the Standard Model are the following . The fermions 7jJL and 7jJR have F = 1 while 

the charge conjugate states have F = -1. All the bosons, the vector bosons and the 

Higgs , have F = -1. The allowed operators must also be invariant under the color 

SU(3). In non supersymmetric GUT the lowest operator having baryon number 1 

and having the correct invariance property is the dimension six operator of the form 

qqql and this operator generates nucleon decay. This is not true in supersymmetric 

GUT where nucleon decay can proceed through the exchange of a heavy Higgsino 

and the corresponding operator has dimension five . Some proton decay diagrams are 

shown in Fig. 5.2 . Other interesting effects in general GUT's which can be generated 

by higher dimensional operators are neutrino masses and n - ii oscillations. The next 

two sections will be devoted to the study of SU(5) and the 50(10) groups, which are 

of interest to us here . 

5.3 SU(5) 

SU(5) is the group of S x S complex unitary matrices with determinant = 1. The 

unitarity and unimodularity conditions lead to 24 independent matrices. The defining 

relation for SU(5) is 

7jJ' U1jJ (5 .11) 

8S 

.. 
x 

,0 

d 

p{ 
d 

: ~ i ~ IH, ~ u~IK' 

Figure 5.2: Proton decay diagrams in Minimal SU(S) via vector boson( X) exchange 
and SUSY SU(S) via higgisino(H3) exchange. The Wino (~') "dressing" converts 
quarks to squarks . There are additional diagrams with fi., fiT in the final states. The 
CKM matrices appear at the Wino vertex allowing all three generations to enter in 
the loop. 

such that 

7jJ'tlj;' 7jJt7jJ (5.12) 

A general matrix of SU(5) can then be written as 

U exp( - i L f3iLi) (513) 
i=I,24 

where Li are the 24 hermitian, traceless generators of the group and the f3i'S are the 

parameters of the transformation . Further, the generators are normalized to 

Tr(LQLb) 28M (S.14) 

A choice of the generators is given as 

ra = (~ ~) (S.lS) 
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where ,\0 ( a=l to 8) are the usual Gell-Mann matrices. and 

L9,10,11 (0 0) (5.16)° a 1,2,3 

The diagonal generators of the group are L3
, L8 L II and L12 where 

L11 Diag(O,O,O,l,-l) (5.17) 

and 

LI2 1.jl5Dlag( -2, -2, -2,3,3) (5.18) 

The gauge bosons associated with the generators above(see eqn (5.23) are the gauge 

bosons of the Standard Model. The generators associated with the extra heavy fields 

of the theory have the form 

L13 ,1523 0. Xi) (5.19)( X,I ° 
and 

L14 ,16.24 (0. Y;) (5.20)
Y,t ° 

where the Xi'S are 3 x 2 matrices with all elements zero except one which has the 

value 1. For example 

XI (5.21)(H) 
and so on. The Yi's are obtained from Xi'S via 

Yi (-l)i+IXi (5.22) 

The vector boson matrix Vj.I is defined through 

Vj.l 1
2~Vj.loLO (5.23)

v'2 
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Explicitly the Vj.I matrix can be written as 

g12 g13 JX'l[9" -~ g22 ~ g23 }/2g21 - X 2 y\ 1 
Vj.I = g31 g32 g33 - -3fo X3 }/3 (5.24) 

XI X 2 X3 w+~+~ 
W 38w­Y1 Y2 Y3 -~ + 7J'ii 

where the g's and the Ware the gluons and the weak gauge bosons of the Standard 

Model. The fermions of the Standard Model are placed in two separate representation 

of SU(5) viz, in the 5 and in the 10. The fundamentalS representation decomposes 

under SU(3) x SU(2) as 

5 (3,1) EB (1,2) (5.25) 

Because the charge operator can be written as a linear combination of the diagonaJ 

generators, the trace of the charge operator Q is zero 

~]aIQla) = ° (5.26) 

This leads to the identification of the fields in the 5 representation as 

(5.27)
5 [;J


R 

The interaction of this representation can be written as 

L i~5al'j.I[aj.l6atl - ig( ~ttll'l/J5tl (5.28)"V 

The remaining fermions are put in the 10 representation of SU(5) . The 10 can 

be obtained as an irreducible representation in the decomposition of the reducible 

representation constructed by multiplying two fundamentaJ representations 

5®5 15Ef)1O (5 .29) 
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This representation is antisymmetric under the group indices and its transformation 

can be written as 

X:j [OikOjl - i~QQ(i\Q)ij;kdXkl (5.30) 

where 

(i\Q)i;;H ~[Oik(LQ)jl + Ojl(LQ)ik - Ojk(LQ)il - Oil(LG)jk] (5.31) 

Explicitly we can write the 10 representation as 

U 3 U 2 U 1 
U 

C o U~ U2 d2 

X U~ -U1 o -U3 d3 (5 .32) 

[ UI U2 U3 o _ec 

dl d2 d3 eC o L 

The interaction Lagrangian for the 10 is given by 

0 
d~ ) 

1 . Vjl I IL '" 12Tr!XIO'Yjl[ajl - 2tg( ./2) XIO (5 .33) 

The interaction of the fermions with the X and Y bosons are shown in the following 

figure. 

We now turn to the question of the spontaneous breaking of the SU(5). There are 

two symmetry breakings that we have to consider. The first is the breaking of SU(5) 

to the Standard model group. This is achieved by introducing Higgs fields E in the 

adjoint representation which acquires a vev to produce the correct breaking of SU(5). 

A Higgs field in the 5 representation (which contains the Higgs doublet of the Standard 

Model) is included to provide the second breaking of the electroweak interactions to 

electromagnetism. We start by considering the E field and its interactions. The 

covariant derivative for the E field is given by 

ig
DjlE ajlE - ./2[Vjl, EI (5.34) 
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Figure 5.3: X and Y boson couplings to the fermions . 

where, like the vector boson field Vjl, the E field can be written in terms of its 

components as 

E 1 
(5.35)v'2 2~PLa 

The kinetic part of the gauge invariant Lagrangian can be written as 

Lr:. ~Tr[(DjlE)t(DjlE)] (5.36 ) 

The most general potentials containing up to quartic terms for the E field is (imposing 

the discrete symmetry E -> -E) 

1 1 
V(E) -J..L2Tr(E2

) + -a[Tr(E2)f + -bTr(E4 
) (5.37)

4 2 

Note that the discrete symmetry simplifies the potential and the subsequent analysis 

for minima, but is not essential in constructing the potential. The unique minimum 

of this potential is obtained for the choice 

(OIEIO) V2vDiag(l, 1, 1, -3/2, -3/2) (5.38) 
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for J.l2 > 0, b > 0, and a ~ (- 7/15)b . 

The kinetic part of the Lagrangian then generates masses for the heavy X and Y 

bosons 

2 2 25 2 2 
mx, = my. = 8 g v (5.39) 

The electroweak symmetry is broken by introducing a 5 of Higgs 

(5.40) 
H = [fi 1 

-ho 

and we introduce the potential 

V(H) -~J.lI'.!IHI2 + ~(IHI2)2 (5.41 ) 
2 4 

Minimizing the potential one ends up with 

(01 - holO) Vo (5.42) 

J.ll'.! >'V6 (5 .43) 

and the W,Z acquire masses 

M2 M2 2 (J 1 2 2 
W = Z cos w = 4' g2 Vo (5.44) 

At tree level the color triplet Higgs h. = (hi, h2' h3) is massless and this is a problem 

because these Higgs can cause proton decay, These colored Higgs can obtain mass 

through the coupling of the E and the H field . Even if such coupling terms are absent 

at the tree level they can be generated radiatively through the following graphs shown 

in Fig , 5.4 
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H " X,Y HI X Y I [ ,/:0/""'[ 
~[H~ 

H/ ' x ,Y " [ HI X,Y I [ 

Figure 5.4: Examples of Feynman graphs that can lead to E H couplings. 

Moreover, these diagrams are divergent and so one must have bare coupling terms 

at tree level to provide the necessary counterterms to cancel these divergences. We 

therefore add an extra piece to the potential 

V (E, H) aIHI2Tr(E2) + {JHty} H (5.45) 

The minimization of the full potential then leads to to the follow ing two conditions 

15 7 9
,,2 -av2 + -bv 2 + av2 + +_ '~V2 (5.46) 
... 2 2 0 30"'" 0 

1 9J.ll'.! 2>,v6 + +15av2 + +(2 - 3();3v2 (547) 

where 

~{JV6 
~ (548) 

206v2 

and the vev of the E field is given by 

(OIEIO) hvDiag(I, I, 1, -3/2 - (1/2)(, -3/2) + (1/2)() (5.49) 

The formulae for the Wand Z masses are changed by the presence of the ( term 

but because such terms are small these corrections can be neglected . However we see 

from the equation for J.ll'.! that there must be delicate cancellation, about one part in 
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10 13 - 10 14 
, between this term and the v2 "-' m1 terms to obtain the v6 terms which 

is of the order of the weak scale. This is the fine tuning problem and can be resolved 

if we introduce supersymmetry. 

5.4 Supersymmetric GUT 

The chief motivation for introducing supersymmetry in particle physics is to solve the 

fine tuning problem problem. We already encountered this problem in the previous 

section and here we look at the same problem again in the context of the Standard 

Model. The loop corrections to the Standard Model Higgs are quadratically divergent 

leading to a mass 

m ~ :::::: mL.r< + cl /\. 2 (5.50) 

where A is the cutoff. If we assume the Standard Model to describe physics up to 

the GUT scale then /\. = Me"-' 1016 GeV. Therefore, to obtain the correct order for 

the mass of the Higgs, which is of the weak scale, we require delicate cancellations ( 

one part in 1014 ) between the bare mass term and the cutoff term. Alternatively one 

can interpret the above relation to indicate that the Standard Model is not the right 

theory up to the GUT scale and we should expect new physics beyond a cutoff of 

/\. "-' O(TeV). Supersymmetry(SUSY) is one of the several extensions of the Standard 

Model which can solve this hierarchy problem . In SUSY theories there is a symmetry 

between the fermionic and the bosonic degrees of freedom. The SUSY algebra is 

generated by spinorial charges Qa which relate fermionic and bosonic states 

QIFermion) IBoson) (5.51) 

The Q's satisfy 

-2[( (1 - '5) ,!',o]P!,[Qa,Q11+ (5.52)
2 
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[Qa, QtJl+ = [Qa, pili = 0 (5.53) 

p2 = M2 is a Casimir operator of the algebra and so all states in a SUSY multiplet 

have the same mass. Further taking the trace of the first anticommutator relation 

written above one obtains 

pO = H = ~(QQt +QtQ) ~ 0 (5.54) 

The inequality in the above eqn is to be understood at the level of matrix elements. 

Hence the Hamiltonian of SUSY theories is positive definite . The simplest SlJSY 

multiplets that are required for constructing models are the chiral multiplets and the 

vector multiplets. Ignoring the auxiliary fields the left( right) chiral multiplet contains 

a complex scalar and a Weyl left(right) spinor. The vector multiplet contains a real 

vector field V!, and a Majorana spinor >.. The ~inimal Supersymmetric Standard 

Model(MSSM) is the simplest extension of the Standard Model which is constructed 

by promoting each particle in the Standard Model to either a chiral or a vector 

multiplet. In following Fig. 5.5 we show the particles in MSSM [51 

The fine tuning problem now can be solved because the Higgs has interactions 

not only with the quarks and gauge bosons but also with the scalar partners of the 

quarks, the squarks, and the fermionic partner of the gauge bosans, the gauginos. 

The diagrams contributing to the Higgs mass in the SUSY case is shown in the next 

Fig. 5.6 

The cancellation of all divergences depends on the couplings of the theory (dic­

tated by SUSY) and the equality of the masses within a given supermultiplet. How­

ever the equality of the masses of the particles and their superpartners is obviously 

wrong as no SUSY particles have been observed and hence SUSY has to be broken. 

Spontaneous symmetry breaking(SSB) of SUSY is difficult because if the vacuum is 
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Figure 5.5: Particle contents of MSSM . 

supersymmetric (QaIO) = 0) then the energy of the vacuum is 0 and is a global min ­

imum because we already saw that the energy is positive definite in SUSY theories. 

So if the vacuum state is not supersymmetric(QaIO) t- 0) then the energy is greater 

than zero and the broken vacuum will have a higher energy than the symmetric state. 

Hence to have SSB of SUSY one has arrange it so that the symmetric vacuum does not 

exist. However most models of SSB of SUSY do not lead to realistic mass relations. 

Another way is to break SUSY explicitly by soft breaking terms which do not destroy 

the solution of the hierarchy problem. A list of all possible soft breaking terms with 

this property were classified by Girardello and Grisaru [61 · With the addition of the 
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Figure 5.6: One loop contributions to the Higgs mass in SUSY models. The quarks 
and squarks contributions (which dominate the radiative corrections to the Higgs 
mass) are shown on the bottom of the figure with the dashed lines in the loop repre­
senting the squarks and the solid lines in the loop representing the quarks . 

soft breaking terms the cutoff in the equation for the h Higgs mass gets replaced by 

.\ 2 
1\.2 ~ (m~ - m 2)ln ~ (555) 

q q m~ 

Hence to avoid the fine tuning problem the squark masses should be around a TeV. 


Thus SUSY particles are likely to be accessible in the next generation of accelerators 


[71. The origin of the soft breaking terms can be understood in terms of supergravity 

(SUGRA) models where SUSY is broken at a high scale when a gauge singlet fields , 

which couples to the observable physical fields(particles and their superpartners) only 

through gravity, acquires a vev. When the heavy fie lds in this theory are integrated 

out then one ends up with the required soft breaking terms which can be expressed 

in terms of a few parameters. The masses of the superparticles can now be expressed 

96 

http:S,...rti.ck


in terms of these parameters. The masses of the superparticles are important inputs 

in the study of SUSY GUTS. In the next section we discuss briefly SUSY GUT's and 

SUGRA models. 

5.5 SUSY GUT And SUGRA Models 

The construction of the SUSY SU (5) GUT is done by adding the super partners of the 

E, X ,Y and the H fields .However we need two Higgs, HI and H2 to give masses to 

the fermions as the superpotential has to be analytic . Also, anomaly cancellation from 

the fermionic Higgsino requires the existence of two Higgs doublets . After electroweak 

symmetry breaking one has now 5 physical higgs boson; a pair of charged Higgs, two 

neutral CP even states and one CP odd neutral state. The fine tuning of the Higgs 

mass is solved in SUSY GUT provided again that the supersymmetric particles have 

masses around a TeV. We now give a short discussion of SUGRA models. 

To construct a SUGRA model one has to promote supersymmetry from a global 

symmetry to a local symmetry. If we start from a noninteracting SUSY Lagrangian 

L -8jJztOl"z+X(i)iJx (5 .56) 

Then the Lagrangian is invariant under global SUSY transformations but not when 

we consider local SUSY transformations 

6z(x) = fX(X) 6X(x) = (-i)["z]t:(x) (5.57) 

Invariance under the local transformation can be obtained by adding a spin 3/2 field 

and a spin 2 field (1/;~ and 9jJV) transforming as 

61/;1' ",,-IOI"t:(X) (5.58) 

69jJV ",,~jJ'YVt:(x) (5.59) 
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where"" has the dimension of inverse mass and this mass is identified as the Planck 

mass. The Lagrangian has to be augmented by interaction terms between the chiral 

multiplet and the supergravity multiplet as 

Lml -""~,,'YV[iJzlx(x) - gjJ"TjJv (5.60) 

where TjJv is the stress tensor for the scalar field. Now we have to consider Lagrangians 

which are not only invariant under local supersymmetry but also invariant under 

general co-ordinate transformations. Starting with the supergravity multiplet(gjJ", 1/;1') 

we can write the SUGRA Lagrangian as [8]. 

1 -2 R( m mn) 1 jJVpa - DL SG - 2"" e ejJ' WI' - 2t: 'ljJ jJ 'Y5'Yv p1/;" (5.61) 

where the vierbein e; are introduced through 

gjJV e;:'(X)11mn e:(X) (562) 

Here 11 is the fiat metric in the local inertial frame at the point I and gjJv is the metric 

tensor. R is the curvature scalar and 

det[e;(x )] (5 .63) 

Dp is defined by 

Dp 1 mn
8p + 2wp amn (5.64) 

where w;m are the spin connections. The Lagrangian is invariant under local SUSY 

transformations 

61/;1' ",, - IDjJt:(x) (5.65) 

and 

6e;(x) ~""f(xhm1/;jJ (5 .66) 
2 
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The problem of coupling gravity to matter and maintaining supergravity invariance 

is generally quite complicated [9, 10]. The general couplings of N = 1 SUGRA 

depend on three functions, the superpotential W, the Kahler potential d(z, zt) and 

the gauge kinetic function !QIJ where 0', (J are adjoint representation group indices. 

The full super potential in the SUGRA model is not positive definite although in 

the limit", -+ 0 the effective potential does reduce to the form for a potential with 

global supersymmetry. However Planck scale effects, are crucial because they allow 

SUSY to be broken in a natural way. Because the potential is not positive definite 

it can easily accommodate SUSY breaking and this happens when the "super Higgs" 

fields z acquire a vev '" O(Mpd. In SUGRA GUT models the super Higgs particle 

is a gauge singlet and couples to the regular fields of MSSM through gravity. This 

coupling is suppressed by the Planck scale. This prevents large Planck scale masses 

to be communicated to the physical fields due to the SSB of SUSY around the Planck 

scale. When one integrates out the super Higgs fields as well as the heavy fields at 

the GUT scale then at lower energies one ends up with an effective potential given 

by [12] 

oW v = L 1_12 + VD + [m~zaz! + (AOW3 + BOW2) + h.c] (5.67) 
a OZa 

where Za are the physical scalar fields and 

VD ~ L9;DrDr (5 .68) 
',a 

Dr L z~Ttzm (5.69) 

the superpotential W is given by 

W J1.oH1 H 2 + [,\(u)QiH2Uf + ,\(d)qiHldf + ,\(')liH 2ef] (5.70) 
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This is the usual Yukawa interaction(we have assumed R-parity invariance) and W 2 

and W 3 in the potential above are just the quadratic and the trilinear term in W but 

with the superfields replaced by the scalar components. There arises also a gaugino 

mass term in the Lagrangian 

Lgaugino -ml/2'\u Au (5 .71) 

Using RGE evolution [11] one can now predict the SUSY spectrum in terms of the 

parameters mo , ml / 2, Ao, Bo and J1.0 · An attractive feature of such models is that for 

large top quark Yukawa coupling one of the Higgs mass can be driven negative by 

the RGE evolution from the GUT scale to the weak scale thus signalling electroweak 

symmetry breaking. The requirement of electroweak symmetry breaking fixes J1.0 up to 

a sign and so the low energy physics can be described in t.erms of mo, ml /2, Ao, tan {3 = 

VdVl « Hi >= v,) where the parameter Bo has been eliminated in terms of tan (J 

We turn to the study of the 50(10) group in the next section. 

5.6 SO(10) Group 

SO(n) is the group of real rotations in n-dimensions. It is the set of n x n orthogonal 

matrices with detR = 1 ( R is the group element). The defining relation for SO(n) is 

<// R</> (5.72) 

where </> is a real column vector such that ¢T¢ is invariant which leads to 

RTR (5.73) 

One can write R as 

1 
R = exp[2WCLbMCLb] (5 .74) 
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where [wabl, the matrix of the parameters of the transformation, is antisymmetric. A 

choice for the generators M is 

(.'Hab ).) -i(OajObj - oa)o~) (5 .75) 

and the M's satisfy the commutation relation 

[Mab , Mall -i[ObcMad - OacMbd - flbdMac - fladMbcJ (5.76) 

For the group 50(2r) and 50(2r + 1) there are r commuting generators which can 

be taken as MI2 , M34 ... M2r-I .2r and so the rank of both these groups is r . 

We will now specialize the discussion to the 50(10) group. This group has as 

its maximal subgroups 5U(5) x U(I) and 5U(4) x 5U(2h x 5U(2)R(Pati-Salam 

group) and 50(10) can break into these two groups. This work is concerned with 

the breaking of 50( 10) to the Pati-Salam group and so all discussions are confined 

to this particular pattern of symmetry breaking. The 50(10) group. The 50(10) 

group admits spinor representation [4]. The spinor representation in 50(2n) can be 

constructed by taking the tensor product of the spinors of 50(3)(1/J) 

X 1/JI ® 1/;2 ® t/J3 . .. 1/Jn (5.77) 

The spinor X is however reducible and can be split up in to two pieces X+ and X-. For 

n even these states are self conjugate (under C) while for n odd the C transforms one 

into another. Since we want a complex representation for the GUT we want n to be 

odd. Combined with the fact that the group should have at least rank 4 we see that 

50( 10) is the smallest of such groups. The generators for the spinor representation 

are of the form 

1 
O"ab 2i ba , 'l] (5.78) 
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where )a are the generalized Pauli matrices given in the Appendix. For 50(10) the 

spinor representation has dimension 16 and this decomposes under 5U(3) x 5U(2h x 

5U(2)R(Left-Right Symmetric Group) as 

16 (~)L (3,2,I) EB (~)L (1,2 , 1)@(_d:C)L (3,I , 2)EB (~:C)L (1 , 1 , ~.79) 

We have an extra right handed component for the neutrino and in principle we can 

construct a Dirac mass term for the neutrino. We see that since all the fermions 

are put in a single representation it is easy to understand anomaly cancellation in 

this model (50(10) is anomaly free) rather than in 5U(5) where the fermions are in 

two different representations and one has to check for anomaly cancellation between 

the two chiral representations which are not anomaly free on their own. The gauge 

bosons are in the 45 dimensional adjoint representation and they decompose under 

the Left-Right Symmetric group as 

45 1 (8,1,1)(9)@ ( 1,3, I)WL @ (1, 1, 3)WR @ (1, 1, 1)(8) (580) 

and 

Xo YI) - (XIO yO) _ 
45 2 ( Yo X: (3,2,2) $ Y'o xa (3,2,2) EB (3, I, I)X. @ (3, 1, 1)~.81) 

As in the case the 5U(5) GUT one can consider the symmetry breaking of the 50( 10) 

group to the Standard Model group. Generally one can consider various chains of 

descent from this GUT group to the Standard Model group. Some of these chains 

will be considered in the next chapter. One can also consider constructing fermion 

masses and mixing in this model and finally it is possible to construct supersymmetric 

version of the 50(10) GUT model. 
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CHAPTER 6 


EFFECTS OF HIGHER DIMENSIONAL 

OPERATOR IN 50(10) 


The precision measurements [I] at LEP have put constraints [2, 8, 9, 10] on many 

extensions of the Standard Model. Grand Unified Theories are also constrained [9, 10] . 

The measurements of the Z mass and width, the jet cross-sections, and the various 

asymmetries provide very accurate values for sin2 Ow and a. at the scale Mz. Using 

these experimental values[l, 9]' 

sin2 Ow 0.2333 ± 0.0008 

a. 0.118 ± 0.005 (6.1) 

and talUng the fine structure constant at the electroweak scale to be, aem(M, ) = 

1/127.9,[9] one can write down the values [9] of the three coupling constants at the 

electroweak scale (M,) , Then using the evolution of these coupling constants with 

energy it is possible to see if the coupling constants meet at a point giving rise to 

grand unification of all the three forces [9]. It was found that any GUT without 

supersymmetry with no intermediate mass scale is ruled out by this analysis, whereas 

theories with intermediate an mass scale [10] get constraints on the allowed values 

for the mass scale. We point out that that the present values of sin2 Ow and a. at the 

scale Mz are (from Particle Data Group,1994) 

sin2 Ow 0.2319 ± 0.0005 

a. 0.120 ± 0.007 ± 0.002 (6.2) 
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These new val ues for sin 2 Ow and a, do !lot change the results of our analysis in this 

chapter which uses the older values. 

An important class of GUTs with intermediate symmetry brealUng scales is the 

one containing those with left-right symmetry [3] . In these theories the standard 

electroweak model SU(2)r ® U(I)y emerge at low energy as a result of symmetry 

breaking of a larger left-right symmetric SU(2h 0 SU(2)R 0 U(l)B- L group. In the 

Standard Model the (V-A) nature of the theory is put in by hand , whereas in an 

left-right symmetric extension [3J of the Standard Model this comes about through 

spontaneous symmetry brealUng (See Appendix for a brief discussion of the left-right 

Symmetric model) when appropriate Higgs fields acquire vacuum expectation values 

(vev). In this model there will then be new scalar and gauge particles of mass of the 

order of this symmetry breaking scale MR. The mixing of these gauge bosons with the 

Standard Model gauge bosons puts a lower bound on this scale. The KL - Ks mass 

difference gives a lower bound [4] of about 1.6 TeV on MR from the box diagram with 

both WLand W R exchanges. However, this constraint is subject to the assumption 

of manifest left-right symmetry, which is to assume that the Kobayashi-\1askawa 

matrices of the left- and the right- handed sectors are same. In the absence of this 

artificial symmetry (which does not have any natural explanation) the bound [5] on 

MR is relaxed to 300 GeV. From the direct search [6] at CDF the lower bound on 

MWR is 520 GeV . This bound is not applicable to left-right symmetric models where 

the W R couples only to the heavy neutrinos. The strongest bound on MR comes from 

an analysis [7,8] of the precision measurement of the Z-pole from the CERN e+ e ­

collider LEP [I]. From a fit of the 1992 data and for the commonly chosen Higgs 

triplet fields for the left-right symmetry brealUng, the lower bound on MR is of the 

order of TeV. However, if this theory is embedded in a GUT, then the constraint 
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becomes [10], 

JfR 2: 109 CeV. (6.3) 

In this chapter we address the question: if the right handed gauge bosons are seen 

in the near future accelerators then will that rule out the possibility of a GUT? 

. Several attempts have been made to understand this problem [12, 13J. It was 

found that if one breaks the left-right 0 parity spontaneously, then one can have 

gL f. gR · In this case the Higgs sector is left-right asymmetric and one can have 

low MR. But for MR rv TeV, it is required to break the 5U(2)R -+ U(l)R at a 

high scale and as a result one can naturally have a light ZR but not light right 

handed charged gauge bosons [12]. To get all the right handed gauge bosons light one 

requires large numbers of artificial Higgs scalars, which are left-right asymmetric. In 

the supersymmetric 50(10) theory it is possible to have low MR for a very specific 

choice of Higgs scalars [13]' which do not give masses to the fermions. Addition of 

any choice of Higgs scalars to create a realistic fermion mass spectrum destroys this 

result. 

Since the GUT scale is very close to the Planck scale, the effects of gravity may 

not be negligible. Higher dimensional operators were considered originally [14] to 

help solve some problems in fermion masses. The idea is to find out if the low 

energy physics contains some signatures of gravity effects. In all these analyses the 

coupling constants in these nonrenormaJizable terms are free parameters. Someday we 

may learn if such coupling constants may arise naturally from gravity. In the case of 

minimal 5U(5) GUT it has been argued that the addition of nonrenormalizable terms 

induced by quantum gravity or by the compactification of the higher dimensions (in 

some theories like Kaluza-Klein theories) can allow a range of parameters [14, 15, 16] 

for which the correct values for the sin2 Ow and a. are reproduced and which remain 
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consistent with proton decay. In our st udy we consider higher dimensional operators 

in an 50( 10) version of the GUT and see if for some range of values for the coupling 

constants of the higher dimensional operators we can have low value of MR consistent 

with sin2 Ow , a. and proton decay. 

In the case of 5 U (5) it was found that by i nel usion of the dimension five oper­

ators [14] alone it is not possible to get the correct value of sin2 Ow and as, but by 

including the dimension six operators [15] along with the dimension five operators it 

is possible to solve the problem. In the case of the 50(10) GUT, if we have only two 

stages of symmetry breaking then we can not have low energy left-right symmetry 

breaking [19], but if one breaks 50(10) in two stages near the Planck scale to the left­

right symmetric model then we show that it is possible to have low energy left-right 

symmetry breaking with a wide range of values of the coupling constants [20]. 

To begin with let us consider the symmetry breaking chain to be, 

Mu
50(10) 5U( 4) X 5U(2)L X 5U(2)R [= Cps] 

Ml 
5U(3)c X 5U(2)L x 5U(2)R x U(l)CB-L) [= C LR ] 

MR 
5U(3)c x 5U(2h x U(l)y [= CswJ 

Mw 
5U(3)c X U(l).m. 

The 50(10) invariant Lagrangian, which allows the above symmetry breaking chain, 

is given in the domain of energies near the Planck scale, as a combination of the usual 

four dimensional terms and the new induced higher dimensional nonrenormalizable 

terms. These higher dimensional terms will be suppressed by the Planck scale (Mpl ) 
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(or by the compactification scale which can be as much as two orders of magnitude 

below the Planck scale [16]) The Lagrangian can then be written as, 

L = -~Tr(F/JvF/JV) + ~ L(n) (6.4)
2 n=1 

and the sum in Eq. (6.4) runs over all possible higher dimensional operators. We 

write down the five- and six-dimensional operators explicitly as 

1 1/(1) 
L(I) = ---Tr(F "-FI'V) (6.5)2 M

pi 
/Jv'I' 

L(2) -~ ~2 [1/~2)Tr(F/Jv¢2FI'V) + 77i2)Tr(¢2)Tr(F/JvF/JV) 
PI 

+1/~2)Tr( F/Jv ¢ )Tr( F/Jv¢)] (6.6) 

In the above equations 1/(n) specify the couplings of the higher dimensional operators. 

In our analysis we consider dimension five operator and dimension six operators when 

the contribution from dimension five operator vanish. We note that the effect of all 

operators higher than dimension six can be absorbed in the couplings of the dimension 

six operators and hence their inclusion does not increase the number of parameters. We 

therefore consider only dimension five and dimension six operators in our analysis. 

Let us first consider the case when only the scale Mu is large and MJ is some 

intermediate symmetry breaking scale which does not receive any contribution from 

the higher dimensional operators. Suppose the S0(10) is broken by a 54-plet of Higgs 

fields E. E is a traceless symmetric field of the SO(10) and the veu;; of E which can 

mediate this symmetry breaking to the group G ps, are given by, 

13333
(E) = Mn Eo diag(l, 1,1,1,1,1, --, --, --, --). (6.7) 

V 30 2 2 2 2 

where , Eo J51<~G Mu and Qc = g6!41r is the GUT coupling. The G PS invariant 

Lagrangian will be given by, 

1 1
-2(1 + (4) Tr(F~~) F(4)/JV) - 2(1 + f2) Tr(F~~L) F(2L)I'V) 
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1
-2(1 + (2) Tr(F~~R) F(2R)/lV) (6.8) 

Now defining the physical gauge fields below the unification scale to be 

A:=Aj~ 

, we recover the usual G PS Lagrangian with modified coupling constants 

g~(Mu) 9;(Mu)(1 + (4fl 

g~L(Mu ) 9~L(Mu)(1 + (2)-1 

giR(Mu ) 9;R(Mu)(1 + (2)-1 (6.9) 

The couplings 9j are the couplings that would have appeared in the absence of the 

higher dimensional operators, whereas the gi are the physical couplings which are 

evolved down to lower scales. 

We introduce the parameter f(n) associated with a given operator of dimension 

n + 4 in the following way: 

(n) _ [_1 ~] n r/ n ) (6.10)fa ,b,c - J30 M PI 

We then have 

£(n) = [{_2_}~ MU)n (n) 
(611)a ,b,c 251rQc Mpi 1/ 

The changes in the coupling constants are, 

f4 = f(1) + £(2) + ~(2) 
a 2 b 

and 

3 (I) 9 (2) 1 (2)
f2 = --f + -( + -f .2 4 a 2 b 

It is to be noted that the SU(2)L and SU(2)R always receive equal contributions. 

As a result, the effect of the higher dimensional terms will be to shift the relative 
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contributions between the SU (2) and the SUr 4) gauge coupling constants (overall 

shifts of all the coupling constants do not contribute to the predictions of sin 2 Ow and 

a,). For this reason no matter how many higher dimensional terms we consider, what 

contributes to the low energy predictions of sin2 Ow and a, is only the combination, 

{ = {4 - {2' (6.12) 

If we now assume that the dimension 6 terms (~2) are negligible compared to the 

dimension 5 terms {(I), then we further get, 

2 3 
{4 = s{ and (2 = - SL 

As we argued earlier, this does not reduce the number of parameters in the theory. If 

we include the higher dimensional terms, then the allowed region in ( will be shared 

by the other t(n). This relative shift can be parameterized by one parameter, which is 

related to {(I). As discussed above, the effect of higher dimensional terms will change 

the boundary conditions and at the unification scale Mu we have, 

-2 -2 -2 2 
94. = 9n = 92R = 90 

or equivalently, 

9~(Mu )(1 + (4) = 9~L(Mu )(1 + (2) = 9~R(Mu )(1 + (2) = 9~ · (6 .13) 

Using the matching condi tions at the scale MJ , 

93c2(M/) = 9~~_L)(MI) = 9:;2(MI) (6.14) 

and M R , 

3 -2( 2 -2 (91~(MR) S92R MR) + S91(B-L) M R) 

9:;i(MR ) 9;-J(MR ) (6.15) 
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and the evolution of the coupling constants[17], 

da.(/l) = 2!3ia~(/l) (6.16)/l~ 

92 1 (11 4 . 1 )where ai = "-'-4 ' and p. = --() -Tg[i]- -Tj [l] - -T,[i ] ,we can now write the 
,. 471" 3 3 6 

following relations between the Standard Model coupling constants and the unification 

coupling constant ac : 

I 3 2 6 4 
a y1(Mz) a(; (1 + -(2 + -(4) + (-b2R + -b4 )Mul

5 5 5 5 
6 4 

+(Sb2R + Sbl(B-L»)M/ R + 2b1y MRw 

a:;i(Mz) (1 + (2)a(;1 + 2bn (Mul + MIR + MRw ) 

a3c
l (Mz) (1 + (4)aC/ + 2b4Mui + 2b3c (M1R + MRw ) (6.17) 

where Mij = In ~. 

We define two quantities A and B by the following relations, 

-I -IA a y - an 

-J 5 -I 8_ 1B an + 3ay 3a3C (6 .18) -

A and B are related to sin 2 Ow, a, and a, by 

3 5 
sin 2 Ow 8aA8 ­

8a 
aB (619)1- 3~ 

Equations (6.17) may be solved for Mu/ and M/R in terms of A and B to obtain 

X MRw a(;1
MUI -2" + -2- - (2b; 

MIR ~ - 2MRw (6.20)
2 

where, X = _5~~B; Y = -~; b2 = -t; and {= (4 - (2 · Using the measured 

values of sin 2 Ow and a. from Eq. (6.1) one gets M/ '" 2 X 1022 MR for MR '" 10Mw 
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Thus we see that when the SO(10) GUT breaks to the Cps at the unification 

scale it is impossible to have low MR· Let us now consider the symmetry breaking 

chain in which S0(10) breaks down to C LR at the unification scale Mu directly, when 

the component of a 45-plet of Higgs H which is invariant under C LR acquires vev. 

This can be written as, 

033 133 34 
1 H -133 033 0034 ) (6.21)(H) 	= y'12 i 0 ( 0 

43 043 0« 

where, Omn is a mxn null matrix and Imm is a mxm unit matrix . The antisymmetry of 

the matrix will imply that there is no contribution to the dimension five operator from 

this Higgs. The lowest order contribution comes from the dimension six operators. 

To order six the G LR invariant Lagrangian is written as, 

-~(1 + f3) Tr(F~~) F(3)iJ") - ~(1 + f2) Tr(F~~L) F(2L)iJ") 

1 1 
- 2(1 + f2) Tr(F~~R) F(2R )iJ") - 2(1 + fd Tr(F~~) F(i)iJ") (6.22) 

where, f3 fl and f2 O. As argued earlier, in this case there is also no relative 

shift in the boundary condition between the SU(3) and the U(I) coupling constants 

and as a result it will not be possible to have low MR. 

In all the analysis done above we have assumed that the intermediate scale M/ 

does not receive any contribution from the higher dimension operators. In the follow­

ing analysis we change this assumption and consider effects of the higher dimensional 

operators at the intermediate scale M/ also. For these effects to be significant it is 

obvious that the scale M/ has to be close to the GUT unification scale Mu. In the 

following analysis we also include threshold corrections due to the heavy masses in 

the theory and we use two loop RGE for the running of the coupling constants. Let us 

again consider the symmetry breaking chain shown at the beginning of our analysis at 
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the scale Mu· As we have already mentioned, symmetry breaking is mediated by the 

vev of a 54-plet of Higgs. In this case the left-right parity is broken at MR only when 

SU(2)R is broken and the gauge coupling constants 9L and 9R corresponding to the 

groups SU(2h and SU(2)R respectively evolve similarly between Mu and MR so that 

9dMR) = 9R(MR) . We will now also consider the second case where the symmetry 

breaking at the scale Mu is by a 210-plet of Higgs. This breaks the discrete left-right 

parity symmetry [11] D, so that 9L and 9R evolve in a different way below Mu and 

as a result one obtains 9dMR) i 9R(MR). 

As we have aready observed then vev of a 45-plet field H can break the symmetry 

group G PS to GLR, but the antisyrnmetry of the matrix H will imply that to dimension 

five operators there is no contribution from this Higgs. The lowest order contribution 

comes from the dimension six operators, 

L,
(2) -~ ~2 [1]~(2)Tr(F/'vH2FiJV ) + 1]~(2)Tr(H2)Tr(F/,vPV) 

PI 

+1]~(2)Tr(FiJ" H)Tr(F/'v H )] 	 (623) 

The vev of H does not modify the SU(2) couplings. The SU(4) invariant effective 

Lagrangian will only contain a new contribution, 

1"(2) _ ~ _1_ [1]'(2)Tr(F cP2 FiJ") + 1]'(2)Tr(cP2 )Tr(F PV)
2 !vf~1 a /'v IS b IS iJV 

+1]~(2)Tr(FiJ" cPIs)Tr(FiJvcPIs)] (6 .24) 

where cPI5 transforms as (15,1,1) of G ps· At M/ the symmetry group SU(4)c breaks 

down to SU(3)c @ U(I)8-L when the field cPIS acquires a vev, 

1 . 
cPI5 = ;;:;-;cPodlag[l, I , 1, -31· 	 (6 .25) 

v24 

with cPo = J6/51rCt4M/. We now define 

1(2) 1];(2) cP6 1 [ M/ ]2] 1(2) (6.26)
fj = 24M~1 [ 207rCt4 M pi 1]j 
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where i = a, b, c. The 5U(3)c 181 U(l)B-L invariant kinetic energy term for the gauge 

bosons will then he given by 

- ~(1 + f') Tr(F(3) F(3 )JJ") - ~(1 + f') Tr(F(I) F(l)JJ") (6.27)2 3 1"-' 2 I JJ" 

where 

f; = (12) + 12f~(2) 

and 

f~ = 7(12) + 12f~(2) + 12f~(2). 

In general, f~ and ~ may be treated as two free parameters. But we shall assume 

f~(2) = f~2) = <,(2) and hence, 

f; = 0.42f' ('I = f'(say) . (6.28) 

Thus the parameter space in (' and ( we consider here may be somewhat relaxed . 

However, the number of parameters in the sin2 Ow and Q, is not changed and we 

cannot expect any change in low energy predictions. In our analysis we will consider 

the parameter space of i and f which allows low MR· For the D-nonconserved case 

a 21O-plet of Higgs is used to break 50(10) to the group Cps without D-parity 

conservation.The vev of the Higgs is given by 

1 
(H2lO) = ~ Ho diag(I44' 144 , -144, -144) ' (6 .29) 

v 32 

where Ho is related to the vector boson mass Mx by ~Mx = Ho . Keeping only 

the dim-5 operator we get 

f4 = 0 

f2L = -f2R = 8(1) = f 

where 

~[Mx](1)-
-V~ M p1 
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For the evolution of the coupling constants we use the two loop renormalization 

group equations [9, 18, 21], 

a 2 [ ~ b;) 1 2 2b j ] 3J.La-Qj(J.L) = - bj + L -Q}(J1) Qi(J.L) + -()2Q; (6 .30) 
J.L 471" 471" 471" 

) 

where the i, j indices represents the different subgroups at the energy scale J.l and 

Qj = -i; g;' The formulae for the ,6-functions with SUSY and without SUSY are given 

in Ref [221 · We define C(R) as the Casimir invariant for the representation R, mR 

as the multiplicity of the representation( e.g. number of flavors,number of flavors or 

left and right components) and T(R) is 1/2 Dynkin index where the Dynkin index 

is defined as 

d(R) C(R) (6.31)l = d(adj) 

where d(R) and d(adj) are the dimensions of R and the adjoint representation . The 

one loop ,6 functions are then given by 

11 4 1 
bi -3"T(g) + 3T (f) + 3T (s) ( 6.32) 

where g,f and s refer to the gauge , fermion and scalar representation of the theory. 

The two loop ,6 func tions are 

10 2 
bji [3"C(Gi ) + 2C(R,)]T(R,)mR, + [3C(Ci) + 4C(5,)]T(5;)ms, 

-~[C(CjW (633)
3 

and 

bjj [2C(Rj)d(Rj)T(R;)Njamili.. ] + [4C(5j )d(5})T(5j )] (6.34) 

where in the formulae above we have to sum over all the representations in the theory. 

For the two cases considered in our work the explicit form of the ,6 functions are 

given in the Appendix . 
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Table 6.1: Higgs spectru m at various mass scales for the D-conserved and the D­
nonconseved chain 

Group G, 

(2 L 2R4C P) 

Higgs content 

(2,2,1)10 
(1,3, fO)126 
(3,1,10)126 
(1,1,15)45 
(2,2,1)10 

(2L2R4c) (1,3, fO)126 
(1, 1, 15 )45 
(2,2,0,lho 

(2L2RIB_L3c P) (1,3,2,1)126 
((3,1,2,1)126 
(2,2,0,lho 

(2L2RIB_L3c) (1,3,2,1)126 

We use the hypothesis of minimal fine tuning[23] to find the Higgs content at 

the various mass scales for any given chain. This hypothesis assumes that only a 

minimum number of fine tunings are done to ensure the hierarchy of the gauge boson 

masses. This leads to the following symmetry breaking scenario. Consider 

GO~GI~G2 
Let cPo be some representation of Go where 

cPo L ffi cPf (6.35) 
a=l.m,: 

where the cP't are irreducible representations of G 1. Now if some of the cPi acquire 

vev to break G 1 to G2 then according to the survival hypothesis those fields acquire 

masses of the order of MJ while the other cP fields get masses of the order Mu. In 

Table 6.9 we show the Higgs bosons that live at different mass scales. 

An approximate solution of the evolution equation can be written as 


-I I J.L' 1 (31 [O-I(J.L') + ~l 

0, (J.L) = (30 In - + -(-) + -(3 In ~ 

J.L OJ J.L 0 o-I(J.L) + fJo 
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Table 6.2: The Higgs bosons at Me.; 

50(10) multiplet G 2,2,4 multiplet 
54 5 1(1,1,1),52(1,1,20'),53 (3,3,1) 
45 cPI(3, 11),cP2(2, 2, 6),cP3(1, 3,1) 
126 LI(2, 2, 15),L2(1 , 1,6) 

(30 2~ [bi + L)iJO:J(J.L)] 

2bii
(31 (6.36)

(411" )2 

At each symmetry breaking threshold we use the following matching conditions for 

the couplings when the group G breaks to the group Gi [24], 

O;I(J.L) -I Ai 
(6.37)°c 1211" 

where 

Ai = - GCi + Tr(Bt)2In AfHGc 
J.L 

The Bt are the generators of G i for the representation in which the Higgs, MH , 

appear.Gc and Gc , are the quadratic Casimir invariants for the group G and the 

group G i while J.L is the symmetry breaking scale. Gravity induced corrections change 

o:;I(J.L) to o;I(J.L)(l+(it l as in Eq. (6.9) . In our analysis we identify J.L, the unification 

scale with the vector boson mass . Threshold corrections will occur due to the non-

degeneracy of the Higgs masses with the vector boson mass. Using the D-conserved 

non-SUSY case as an example we have calculated the effect of threshold corrections at 

the heavy scales MJ and M u . The Higgs masses are assumed to vary between ~ and 

5 times the vector boson mass. The threshold corrections enter through the factors A, 

appearing in equation above. The Higgs that live around the mass scale Mu and Mj 

are given in Table 6.2 and Table 6.3. 
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Table 6.3: The Higgs bosons at M/ 

50(10) multiplet G 2L ,2R,IB_L,3c multiplet 
45 Y1(1,1,1, 0)'Y2(1, 1,0, 8),X(1, 1, ~,3),X(l, 1, -~, 3) 
126 ~1(3, 1, - j , 6),6(1, 3,~, 6), ~3(3, 1,~, 3)'~4(1, 3, -L 3) 

Defining 1]H = In *one can write at Mu, 

>'4 (4 + 161]52 + 81]~2 + 3217I;, + 217I;2 + 21]H' ) 

>'2 = (6 + 121]53 + 121]~2 + 3017I;, + 41]~J (6.38) 

At the scale M/ one has, 

>'3 (1 + 61]Y2 + 151]~1 + 151]6 + 31]~3 + 31]~.) 

>'B-L (4 + 61]~, + 61]~2 + 31]~3 + 31]~.) 

>'2L (241]~1 + 121]b) 

>'2R (241]~2 + 121]~.) 	 (6 .39) 

The quantities >'4 - >'2 and >'3 - >'B-L appear in the solution for Mu and MJ respec­

tively. We consider two cases where the Higgs masses are chosen such that the above 

quantities are at their extreme values. We further make the assumption that the Higgs 

at a given scale coming from the same S0(10) multiplet have the same masses. In the 

first case we choose ME ,M5 ,Mw to be (k)Mu while M~ to be 5Mu . At M/ we choose 

My and M~ to be kM/.For the second case we just flip the Higgs bosons around 

at the two scales. We refer to these two cases as case(a) and case(b) .We have only 

considered the cases when M/ is not equal to Mu. 
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6.0.1 Results 

Using the values of the Standard Model couplings at Mz (Eg. 6.1),the evolution 

equations and the matching conditions we find regions in the ( , (' space which allow 

a low MR for various values of the intermediate scale M/ and the unification scale 

Mu . In Fig. 6.1 the allowed regions for D-conserved non-SUSY case are shown. 

10 18D-conserving SO( 1 O),M U = 
0.05 	 , , , , I ' , , , I" T ' , , , I 

M1 = 1016(dash) 
-000 

,' _ M1=1017( solld)I--- ____ 
MI = 10 18(doldash)=- ~ ~~ - -. ­-005 

I---	 \-- ----...r -__ 
-0 10 I--- - - - ­

-0 15 I--- ­

-0 20E"I, ,I, , 1 ,-,--,-,1, \, 
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'-.: i ' , , , I -,.-",-,-~~. , 

-005f- -_- , ",'I0 
16 

(>o" d l 

-- :::J ",' .o"(do>h] 
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-015 [ 


-020 

0 .02 004 006 008 

Figure 6.1: Allowed regions in the ( , (' space which allow a low MR (';:;:, 1 TeV) 
for various values of the intermediate scale M/ and the unification scale Mu for the 
D-conserved non-SUSY case. 

For Mu not equal to M/ the effects of threshold corrections have been included. 

In Fig. 6.2 and Fig. 6.3 the allowed regions for D-conserved and D-non-conserved 
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SUSY case are shown. 
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Figure 6.2: Allowed regions in the 10 , 10' space which allow a low MR(~ 1 Te\f) 
for various values of the intermediate scale M J and the unification scale Mu for the 
D-conserved SUSY case. 

For the D-broken non-SUSY case the widths of the allowed regions are too small 

to be shown graphically and therefore we present the results for this case in Table 6.4. 

For the supersymmetric version the allowed regions are larger but no solution was 

found for the case M/ = 1016 , Mu = 1018 
. In our analysis for the SUSY case we have 

taken the SUSY scale to be at the Z scale. Even though we have not carried out a 

full analysis of the threshold effects, from the examples considered, we do not expect 

moderate threshold effects to alter the regions in the parameter space drastically. In 
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Figure 6.3 : Allowed regions in the ( , (' space which allow a low MR(~ 1 TeV) 
for various values of the intermediate scale MJ and the unification scale Mu for the 
D-nonconserved SUSY case. 

conclusion we have shown that both for the D-conserved and D-nonconserved case it 

is possible in 50(10) GUT to have the low energy left-right symmetry scale MR in the 

TeV range by including Planck scale corrections. We have also shown that there are 

fairly wide regions in the parameter space of gravity induced couplings that allow M R 

in the TeV range and this can be contrasted with the other known way of achieving 

low M R ( as already mentioned) i.e to introduce very specific Higgs representations 

in SUSY 50(10) . We have also shown that our analysis works for both SUSY and 

non-SUSY 50(10). 
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CHAPTER 7 


EFFECTS OF HIGHER DIMENSIONAL 

OPERATORS IN SUSY SU(S) GUT 


In this chapter we consider the effects of higher dimensional operators in SCSY SC(5 ) 

GUT. Again we consider these effects on the gauge coupling unification condition only. 

As we mentioned in the previous chapter, in the case of non-supersymmetric GUTs 

it was shown 1 that by considering dimension five operators alone it is not possible 

to make minimal SU( 5) GUT consistent with the LEP data and proton decay limit. 

Where as by considering both dimension five and dimension six operators one can 

make the minimal SU(5) GUT consistent with LEP data and stable proton 2 

The effects of higher dimension operators in SUSY GUT's have been studied and 

recently, Hall and Sarid,3 and Langacker and Polonsky4 have shown that the predic­

tion of the strong coupling constant a. in the minimal supersymmetric SL'(5) grand 

unified theory is smeared out when dimension five non-renormalizable operators aris­

ing from gravity is included ( Recently Planck scale effects have also been considered 

by A.Vayonakis2
). In this chapter we point out that for high GUT scale higher di­

mensional operators (with dimensions ~ 6) can be as significant as dimension five 

operators. In particular we show that these operators can wash out the prediction 

for a. completely. 

As we observed in Chapter 5, the particle spectrum is a crucial input in studying 

the evolution of the coupling constants. In this analysis we employ the SUSY mass 

spectrum used in Ref.l. The particle content of the model is the following: all the 

Standard Model particles are already present at the initial scale mz( including the 
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top quark and the Higgs). We then include the second Higgs doublet at mH, the 

squarks at an average mass m q, the sleptons at their average mass mi, the Winos 

at mw the gluinos at m g, the Higgsinos at mil, the color triplet component of the 

5 of the Higgs boson at Mtr> the non-Goldstone boson members of the 24 Higgs at 

Mf. and finally the superheavy gauge bosons and their superpartners at Mx. Using 

a supergravity inspired model all the SUSY masses are written in terms of four mass 

parameters chosen as mo ( common scalar mass), ml/2 (common gaugino mass at 

the GUT scale), J-L( the coupling of the two Higgs in the 5uperpotential) and mHo A 

simplified spectrum used here is given as 

mq Jml + 6mi/2 (7.1 ) 

mj Jm 6 + O.4mi/2 (7.2) 

mg 2. 7ml/2 (7.3) 

mw 0.8m l/2 (7.4) 

Note that up to one loop the gaugino masses are given by 

Cll,2,3(Mz ) ml/2
miJ,W,g (7.5)

(Xe 

The Bino mass does not appear in our formulae. Finally, 

mil J-L (7.6) 

In chapter 5 we had mentioned that the SUSY spectrum can be expressed in terms 

of the parameters mo, ml/2, Ao, tan (3. In our analysis we have eliminated Ao, tan (3 in 

terms of the second Higgs doublet mass mHo Note that the Z mass can be expressed 

as 

1 mi - m~ tan2 (3
2Mi (7.7)

tan 2 (3 - 1 
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m;(t) m~, (t) + J/(t) (7.8) 

M'
for i = 1,2 and where t = In iff. Further 

m;(t) -B(t)J-L(t) (79) 

In the formulae above we have neglected the loop corrections to the Higgs potential. 

The two Higgs masses mH mH, start off with the same mass mo at the GUT scale but1 , 

evolve differently under the RGE and one of the Higgs mass mH
1 

turns negative (due 

to large top quark Yukawa coupling) at the weak scale signaling electroweak symmetry 

breaking. The RGE of mH
2 

does not depend on Ao but only on mo, ml/2, Cle, while 

that of mH
1 

depends on Ao· After symmetry breaking there are 5 physical Higgs 

h, H, H±, A. In this calculation mh is taken to be light at around the Z scale while 

all the other Higgs are considered degenerate with 

m~ = m~ = m~ = m~± = mi + m; (7.10) 

and so we see that m~2 can be expressed in terms of mH, m~1 (mo, ml/2, Cle) It is clear 

now that from Eq. (7.7) that we can now express tan.L~ in terms of J-L,mo,ml/2,mH 

In passing we note that the relation 

2m;
sin 2(3 (7.11)

mi +m~ 

can be used to eliminate Bo· We would also like to mention that in general after 

electroweak symmetry breaking the charged winos mix with the charged Higgsinos to 

form mass diagonal states called the charginos while the neutral higgsinos car. mix 

with the neutral gauginos(W3, B) to form neutralinos. In this discussion the mixings 

are neglected. 

In the gauge part of the GUT Lagrangian we include both dimension 5 and di­

mension 6 operators, which might originate from non-renormalizable quantum gravity 
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effect, and write 


ell 1 

bC 	 - .-tr(GG2::) + -'-2 [d ll -tr(GE2G) + d12 -tr(GEGE) + d2tr(G 2 )tr(2:: 2 

)

2Mp 2Mp 2 2 


+d3tr(GE)tr(GE)] 	 (7.12) 

Then these terms will modify the kinetic energy terms of the Standard Model gauge 

bosons to, 

2 


C 	 1) (1) (7 + d2­--(FF)u(l)1 [e1 + --.-v ( --- + -.-v - d l - 15 + d3-15)] 
gauge 4 2 Mp 2.ji5 2M~ 15 4 2 2 


[e v 3) + -.-
2 

d l
--(FFhU1 (2) 1 + --.- ( --- v (1)- (9- + d2-15)] 
4 2 Mp 2.ji5 2M~ 15 4 2 


2 


1 [e v ( --1) v - + d2 -15)] (7.13)

4 2 Mp.ji5 2M~ 15 2 


where we have defined dl = ~ as the the first two operators in Eq. (7.12) always 


contribute equally. Note that in principle one can also include operators of dimensions 


higher than six in our analysis but their contributions to f, where We -I is the amount 


by which etc -I gets modified in the evolution equations for the coupling constants, 


can be included by absorbing them in the co-efficients dl , d2 and d3 . Since we are 


interested only in gauge coupling evolutions it is thus sufficient to confine our analysis 


to just dimension five and dimension six operators for minimal supersymmetric SU(5) 


GUT and see how they can affect the predictions of et.. At the one loop level the 


gauge coupling, evaluated at the Z mass a-I == a-I(mz) == (etl-l,et2-I,et3-1) will be 


related to the GUT scale (Me) gauge coupling constant, 


--(FFhU(3) 1 + --.- + -.- (1) ( d l 

- ) - (Ma)a-I = etel (1 + f5 + i6 - L.Ba ln AT 
a C 

where, 

_ eV(I)(1 3)
(5 == 2ifp .ji5 -2' -2' 1 


and 


d v
2 
(7 15 15 9 15 15)
t6 == --.- d l - + d2 - + d3 - d l - + d2 - d l + d2 ­

30 M~ 4 2 2' 4 2 ' 2 
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Then, the modified unification equations are given by, 

2 6 MIT j¥2 C vII 1 v 2 1 2
- + -In- - ---.-- + [-d\ - -d3]-.-- 1I ( 5 , mo, m ~ , J.1, m H)
et. 57f mz 5 2 Mp etc 5 2 2M~ etc 


2
2 9 5 12 6 18 v 5 d3 v 1 

- + - In - + - In g5 + - In >'24 + - In - + - - -.- ­ 12(52

, mo, md · (7.14)
et. 7f 12 7f 7f 7f mz 2 2 M~ etc l 


. where 

3(652 
- 1) 3 m~ 2 2.7 4 J.1 1 mH

h -----'---------'- - -In- - -In - + -In- + -In- -1.52(7.15)
Set 207f mJ 7f 0.8 57f mz 57f mz 

3(1-282) 3 m~ 2 4 ml /2 1

12 ----'-----...:... - -In - - -In 2.70.8 - -In -- + - + 1.13 (7 .16) 

et 	 471' ml 71' 57f mz 7f 

Subtracting one of the equations in Eq. (7.14) from the other we obtain an 

equation for MeT which can be written as, 

-
-84 

In t WI t
2 + W2t + b 	 (7.1 i)

57f 


where t M-u-,WI I [1.§.d - .E.d ] 6 d b 1 1 6 A 

Mp aC A,2 5 3 25 I, W2 Sac A, e an I - 2 + ;; In B + 


£In 47fetc + -584 In M.e. Defining, x ~ we can rewrite the first equation in Eq. 
.. .. mz A.Mp 

(7.14) as, 

2
2 2 6 MIT 6 e 3 6 x

11(8 ,mo,ml,J.1,mH) - -In - + --x + [-d3 - -dd- (7 .18)et. 1 57f mz 5 etc 5 25 etc 


We now numerically solve Eq. (7.17) for t and then use Eq. (7.18) to calculate 

QJ. We use the same mass spectrum and ranges of parameters (52, mo, m t, J.1, 

mHl)5,>'24,e) as in Ref.l. In other words we vary the light superpartner masses and 

the second Higgs doublet mass between 100 GeV and 1 TeV, 82 between 0.2314 and 

0 .2324 5, >'5 and >'24 between .1 and 3 while we constrain lei < 1. The co-effecients 

dl , d2 and d3 are unknown, but we see from Eq. (7.17) and Eq. (7.18) that only dl 
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and dJ contribute to the equations for Mtr and 0:,. We also observe from Eq. (7.17) 

that dJ has a much larger co-efficient . We can now consider two scenarios, one with 

Idd < 1; dJ = 0 and Idll = 0; IdJI < l. There may be multiple solutions to Eq. (7 .17) 

and we have chosen the lowest solution in our analysis. To select the lowest solution 

we define two critical solutions tl and t2 which are given by, 

tex ~ 
tl 2 [1 + V (1 - 2y)I (7.19) 

tex ~ 
t2 211 - V(1 - 2y)] (7.20) 

where tex = ~ and y = Wl~~. For W2 = 0 we have one critical solution tcr given by 

Fa (7.21)
tcr V~ 

The critical solutions correspond to points where the tangent to the logarathmic 

function on the left hand side of Eq. (7.17) equals the tangent to the parabola on the 

right hand side of Eq. (7.17). When tl and t2 are both real and positive and distinct 

from one another we can have at most three solutions , one below t l , one between tl 

and t2 and one above t 2 . If instead the critical solutions are real and positive, but 

equal then we can have at most two solutions. For WI < 0 there is always one real 

positive critical solution and so there can be up to two solutions one on either side of 

the critical solution. When there is no real, positive critical solution there can be up 

to one solution to Eq. (7.17). For WI = 0, as observed in Ref.!, there can be only one 

solution for W2 greater than 0 while for W2 less than 0 there can be upto two solutions 

lying on either side of the critical solution tcritical = ;;. 
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7.1 Results 

For the case where Idll < 1; dJ = 0, the effect of dimension 6 operators are found 

negligible. However for the case where Idll = 0; IdJI < 1, the effect of dimension six 

operator can be significant. In Fig. 7.1(a) we show a plot of the solutions in the 

0:, - M tr plane. Although we cut off the figure at 0:. = 1, we mention that there are 

solutions for larger values of 0:. I . In Table 7.1 we show the ranges of 0:. for different 

Mtr . Fig. 7.1(b) is a blow up of Fig. 7.1(a) for 0:. ~ 0.12. Here, we have used a much 

smaller grid size for ).5 in our numerical computation; as a result , some solutions that 

do not show up in Fig. 7.1(a) now appear in Fig. 7.1(b) . 

~ 7 x 1016We observe that for M tr GeV the range of the solutions for 0:. is 

greatly increased . We also note that with dimension 6 operators it is now possible to 

get values of 0:. below 0.11 which was not possible with pure dimension.) term. This 

could be of interest if in the future the central value of 0:, = 0.120 ±0.007 ±0.002 shifts 

down by ,..., 1.5a. ( It is interesting to note that such a low value of 0:. (0.108 ± 0.004) 

is indeed obtained in an analysis of LEP data by \1a.xwell et al. 6 where it is claimed 

that the standard perturbative QeD analyses used to extract 0:. from LEP data do 

not correctly take into account higher order NNLO corrections which can be sizeable 

for some of the LEP observables used in the determination of 0:•. ) We found that 

solutions with large values of 0:. and small values of 0:, ( less than 0.11) correspond 

to small values of ).5 in the range 0.1 to 0.3 indicating a high value for Mx (or x) and 

consequently large gravitational corrections. When the unification scale is close to the 

Planck scale the magnitude of the terms induced by the higher dimensional operators 

in Eq. (7.18) can become comparable to the combination of the first two terms, 

resulting in a much wider range for 0:•. In our calculations we have constrained the 

IOf course, the equations themselves cease to be valid if o. is too large 
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Figure 7.1: Plot of the solutions in the Q. - MtT plane. Fig. (b) is a blow up of 
Fig. (a) for Q. ~ 0.12. For Fig. (b) a much smaller grid size for >'s was used in the 
numerical computation; as a result , some solutions that do not show up in Fig. (a) 
now appear in Fig. (b) . 
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Table 7.1: Allowed ranges of 0', for various MIT 

O',(min)MtT X 10 16 GeV 
 Q.(max) 
0.1151 
 0.144 
0.118 2 
 0.146 
0.1193 
 0.146 

4 
 0.147 0120 
5 
 0.147 0.119 
6 
 0.147 0.120 
7 
 0.404 0.124 

0.705 0.1218 

1.4089 
 0.121 

10 
 2.95 0.121 
2.82 0.10114 

1.742 0.0660 18 


22 
 3.89 0.0590 
26 
 3 .82 0.0570 
30 
 336 
 0.0560 

heavy masses to be less than ifp. To compare to the results with only the dimension 

five operator included, we note that in that case, the parameter x always is of the 

order of 10-1 
. However the inclusion of the dimension six operators allows x to be an 

order of magnitude higher indicating a higher unification scale close to "{p. (Note 

!1.x- J87rQcx x for Qc -is; where Mx is the vector boson mass) so that it
Mp 

rv 

should not be surprising that the higher dimensional operators are significant. 

In summary, we have shown that the inclusion of dimension 6 operators may 

totally wash out the predictions for the strong coupling constant and further,that the 

correlation between Q. and MtT is also destroyed unless we constrain the triplet Higgs 

10 16
mass MtT < 7 X GeV. Turning this around, if we require that SUSY-GUT make 


calculable predictions at the electroweak scale in the presence of gravity induced non­

renormalizable operators we may infer more restrictive bounds on the triplet Higgs 


mass than are available in the literature 7. 
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Appendix A 

SOME 50(10) RELATED 
RESULTS 

A.I D Parity 

One of the maximal subgroups of 50(10 ) is the group SU(2h x SU(2 )R x SU(4) x 

D where D is called the D-parity. The D-parity operator is similar to the charge 

conjugation operator for the fermions and this operator can be expressed as a product 

of the 50(10) generators 

D A123 M67 	 (A .I) 

and for the fermion f L 

h~ff (A2 ) 

Note that in 50(10) all the fermions (h and ff) are in the same representation and 

the group generators just allow you to go from a state in a given representation to 

another state in the same representation . The transformation of the scalars 6. L == 

(3,1 , 10) is given under D-parity as 

D _ 
6. L == (3,1,10) ~ 6. R== (1,3,10) (A .3) 
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So we see that D-parity is not the charge conjugation operator and neither can it 

be identified with the CP operator. In fact one can have Lagrangians with complex 

Yukawa couplings that violate CP but conserve D-parity. The importance of the 

concept of D-parity comes from the fact that there are Higgs multiplet in SO( 10) 

which contain submultiplets that are singlets under SU(2h x SU(2)R x G but are 

odd or even under D-parity. For example the 54 representation contains the D-even 

singlet (1, 1, 1) under SU(2h x SU(2)R x SU(4) and so when it acquires a vev to break 

50(10), because of D-parity conservation, the resulting group is SU(2h X SU(2)R x 

SU (4) x D. The 210 representation on the other hand contains a D-odd singlet under 

SU(2h x SU(2)R x SU(4) and so when it is used for symmetry breaking we end up 

with SU(2h x SU(2)R x SU( 4) without D-parity. In the D-broken case there are 

asymmetric Higgs bosons contribution to the RGE for 9L and 9R and so even if we 

start with both of these couplings equal at a certain scale at some different scale this 

equality will no longer be maintained. 

A.2 One And Two Loop f3 Functions 

For the region between M z - M R 

41/10)
-19/6 (AA)(b::W ) (b3c -7 

and the two loop functions are 

199/50 = byy 27/10 44/5 )
9/10 35/6 = b2Lw2LW 12 (A.5)

( 
11/10 9/2 -26 = b3c3c 


For the region between MR - MJ(D-conserving) 


b2L ) ( - 7/3 )b2R -7/3 
(A.6)

bB - L 7( 
b3c -7 
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and the two loop functions are 

80/3 = b2L2L 27/2 
3 80/3 = b2R2R 27/2 1212 ) 

(A.7)81/2 81/2 115/2 = bB - LB - L 

9/2 9/2 1/2 -26 ~ b3c3c 

( 

For the region between MR - MJ(D-nonconserving) 

bb2L2R ) -7/3(-3 ) 
(A.8) 

( b:~L 1~~2 

and the two loop functions are 

8 = b2L2L 3 3/2 
3 80/3 = b2R2R 27/2 1212 ) 

(A.9)
9/2 243/6 61/2 = bB - LB - L( 
9/2 9/2 1/2 -26 ~ b3c3c 

For the region between MJ - Mu(D-conserving) 

2L 11/3 )bb2R ) 11/3 (A.10)
( (b4c -10/3 

and the two loop functions are 

584/3 = b2L2L ~ 3 765/2 )
3 .)84/3 = b2R1R 765/2 (A.Il)

( 
153/2 153/2 2207/6 = b4c4c 

For the region between MJ - Mu(D-nonconserving) 

2L 

( 
(-3)bb2R ) 11/3 (A.I2) 

b4c -19/3 

and the two loop functions are 

8=b2L2L 3 45/2 )
3 584/3 = b2R1R 765/2 (A.I3)

( 
9/2 153/2 1091/6 = b4c4c 
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For the region between Mz - MR(SUSY) 

( 
bY)

bnu: 
b3c 

( 66/10 )
1 

-3 
(A .14) 

and the two loop functions are 

( 

199/25 = byy 

9/5 
11/5 

27/5 
25 = bnw2Lw 

9 

88/5 )
31 

14 = b3c3c 

(A.15) 

For the region between MR - M1(D-conserving SUSY) 

( 

bn )b2R 

bB - L 

b3c 

and the two loop functions are 

( 

49 = bnn 3 
3 49 = b2R2R 

45 45 
9 9 

61 = 

U~) 
9 
9 

bB - LB­ L 

1 

)2424 

14 =8
b3c3C 

(A.16) 

(A.17) 

For the region between M R - M1(D-nonconserving SUSY) 

(b~~L ) (2l~2 ) 
and the two loop functions are 

( 

25 = bnn 3 
3 49 = b2R2R 

9 45 
9 9 

3 
9 

34 = bB ­ LB ­ L 

1 

)2424 

14 =8b
3c3c 

(A.18) 

(A.19) 

For the region between MI - Mu(D-conserving SUSY) 

(
b2L 

)b2R 

b4.c 

= (21)21 

16 
(A.20) 
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and the two loop functions are 

265 =3 bn2L 3 
405 )

265 = b2R2R 405 (A21)
( 81 81 538.5 = b4c4c 

For the region between MI - Mu(D-nonconserving SCSY) 

(A .22)(t:;) ~ (2:1) 

and the two loop functions are 

45C5~tn 265 = 
3 

b2R2R 405 
) 

(A.23) 

81 304.5 = b4c4c 

A.3 Generalized Pauli Matrices 

For the Group SO(2n+2) the generalized 2n x 2n Pauli matrices are defined iteratively 

as 

n+1 
Ii (~n -~; ) i = 1, 2 , 3 .2n (:\ .24 ) 

n+1 (A .25)12n+1 (~ ~) 

n+1 0 -i) (A.26)12n+2 ( i 0 

A.4 Left-Right Symmetric Model 

One of the motivation for the Left-Right symmetric model is to understand parity 

violation in low energy physics. The Left-Right symmetric model assumes that the 

interaction Lagrangian is intrinsically left-right symmetric and the asymmetry ob­

served in nature ( eg f3 decay, Ii- decay etc) arises from the vacuum being noninvariant 
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under parity symmetry. The interesting feature of this model is that at low energies , 

it reproduces all the features of the electroweak theory but as one goes to higher 

energies new effects associated with the parity invariance of the model appear such 

as the second neutral Z-boson, right-handed charged currents, right handed neutrinos 

etc. 

The Left-Right symmetric models are based on the gauge group 

SU(2h X SU(2)R x U8-L 

Considering only a single generation, the fermions have the assignments 

QL = (~) L = (1/2,0,1/3) QR = (~) R = (0,1/2,1/3) 

WL = (~) L = (1/2,0,1/3) WR = (~) R = (0,1/2,1/3) 


The electric charge is given by the formula 


Q hL + 13R + B 	- L (A .27) 
2 

If we assume discrete parity symmetry then the group that we are considering is 

SU(2)L X SU(2)R X UB - L X P. This model therefore has only two coupling constants 

g2 = gn = g2R and g'(associated with U(1)B-d. The kinetic energy part of the 

interaction for the fermions can be written as 

Lkin -Ch'"YI'DLI'QL -1f;L'"YI'DLI'WL - QR'"YI'DRI'QR 

-1f;R'"YI'DRI'WR 	 (A.28) 

where 

ig _ - ig' 
DLI' (8 - -T.W L - - B ) (A .29) 

I' 2 I' 6 I' 
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and 

ig - ig'
(8 - -i".l--FR - - 8 ) (.-\.30) DRI' 

I' 2 I' 6 I' 

Now one can consider two stage breaking of this model to the electroweak group 

where first at the scale Mp the parity symmetry is broken and at a lower scale the 

gauge symmetry SU(2)R is broken . Alternately, one can consider the breaking of the 

parity and the gauge symmetry at the same scale and in our discussions we ·consider 

this scenario only. First we consider the breaking of the Left-right Symmetry to the 

electroweak symmetry which can be achieved by introducing scalars 

~d1, 0, 2) + ~R(O , 1,2) 

The most general parity invariant and gauge invariant potential involving these two 

fields is 

V(~L ' 6 R ) -Jl2TT(6~~L + ~k~R) 

+pdTT((~~~d)2 + TT((~k6R))21 

+p2[TT(~~6L~~~d + TT(~k~R6k~R)1 

+P3[TT(~~~L)TT(6k6R)) 

+p4[TT(~~~UTT(~L6d + TT(6k~k)TT(~R~R)) (A .31) 

where we write 

6+ 
5++ )

6 LR i.8LR = (72 	 (A.32) 6+5° -"J2 LR 

By suitable symmetry transformation the vev of the ~LR can be written as 

(A.33) (~LR) (V~R~) 
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The potential V then reduces to 

V(VL' VR) -J-I?(Vr + V~) + (PI + P2)(V~ + V~) + P3VrV~ (A .34) 

The minimum for this potential occurs for 

P3 > 2(PI + P2) Q' = 0, 7f /2 (A .35) 

where 

VL = vsin Q' VR = V cos Q' (A.36) 

To break the electroweak symmetry we introduce the Higgs ¢(1/2, 1/2,0) and the full 

potential is now written as 

V(~L) ~R) ¢) V(~L' ~R) - L J-L;jTr(¢!¢j) 
.) 

+ L Aijkl[Tr(¢J¢j)Tr(¢~¢I ) 1 
ijkl 

+ L A:jkl[Tr(¢!¢j¢r¢dl
ijk! 

+ L Q'ij[Tr(~t~L + ~k~R)Tr(¢!¢))1 
.) 

+ L ,8ij[Tr(~t~d¢i¢j) + ~k~R(¢!¢j)1 
ij 

+ L l'ij[Tr(~t¢i~R¢})1 + h.c (A.37) 
ij 

where 

¢l ( 
¢~ 
¢:; 

¢t) 
¢~ 

(A.38) 

and 

¢2(= T2¢~T2) = (¢g.
-¢l 

-¢r)
¢~. 

(A .39) 

For a wide range of parameters the minimum for the potential is given by 

(~LR) (V~R ~) (A.40) 
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(¢) ( '" 0) 10 o ",' (A.41)e 

if ",' « '" then 

2 
[ 1'12 l~VL (A .42) 
2(PI + P2) - P3 VR 

In the limit that "'/VR is small the spontaneous CP phase Q vanishes . Also from the 

formula above we obtain vL < < "'. The mass matrix for the charged gauge boson has 

the following form 

~l(K2 + KI2 + 2vD g2""" )
( (A.43)g2"K' ~g2(,,2 + ,,12 + 2vh) 

The eigenstates of the matrix are the physical bosons W1,2 

WI WL cos ( + WR sin ( (A.44) 

W2 - WL sin ( + WR cos ( (A.45) 

with 

2KK' 
tan 2( (A.46)vk - VL 

The effective four fermion interaction at low energy( q2 < < ,\rf&"1 .2) has the form 

Lee ~[(COS2 (+ 1]sin
2 ()J~LJr + (1]COS2 (+ sin 2 ()J~RJ~ 

-(1] - l)cos (sin ()(J~LJ~ + J~RJt)1 (A.47) 

with 

JI"LR ULRl'l"d LR + VLRl'l"eLR (A.48) 

M&"l :::::: ~l(,,2 + ,,12)
1] (A.49)M&", :::::: ~g2(,,2 + ,,12 + 2vh) 
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The neutral current interaction is given as 

LNC ig(JIlL W 31'L + JI'RWJI'R + JI'B - LBI') 

The mass matrix for the neutral bosons WJL , W3R , B is 

~ (1\.2 + I(f'l + 4vi) _~(1\.2 + Kf'l) -2gg'v~ ) 
~(1\.2 + 1('2) _~(1\.2 + 1(r2 + 4v~) -2gg'v~

( 2 2 
-2gg'vI -2gg'vR gr2(vI + vh) 

The mass eigenstates are the following fields 

A sinOw(WJL + W JR ) + Jcos20wB 

ZI 

Z2 

where 

ZL cos Ow Wn ­

ZR 

tan 2~ 

and 

:::::Mt 

g2
M2 :::::

ZR 2 cos2Ow cos 20w 

ZL cos ~ + ZR sin~ 

-ZLsin~ + ZRCOS~ 

sin Ow tan Ow W3R + tan Ow J cos 20w B 

lcos 20wo W JR + tanOwB 
cos w 


2/cos 20w(MzL/MzR)2 


g2 2 r2 2 
--2-0-(1\. + I\. + 4VL)
2cos w 

[(1(2 + 1\.'2) cos2Ow + 4v~ sin2Ow + 4v~ cos 

(A.50) 

(A.51) 

(A.52) 

(A.53) 

(A.54) 

(A.55) 

(A .56) 

(A.57) 

(A.58) 

4Ow(A.59) 

We now turn to the question of fermion masses and mixing. The most general 

gauge invariant interaction can be written as 

Ly Lhr/~Li¢QR) + h~/~LiJQR) 
.) 

+ L h:)lbLi¢t/;Rj + hLlbLi¢1fJR) 
i) 

+ j;j (1fJLc- 1T2t:. LWL) + 1fJ~iC-IT2t:.Rt/;Rj) + h.c (A.60) 

The last two terms can generate Majorana masses for the neutrinos after SSB. The 

quark and charged lepton masses are given by 

Mi~ hrjl\.e'o + '0j l\.'e-·o (A.61) 

Md 
I) 

h1j K 'e-'o + h~)l(e'o (A.62) 

M7; hLI('e- 'o + h~Jl\.elo (A63) 

One can consider a couple of interesting scenarios . If we demand that the Lagrangian 

is invariant under parity(¢ <-t ¢I, QL <-t QR, t/;L <---> WR) then the matrices [hij] and [h,J] 

are hermitian. If 0: = 0 then the mass matrices are hermitian which means they can be 

diagonalized by unitary matrices and consequently the mixing angles and phases in the 

left and the right handed quark sectors are the same (manifest left -right symmetry) 

Another case is when the h's are real (CP conserved Lagrangian) but 0: f. O( CP 

broken spontaneously). The mass matrices are then complex and symmetric. In this 

case the mixing angles in the left and right handed quark sectors are the same but the 

phases are different(pseudo left-right symmetry) . If the Lagrangian is not invariant 

under parity then in general the left and the right mixing matrices are different. Also 

if we introduce an additional ¢ field then a parity invariant Lagrangian can lead to 

different left and right mixing matrices in the quark sector. 
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Finally, the neutral current interactions can be written in terms of the physical A, ZI 

and Z2 fields. 
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