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T / The aim of these lectures is to give an elementary introduction to some problems
in "quantum groups” and "quantum algebras”. These terms do not denote groups and
Lie algebras, but particular deformations of Lie groups and Lie algebras, and belong
to the more general category of Hopf algebras. We shall speak of "g-deformation”
G, of a Lie group G and g-deformation Uy(g) of a Lie algebra g. The emphasis will
be on the latter.

We shall first describe the well established theory of g-deformation of semisimple
Lie algebras, particularly s{(2). Then we shall discuss real forms of g-algebras. Fi-

nally, examples of the less well known quantum deformation of non-semisimple Lie

I\
q—DEFO RM ATION OF algebras will be given, especially the Poincaré algebra.
SEMISIMPLE AND Quantum groups were first introduced in physics in two—dimensional integrable
NON_S EMIS IMPLE ’ systc.ms and soon applied to conformal ficld theories (see the ]e.ctures in these pro-
LIE ALGEBRAS . ceedings by L. Faddeev, C. Gomez, G. Sierra, and references [1,2,3,4]).

Another application of g-deformed algebras is to provide a new possibility of
symmetry breaking. The first example is the Heisenberg model of a one-dimensional

HENRI RUEGG metal, or XXX quantum spin chain, solved by Bethe. It is invariant under s£(2),

Département de Physique Théorique whereas the XX Z chain is only invariant under the classical (1) but actually also

Uiersiis de Geibve under the quantum Ug(s{(2)) [5,6,7]. In these lectures we shall discuss the possible

CH-1211 GENEVE 4, Switzerland breaking of Lorentz invariance at high energy by the quantum deformation of the

Poincaré algebra in 4 dimensions (8,9, 10]. Although at present there is no exper-

imental evidence for such violation, it is interesting to get a “figure of merit” of a

UGVA-DPT 1993 / 02-806 theory by comparing it to another theory with similar power of prediction, the latter

being obtained by continuous deformation of the former. In addition, the correspond-
ing field theory could provide a new way of regularizing the quantum field theories

ABSTRACT: We give an elementary introduction to the Drinfeld-Jimbo pro- of particle physics. Finally, it is likely that space-time is drastically changed at the

cedure of the quantum deformation Uy(g) of semisimple Lie algebras g. The ¢~ Planck mass [11]. For other examples see the Firenze group [12].

Serre relations are discussed in some detail, in the Chevalley and the Cartan- As mentioned above the g-deformation theory of semisimple Lie groups G (Fad-
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quantum deformation of the Poincaré algebra, involving the contraction of for non-semisimple Lie algebras. Examples are known (17,18, 19] and hopefully they
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will be helpful in finding their general features. In these lectures we shall discuss in
detail the non-trivial example of the quantum deformation of the Poincaré algebra
[8,9].

1.1. THREE METHODS TO DEFORM INHOMOGENEOUS LIE ALGEBRAS

Most of the above examples are semidirect sums of a semisimple and an abelian
algebra, such as rotations and translations in 3 dimensions = E(3) [18], the inhomo-
geneous Lorentz algebra = Poincaré algebra (8,9], etc. There exist several methods

to quantum deform these algebras :

a) Contraction. One starts with a simple or semisimple Lie algebra, deforms it
according to Drinfeld-Jimbo and rescales some of the generators, which in the
limit correspond to an abelian invariant translation algebra. It is then shown
that the deformed E(3) [18] or Poincaré [8, 9] are Hopf algebras.

b
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Subalgebra. The simple algebra s0(4, 2) contains the Weyl algebra, that is Poincaré
plus dilatations. A deformation of s0(4,2) yields a ¢-Weyl Hopf algebra [20,21].
Unfortunately, the deformation thus obtained of the Poincaré algebra is not a
Hopf algebra by itself, i.e. the subalgebra hierarchy is not preserved by the

deformation.

c) Non-commutative space (22]. As an example consider the g-deformed Lorentz
algebra acting on a four-dimensional Manin space. The differential operators in
this g-geometry correspond to g-translations. In this way one gets g-Weyl as a
Hopf algebra [23].

We shall discuss in detail only method (a), the contraction.

1.1.1. Classical contraction procedure

Let us sketch the contraction procedure for getting Poincaré in the classical case,
that is for g = 1.

Start with the complex simple algebra so(5, C). It has the three real forms so(5),
s0(4,1) and s0(3,2) corresponding respectively to the diagonal metrics (+ + + +
+),(— ++ ++) and (— + + + —). The generators

Mpp=-Mgsy , A B=0,---,4 (1.1)
2

satisfy the commutation relations

[Map,Mcpl= gapMpc + 9BcMap — 9acMpp — 980 Mac. (12)

involving the metric tensor
9AB = 9BA (1:3)

with &1 on the diagonal as above. The de Sitter and anti-de Sitter algebras so(4,1)

and s0(3, 2) contain a Lorentz subalgebra with generators
My , pv=0,---,3. (1.4)
Putting
MI.M = RP,‘ s (1.5)

and letting the “radius of the fifth dimension” R tend to infinity, R — oo, it follows
that
1
[Py, Py] = E[MthnA] —0
[MuuaP,\l == gpAPV = 9uaPu .

(1.6)

which is the customary Poincaré algebra.

1.1.2. Quantum contraction

The actual practical program for obtaining the g-deformation of Poincaré can be

summarized in the following six steps :

1) For ¢ = 1, start with the simple Lie algebra so(5, C) and its 10 generators M 5.
It is convenient to introduce right away some nomenclature. We shall see below
the exact relationship between the usual M4 and the generators h;, ¢; which we

shall refer to as follows:

hi,ho : Cartan basis
hi,ho,ex1,642 g Chevalley basis (1.7)
hi,ho,e11,€42,e43,644 : Cartan — Weyl basis

2) To introduce the quantum deformation, g-deform so(5, C) & la Drinfeld-Jimbo
in the Chevalley basis to get Ug(so(5, C)). Introduce the more cumbersome but

necessary Cartan—Weyl basis.



3) Find the real form of Us(so(5, C)) corresponding to Uy(s0(3,2)) or Ug(s0(4,1)).
(The “real form” is a fancy name for some specific linear combinations of the
Cartan-Weyl generators with special properties under complex conjugation.)
Calculate the (anti) hermitean “physical” generators M,p, which provide the
unitary representation.

4) Compute the g-deformation of 30(3,2) in the “physical” basis.

5) Contract to get the quantum Poincaré algebra.

6) Check that quantum Poincaré is indeed a Hopf algebra.

1.2. PLAN OF THESE LECTURES
The above introduction motivates the course. My main goal is to describe the

above six steps. In order to do so, I will first introduce some notation and basic
formalism about quantum groups. Then I will develop the construction program
applied to the de Sitter algebra and obtain the quantum Poincaré Hopf algebra.
The reader is invited to check the assertions pencil in hand to acquire the necessary
technical skill in algebraic manipulations. At the end, our reward will be to explore
some physical consequences of the quantum—deformed Poincaré algebra. Accordingly,
the lectures are organized as follows:

- Drinfeld-Jimbo deformation in the Chevalley and Cartan-Weyl basis (chapter 2).

- Real forms of (g-deformed) semisimple Lie algebras (chapter 3).

- quantum deformation of the Poincaré algebra using contraction (chapter 4).

- Physical elucubrations (chapter 5).

2. q—Deformation of semisimple Lie algebras

2.1. THE PARADIGMATIC QUANTUM GROUP U, (s£(2))

We start with the g—deformation of s£(2), which has already many of the essential

features of the general case.

The simple Lie algebra s£(2), the symmetry algebra of spin % systems, has three
generators with commutation relations
[hyex] = £2ex
(2.1)

leq,e-]=h
4

We shall see further ahead (chapter 3) that by taking linear combinations of e4 and
e_ one gets the two real forms su(2) and su(1,1), but for the time being let us remain
general and talk about s{(2).

The g-deformation of s£(2) was proposed long ago [24]; only the third commuta-

tion relation is changed :
[h,ex] = £2e4
(2.2)
le+, e—] s [h]Q
where the square bracket (with a subindex ¢, often omitted) stands for the following

g-deformation of any quantity (number or operator)

[¢lg="—% (2:3)

We understand the formal parameter g as a complex number. When ¢ — 1, [z]q — @
the limit ¢ — 1 will often be referred to as classical, in the sense that there is no

deformation whatsoever.

Remarkably, in equation (2.2) all positive and negative powers of h appear. Hence
(2.2) does not define a Lie algebra in the purest sense, but rather the g-deformation
of the universal enveloping algebra of s{(2). This g-deformation of U(s£(2)) is noted,
not suprisingly, Ug(s{(2)). We shall see that it is necessary to include also powers
of e4. and e_, so that Ug(s£(2)) contains all the formal power series in k, e and e
modulo (2.2).

It is useful to introduce

k=g"? (2.4)

and replace the first equation (2.2) by the equivalent “commutation” relation
kepk™! = gFley. . (2.5)

For most purposes it is enough to consider only polynomials in k, k™1, e, e_.

The fundamental representation of s¢(2) , corresponding to spin %, i identical to
the fundamental representation of Ug(s{(2)). One obtains higher spin states (where

g-dependent terms will appear explicitly) through tensoring, so we must specify how

5



to introduce the tensor product of representations. For s{(2), the generators act

trivially on one factor (like a derivative) :

AR)=h@I+I®h (2.6a)
Alex)=ex @I+ IQex (2.6b)

This operation A, which tells us how to act with the generators of s£(2) on the tensor

product of two representations, is called the co-product or co-multiplication, and I

is the identity. The reader is familiar with this co-product from quantum mechanics,
where the action of an angular momentum operator on a many—particle system is the

sum of its actions on the one-particle states.

For k defined by (2.4), the operation (2.6a ) implies

AK)=k®k (2.6c)

The co-product A must be a homomorphism of Lie algebras, meaning that it
must preserve the commutation relations (2.1). Since the commutation relations of
Uq(s(2)) are different from those of 84(2), we should expect that the co-product for
Uq(s£(2)) is also different from that for s£(2). This is indeed the case. For Uy(s£(2)),
(2.6a ), or equivalently (2.6¢ ), is retained, but (2.6b ) is replaced by

Alex)=e+ @k + k' @ex. (2.7)

This co-product respects the commutation relations (2.2), i.e. it is a homomorphism
of Uy(s£(2)):

A(ab) = A(a)A(B)  Va,b e Uy(sl(2)). (2.8)

Perhaps the most noteworthy feature of the co-product A for a g-deformed alge-
bra Uy(s£(2)) is that it is not symmetric, i.e. that A(e+) acts non-symmetrically on
the two factors. Formally, the co-product is a map

A Uyg(sl(2)) — Ug(s8(2)) @ Ug(s£(2)). (2.9)
6

Motivated by the concept of Hopf algebra (see next paragraph) we define the

co-unit map ¢ :

e: Ug—~C
e(ab) = e(a)e(d)  Va,b e Uy(s£(2))
eI)=1
(k) = 1 (2.10)
e(h)=0
e(ex)=0

and the antipode map S (which at the group level G is the g-deformation of the

inverse) :

St Uy(sl(2) = Ug(st(2))
S(ab) = S(b)S(a) Va,be Uy(s£(2))
Sk)=k""! (2.11)
S(h)=—h
S(es) = —glex .
Because the co-product A is not symmetric, one can define a gsecond co-product

A' as its transpose
Al'=PoA

(2.12)
Pa®b)=b®a a,bel
Explicitly, A' of the generators of Uy(s¢(2)) reads as follows:
A'R)=k®k
() (2.13)

Allex) =ex ® Flik@es

The two co-products A and A’ are related through a “similarity transformation”
by the so-called R-matrix, R € Ug(s£(2)) ® Ug(s£(2))

RAR!=A' (2.14)

It is often useful to use the “braid-group R-matrix” which differs from the above by

a permutation:

R=PoR

A (2.15)
RAR1=A.

7



An explicit expression for R can be given [25] in terms of e+ and h (but not k) by

—2\n 2
it Z 1—g¢g *)" (=0} np _n
Reagss OLWQ T giMer)" @ g ()" (2.16)
>

This universal R-matrix can be shown [25] to satisfy the famous Yang-Baxter equa-
tion, a key property of two-dimensional integrable models [1]
Ri2R13R93 = RoaRi3Ry12 (2.17)
or equivalently
RigRo3Ryz = Rys RigRas (2.18)

where, if the general form of R is
R=>"2;8y" , z;y" € Uy(s((2)) (2.19)
i

then the subindexed notation means

Rip=) zoy'el

1

Ryz = Z£i®f®yi (2.20)

1

R23=21®z,~®yi

1

Note that the indices i go up or down without any implication about a dual.

2.2. HOPF ALGEBRA

We now have all the ingredients necessary for defining the general concept of a
Hopf algebra, of which U;(s£(2)) is a particular example. We shall do it in several
steps [26,27].

Let A be an associative algebra with unity I over C. This means that the product
m: Up(sl(2)) ® Ug(st(2)) — Ug(s(2))
(z,9) = m(z,y) = 2y

(z, )=z (@

vy

18 associative,
(zy)z = (y2) (222)
A bi-algebra is a set of two algebras sharing the same base set: the first algebra proper
(A, m, ) with product m and unit 7, the second algebra or co-algebra (A, A, ¢) with
co-product A and co-unit ¢, defined by :
mAQA— A
zQy+rrzy
1:C— A
A AT

(2.23)

and
AA—- AR A

:cr—rZzg@zi
i
e:A— C
I—1

(2.24)

Again, the short-hand above does not mean that z* belongs to the dual of A.
Just like the product m is taken to be associative, the co-product A is assumed
to be co-associative, namely

(A®NA=(I1®A)A (2.25)

or more explicitly
YAz =) 284 (2.26)
i i
The co-product A, and by extension the co-algebra (4, A, £), is called co-commutative
if A=Al
The two algebras are related if A and ¢ are homomorphisms of the first algebra,
that is of (A, m,1):
A(zy) = A(z)A(y)
AN =181
e(zy) = e(z)e(y) (2.27)
(I®e)oA=1T
(e®@oA=1T.
9



In this case the algebra and co-algebra assemble into a bi-algebra (A, m,1, A, ¢).
A Hopf algebra is a bi-algebra with an antipode S, i.e. it is given by the set
(A,m,i,A, ¢, S) with the bi-algebra conditions above and furthermore :

mo(S®I)oA(z)=mo(I®S5)oA(z) =ioe(z) (2.28)

which relate all elements of the set. The antipode can be thought of as a co-inverse.
We can verify (2.28) on the example of Uy(s¢(2)). Using (2.7) for A and (2.11)
for S we first get
mo(S®I)oAlex)=mo(S®@I)o(ex®@k+k ' ®ex)
=mo(S(ex)®k+S(k7!)® ex)

=mo(—qgtles @k + k@ ex) @)
= —qileik + kes .
Similarly, we obtain
mo(I®S)oA(es) = exk™! —k 1gley (2.30)
Using now Eq. (2.10) and (2.23) for € and i, we get
ioe(ex)=0. (2.31)

With the help of the commutation relations (2.5) we find the equality of (2.29), (2.30)
and (2.31).

Notice that we could have used (2.29) and (2.31) to calculate S from A, m, i and
¢, and use (2.30) to check the consistency of the Hopf algebra structure.

Finally, one defines the concept of guasi-triangular Hopf algebra to be a Hopf
algebra (A,m,i,A, ¢, S, R) with an R-matrix satisfying (2.14), i.e.
RA =A'R (2.32)
and [cf. (2.20)]
(A®I)R = Ri3Ry3
(I ® A)R = Ri3Ry2 (2.33)
(S®@NR=R1.
10

One can verify [25] that Uy(s£(2)) is indeed a quasi-triangular Hopf algebra.

Crucially, the Yang-Baxter equation (2.17) for R follows from the requirements
of quasi-triangularity, namely equations (2.32) and (2.33).

Quite often, a quasi-triangular Hopf algebra is referred to simply as a quantum

group.

2.3. U,(g) IN THE CHEVALLEY AND CARTAN-WEYL BASIS

Let us sketch the general procedure due to Drinfeld [15] and Jimbo [16] for -
deforming a semisimple Lie algebra g. It also applies to Kac-Moody algebras [28]

and, with some minor and obvious modifications, to superalgebras [28, 29].

2.3.1. Lie algebra ¢ In the Chevalley basis, one uses only the Cartan subalgebra
hyi,--+,hg, £ = rank of g, and the raising and lowering operators ey, -+, ey corre-
sponding to the simple roots a,- -+, ay. Nevertheless, the commutation relations in
the set (h;, e4;) must be supplemented by the so-called Serre relations which ensure
that g is semisimple [30]: this is the price to pay for using a small basis.

The main new ingredient is the Cartan matrix a;; which gives the scalar products
of the simple roots a;. For the simply-laced algebras Ay, Dy and Ep, the Cartan
matrix a;; i8 symmetric. This is not the case for the non-simply laced algebras
By, Cy, F4 and G. In the latter case it is convenient to introduce the symmetrized
Cartan matrix a;s;-.

The commutation relations for any semisimple Lie algebra or Kac~Moody algebra

with symmetrizable Cartan matrix [31] are, in the Chevalley basis,

(ki hi]=0
k- " (2.34)
[h,-,cij] = ia‘-jeij
le4i e—j] = 8ijhi (2.35)
where
i,j=1,---,{= rankof ¢ ey;=etq; (2.36)

Remark : One can write the commutation relations in terms of the non-symmetrized

Cartan by a simple rescaling of the generators.

11



Note that equations (2.34) and (2.35) define a semisimple Lie algebra iff the

following Serre relations are satisfied :
(adesi) "Her;=0 i#j (2.37)

where
(adz)y = zy — yz = [z, 9] (2.38)

and ¢;; is the non-symmetrized Cartan matrix.

2.3.2. An example: Cy

We shall illustrate the general procedure on the example of the simple algebra
By = 30(5) = sp(4) = Cy, which will be used for the quantum deformation of the

Poincaré algebra via contraction (see the Introduction and chapter 4).
The Lie algebra Cy has two simple roots aj, @y with lengths squared one and
two:

al=1, ad=2. (2.39)

The Cartan matrix is

iy = 2("*72"1) - (_21 —22) (2.40)

@

The notation (aj,a;) stands, as usual, for the scalar product of the simple roots.
The symmetrized Cartan matrix ig obtained from a;; by left multiplication with the
diagonal matrix D:

a;ssza,-j ; D:(g ?) (2.41)

S _ 1 -1 .
af = (ei,0;) = ayj = (_1 5 ) (2.42)
The Cartan subalgebra is hq, hy and the “simple” generators are ey, e42.
The Serre relations for C3 are the following:

(ad el)l_“”eg = (ad el)aeg = [e1, [e1]e1, €3]]

3

_86—32 2_ 3 _ (2.43)
=ejes ejesze; + dejege] —ege] =0

12

(ad eg)!~21e; = (ad )’ ey = [eglea, e1]] (2.44)

= e%el — 2egeyeg + ele% =0.

The Serre relations have a simple interpretation in the Cartan-Weyl basis where
one considers all the generators corresponding to the root diagram, and not only those
associated with simple roots. For Cy we have, in addition to k; and ey; (i = 1,2),
the four generators e3 and e4q corresponding to the remaining non-simple roots

+a3,+ay. From the root relations

azg=a;tay
(‘2.45)
ag =ay + a3
one defines the associated generators
e3 = [e1, €3]
(2.46)
es = [e1, €3] .
The important observation is that a; + a4 and ag + a3 are not roots, hence
[e1,e4] =0
(2.47)
e3,e2] = 0

which are precisely the Serre relations (2.43) and (2.44), as the reader will check with
the help of (2.46).

2.3.3. The quantum group U,(q)

We now come to the g—deformation of g 4 la Drinfeld-Jimbo. The scheme is a
simple generalization of Uy(s£(2)).

The commutation relations (2.34) are unchanged :

[h,;, hj] =0
s (2.48)
[h,;, eij] = iaijeij = iaijed:j .
Defining k; = q%h‘ these relation can be rewritten as
kik; = kik;
e (2.49)

-] Llag;
kied:jki = q:tZn Tet;

13



On the other hand, the commutators (2.35) between raising and lowering opera-

tors do change, and they become

[ei,e—;] = &;[Rilg . (2.50)

The technical problem is now to g-deform the Serre relations. Recall that in the
limit ¢ = 1, that is for classical g, we used the adjoint representation in equations
(2.37) and (2.38). So we should try to g-deform the adjoint operator ad. The
main property we want to maintain is associativity. The following definitions, rather
involved, do the trick [17,32,33]:

ad*(z) & (my @ mg) 0 (1 ® 5) 0 A(=)

- e (2.51)
ad™(z) = (mg®@mpg)o(S®I)oA(z).
Here, the left and right multiplications mj, resp. mp are given by
(mp®mpg)o(z®y)(z) - zzy . (2.52)

In general, the co-product A is a sum of terms, as in equations (2.6) and (2.7)
for the simplest case of Uy(s{(2)), which can be formally written as

Az) = Z z, @z =z, Q@z". (2.53)
u

Using (2.52) and (2.53), ad*z applied on y gives

((mz ® mp)(I ® S)A(2))(y) = (mg @ mp)(z4 ® S(z*))(y) = z,yS(z") (2.54)

Hence
(ad¥z)(y) = 2,y S(=*) (2.55)
(sd72)(y) = S(zu)y=* .
Associativity of ad® is defined by
ad¥zy)(z) = (ad™z)((ad™y)(z
(ad7zy)(z) = (ad¥z)((ad " y)(2)) (2.56)

(ad™zy)(2) = (ad”y)((ad™2)(2))
14

from which follows the representation property :

(ad*[z,3])(2) = £{(ad™z)((ad¥y)(2)) — (ad*y)((ad™2)(2))} - (2.57)
The proof of the associativity of the adjoint goes as follows :

(ad*zy)(z) = (my, @ mg) o (I ® S) 0 A(zy)(2)
Azy) = A(z) 0o Ay) = (zu @ 2*) 0 (1o ® Y”) = 2y @ 2'y”

(I @ 5)A(zy) = zuyy ® S(z"y") = zuys ® S(¥”)5(2") (2.58)
(ad*zy)(z) = zuu25(y")S(2*) = zu(adTy)(2)S(2¥) =
= (ad*z)((adTy)(2)) -

Clearly, in order to compute the adjoint action we need the explicit forms of the
co-product and the antipode. For g semisimple, in the Chevalley basis, the co-product
A of Uy(g) is very similar to the A of Uy (s£(2)) :

AR)=h;®@T+1®hk;

Alk;))=k; ® k; (2.59)
Alesi) =exi @ ki + k7' ®ex; .
The co-unit is again

e(h;) =¢e(ex;) =0
(hi) = e(ex) (2:60)

e(k;))=¢(I)=1.
The relation mo (S ®I)oA(z) = mo (I ® S)o A(z) = ioe(z) gives for the antipode

S:
S(hi) = —h;

=i (2.61)
ot 1,..
S(exs) = —kieik ! = —gFi%iey; .

We now have all the ingredients to calculate ad®. Using (2.55), (2.59) and (2.61)

we get

(ad®h;)(y) = [hs, vl

(ad+ci1-)(y) = (e:!:i!l = k;lykicii)ki—l (2.62)
(ad™ex:)() = ki(yesi — exik yk;) .
15



Let us specialize (2.62) to y = ex;:

(adtess)(es;) = (exiex; — q;%aijeijeii)ki_l

(ad¥ exi)(ex;) = (exiexj — 1 exjeni k]! (2.63)

(ad™egs)(ex;) = Kilewjesi — 47 esien;) .
In order to get the g-Serre relations, we could try to replace in Eq. (2.37) ad by
ad®. It turns out that the factors k; and k;l in (2.62) complicate matters. We
can eliminate them by a change of variables which leaves the algebra untouched but

modifies the co-product and the antipode :

B e

B ke, (264)

o9,

Hence, from (2.49) and (2.50) we get

kiBajky! = gF3% By

(2.65)
[E;, E_j] = &;[Hilq

which have the same structure as the commutation relations (2.49) and (2.50) for e;.

The generators E4; are the natural ones in the contour representation of quantum
groups [3,4].
From (2.59) and (2.61) we obtain

A(E) =E®I+k*QE;
A(E_;)=E_;® k? +I®E_;

2.66
S(Ei) = —KE; (2:59)
S(E_;)=—E_jk7%.
From (2.53), (2.55) and (2.66) we calculate
(ad*E;)(Ey;j) = EiEx; — T *¥E4;E; = [E;, E4jly (2.67)

(ad"E_j((Es;j) = ExjE_i — (T E_iEyj = [Eyj, E_ily

where ¢/ = ¢*!. The right-hand side is called a g-commutator.
16

Thanks to the above change of basis, one can write the g-Serre relations in the

simple form

(ad* Ex;)1™%i(Eg) =0 i#j (2.68)

For conciseness, from now on we display the explicit expressions only for ad™; it is
left as an exerciser for the reader to carry on with ad™. For actual computations, the

following iterative formula is useful:
(ad ¥ E)PHY(Ey) = Ei(ad*(Ea)P(B;) — g~ P (ad*(E:))P(E;) B (2.69)
so that, for instance,

(ad* E))2(E;) = (EilE;, Ejlqlq =

o (2.70)
= Ej[E;, Ejlg — ¢~ *q” *[E;, EjoBs .
To establish these formulae, we use (2.55),(2.66) and (2.67) to find
(ad¥ E.)(E; Et) = Ei(E;Ex) — g g **(E; Ex)E; . (2m)
Notice that this can also be written :
(ad* B;)(E; Ey) = (ad ™t E;)(E))Ey + g% E;(ad™ E;)(Ey) . (2.12)

Hence, adt can be considered as a g—derivation obeying a g-Leibniz rule [34, 35].

For the simple Lie algebra Cy we have seen [recall equations (2.40) and (2.42)]

2 -2 S 1 -1 .
Hence, the g-Serre relations for Uy(C3) are, using (2.67) to (2.70) :

E%El —(q+ q_l)EzElEz + E1E12 =0

(‘2.74)
E}E; — (q+ 1+ ¢ ')WE?E,E, - E\ERE?) — ERE} =0

which reduce to (2.43) and (2.44) for ¢ = 1.

Notice that the g-Serre relations are invariant under q¢ « g~ 1.

true for the whole algebra (see Eq. (2.65) and also (2.48) to (2.50)), but not for the
co-algebra.

The same is
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2.3.4. Cartan-Weyl basis

As was the case for ¢ = 1, the Serre relations have a much simpler interpretation
in the Cartan-Weyl basis. This is defined in a similar way for ¢ = 1 and ¢ # 1,
replacing the operator ad by ad®. But since g enters in a non-symmetric way into
the definition of ad¥, it is necessary to order the positive (negative) roots in a specific
way (36, 28]. Namely :

o Definition 1 : The system A of positive roots is in normal-order if each non-
simple root ¥ = a + B € A4, where a # A3, a,f € A4, is written between a
and 8.

The g-analog of the Cartan-Weyl basis is constructed using the following induc-
tive algorithm [37].

¢ Definition 2 : Fix some normal ordering in A4. Let a,8,7 € A4 be pairwise

non-collinear roots, such that 4 = a+ . Suppose, moreover, that between a and

B (in the normal ordering at hand) there are no other roots a' and 3’ such that

d+p =7
Then, if Ex+o and Eg have already been constructed, we set (cf. (2.82))

E,= [Ea,Eﬁ]q y Ey= [E_p,E_q]q-x (2.75)

and we get the commutation relations

[hi, By] = (ai,7)Ey
[By, E—] = aq[Hy]q

(2.76)
Hy = Ha + Hg

where a is a function of g. We say that e < B if a is located to the left of 8 in the
normal-ordered A .

Now the g-Serre relations are equivalent to the statement that, if « + 8 is not a
root, the g—commutator (2.82) is zero :

[Ea,Eﬂ]q=0 , a+BeAL , a<f. (2.77)
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To complete the Cartan-Weyl basis in the co-algebra sector, one uses the homo-

morphism and antihomomorphism properties applied to (2.75) :
A(zy) = A(z)A(y)
e(zy) = e(2)e(y) (2.78)
S(zy) = S(v)5(=) -

The diligent reader will check that

mo(S®IoA=mo(I®S)ocA=ioe (2.79)

2.3.5. The example of C

As an example, consider again U;(C3). Choose the normal order : ay, ay4, a3,

ap where ag = ay + a3, a3 = aj + a3.

First define, according to (2.67) and (2.75),

def -
E3 S By, Ej)g = E1Ey — ¢ ®2EyEy = E1Ep — qEo By

o (2.80)
E4 = [Ey,E3)q = EyE3 — ¢ "R E3 By = [Ey, B3]

recalling that a;; = (o, a;).
Then, since a; + a4, ag + a3, a3 + ag are not roots :
[E1, Eqlq = [Eq[E1, [Eq, Ealglglg =0
(s, E3lg = 0 (2.81)
[E3, Ealq = [[E1, Ealg, Ealq = [E2,[E2, Eillglg = 0 .

these are the same equations as (2.74), (the second equation is a consequence), where

the g-commutator is defined by

[Ea, Eglg = EaEg — ¢ @A) EgE, . (2.82)

Similarly,
E_3= [E—zs E—l]q‘l

(2.83)
E_4=[E_3,E_1]j
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and

[E_3, E_3]g-1 = [BE_3, E_4]g-1 = [E_g, E_1]g-1 = 0. (2.84)
It turns out that it is possible to obtain the g-Serre relations and the Cartan—

Weyl basis in terms of the generators e; substituting E; by e; in the equations (2.74)
to (2.84). The reader is invited to verify this.

3. Real forms

3.1. DEFINITION OF REAL FORMS

The simple Lie algebra s{(2) is generated by h and ei. It is a vector space
over complex numbers. In physics one is often interested in the spin operators S;(i =
1,2, 3) which are hermitean (St = S) and generate the unitary representations (finite
rotations) U = exp(iS). In order to get S; in the framework of s{(2), one should first
define the hermitean conjugation + acting on the generators of s{(2) and then find
the complex linear combinations of k,e4+ which are hermitean. The result is called
a real form of s{(2) [38]. A real form is a vector space over real numbers. (The
representation matrices may be, however, complex). There are different choices of
conjugations, and therefore different real forms. One of them is compact (su(2) or
30(3) in our example) the others are non-compact (su(1,1) or so(2,1) or s{(2,R)).
The numbers inside the parentheses ( , ) refer to the signature of the metric.

The situation is similar for the g—deformation Ug(g), with the difference that some
real forms which are equivalent for g, are not 8o for Uy(g). For example Uy(su(1,1)) #
Uq(s¢(2,R)), as shown below. This is due to the fact that the co-product A now
contains the complex number g. Two main choices are possible : ¢ € R or |g| = 1.
(The choice g € iR is not essentially new [39]). We shall show that Up(su(1,1))
corresponds to g € R, whereas Uy(s£(2,R)) corresponds to |g| = 1.

We define the conjugation + as a morphism of the algebra, by its action on the

generators z, y, etc., which satisfies
(i) It is an involution:
(zH)t=1. (31)
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(i1) It leaves the commutation relations invariant.
(iii) It iz an (anti) involution:
(2y)" =yt (3.2)
like the hermitean conjugation and is called standard.

One can also define a non-standard conjugation * by

(i1i")

(zy)* =z"y* (3.3)
This is like the ordinary complex conjugation.

{(iv) It acts like a complex conjugation on the number field of the Lie algebra, resp.

enveloping algebra vector space.
For Uy(g) one requires in addition for the co-product the following

(v) Standard conjugation
Alz)t = AT . (3.4)

(v’) Non-standard conjugation

Az)® = A'(29) . (3.5)

The choices (iii), (iii’) and (v), (v") allow four possibilities [40,41,42]. The action
on the antipode S is then fixed, namely :

(zy)t =ytzt ; A=A ; (So4)?=1 (3.6)
(zy)* = z*y* Alz)* = Al(z*) (Sox2=1

(z1)° =9%2%2  A(2)®2=24(z%) So®=00S$ 3.7)
(zy)® = 22y®  A(2)®=A(z®) Sce=—e05.

The conjugation (3.6) will be called standard, the others, non-standard.

The standard involution + is used by [13,14,39] and in the second version of
quantum Poincaré [9]. Non-standard conjugations @ are natural in conformal field
theory when g is a root of unity [43, 44, 45|, and they were also used in the first version
of quantum Poincaré [8,46].
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3.2. STANDARD REAL FORMS OF s{(2) AND Ug(s{(2))

Recall the commutation relations (2.2) of Uy(s£(2)) :

[hy Ci] = 2et
h —h
7' —q (3.8)
€4, 6| = hl, = ————— .
[e+ ] [hlq g— q_l
For the standard involution +,
[z, 9]t = —[z*,97]. (3.9)

Therefore, the following conjugations leave (3.8) invariant, for g =1 and ¢ # 1
I
At =h=(ex)t =dex , A==1 (3.10)

At = —h=(ex)t =cex, e=-1 (3.11)

1. which does not

whereas £ = +1 gives nothing new. For || = 1, we get ¢* = ¢~

affect [h]q.

It is elementary to find the linear combinations y which are antihermitean, such
that U = exp(y) is unitary.

Next, we shall give the action of the conjugation on the generators ey; and h;,
and we shall display the antihermitean generators y;. We shall also compute the
quadratic Casimir Cg in the limit ¢ = 1, from which we shall derive the signature of
the metric, and thereby deduce whether the real form is compact or non-compact. In
this way we get [47] the three real forms of Uy(s£(2)):

I
At =h; (ex)t =g (3-12)

i 1 1
n=—3(e+te);m=5(er—e)i =3k (3.13)
e o
[y1,92] = 5[—21%]11
[y, 93] =m (3.14)

[y3, 31] = w2
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Since we define the signature of the metric according to the form the quadratic
Casimir takes in the limit ¢ — 1, and in this case, Cy = y% + y§ + yg is invariant
for ¢ = 1 (remember [z]q = z for ¢ = 1), we say that the metric in case Iy is
(+++), and it follows that all the generators are compact. For ¢ € R the algebra

18 Ug(su(2)) = Uq(s0(3)) (see equ. (3.22)).
I,
Rt =h ; (ex)t = —ex (3.15)

v=gler+e)im= (e —e)s v =3h (3.16)
T
[v1, 2] = 5[-2imsle

[y2, 93]l = —m
3, u1] = —92 .

(3.17)

The invariant for ¢ = 1 is —-y? - yg + yg, with metric (— — +), the algebra is
non-compact. It is called, for ¢ € R, Uy(su(1,1)).
11
Wt =-h ; (ex)T=—ex (3.18)

m=glerte), m=gles—e); vy =3h. (3.19)
All the coefficients are real. The algebra is called Uy(s£(2,IR)) and [g] = 1 (see
equ. (3.23))
1,31 = — 523l
[v2,33] = -1
[va, 91l =2 .

(3.20)

The invariant for g = 1 is —y? + yg - yg, the metric is thus (— + —), and the

algebra is non-compact.

In the three situations above, the numbering of the generators is arbitrary, there-
fore s£(2,R) is equivalent to su(1,1). But for g # 1, the co-product will distinguish
between the two real forms. Actually, even for ¢ = 1, there is a slight difference
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between cases I; and II, namely in the former y3 is compact, and y; and y3 non-
compact whereas in the latter y2 is compact [20,48]. Consider the standard action
on the co-product, where we require A(z)* = A(z™). Since

Alex)=ex @qM2 + g 2ges (3.21)

there are, again, two cases
I
ht=h=>g€eR (3.22)

11
At =-h=|g|=1 (3.23)

This shows that Ug(su(1,1)) # Ug(s£(2,R)) for g # 1.

The choices (3.22) and (3.23) describe standard real Hopf algebras. The Hopf
algebras with reality conditions using non standard involutions (see (3.7)) define

non standard real Hopf algebras.

3.3. STANDARD REAL FORMS FOR U,(q)

For g semisimple, the general discussion in the Chevalley basis has been given by
Twietmeyer [39]. Dobrev [20] gives a canonical procedure in the Cartan-Weyl basis,
with emphasis on the (non)-compactness of the real forms.lt is different from the one

followed by [39]. One may check if he gets standard real forms in all cases.

The features are very similar to Ug(s£(2)), with the additional freedom of choosing
an involutive automorphism 7 of the Dynkin diagram D. For example for A3 = su(3),
one can interchange the two simple roots, i.e. (1) = 2, n(2) = 1. For A3 = su(4),
n(1) = 3, n(2) = 2, n(3) = 1. For Dy = s0(8), three roots can be interchanged
(triality). For By and Cy there is no such symmetry.

The result is the following, in the Chevalley basis [39]. There are two main
categories of real forms

I
q €ER ) hj’ = h’?(i) H eL = /\ie;n(i) (3.24)
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where 7 € Aut(D), n° =1, \; = 1 for (i) # 1, \; = 1 for 5(i) = i.
II
lal=1; h,-" = *hq(i) i EL = —Cun(i) (3.25)
where 1 € Aut(D), n? = I for g not a root of unity, whereas if q is an £-th root
of unity, then 7 is allowed to be a permutation of the Dynkin diagram (provided
{ divides a;; — Aniynli) for all 7 and j).
A third possible case, with ¢ € /—1[R, is essentially equivalent to I [39].

For more details on the special role played by the non-equivalent Cartan subalge-
bras see [39,48] and [20]. The latter classifies the (non-) compact Cartan generators.

3.4. REAL FORMS OF Ug(so(5, C)) = Uy(Cs)

We shall need these real forms for the discussion of quantum Poincaré. We shall
also consider non-standard conjugations and state which metrics one obtains. For
details see [40,9, 49].

There are again two standard forms, for which

(zy)t =ytz*

A(z)T = A(zT) (3.26)
(So+Y=1
In the Chevalley basis :
I
gelR; hj‘:hi; eL:Age;i; Aj==£1. (3.27)

For different values of A; one gets the metrics related to Ug(so(5)), Ug(s0(4,1))
and Uy(s0(3,2)). The last one will be contracted to quantum Poincaré (see chap-
ter 4 where the hermitean linear combinations are explicitly given). This conju-
gation leads outside the Cartan-Weyl basis [40,9, 49] but of course inside Ug(g).

II
lgl =1; hf =-h;; ef; = diexs . (3.28)
Whatever values A\; = *1 are chosen, one always gets Ug(s0(3,2)). This conju-
gation can be extended to the Cartan-Weyl basis.
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We now list three non-standard conjugations which can all be extended to the
Cartan-Weyl basis. For notations see paragraph (3.1)

a)

qER; Al =—h;; €}; = hiex (3.29)
b)

|q| =1; h;e =M ;eg‘ = A;e;F,- (3.30)
<)

qER; h,—‘ = Min c;.- =.Xiesi » (3.31)

It turns out that if one plays with the different values A\; = +1 one gets the same
three metrics in cases (a) and (b) as in I. The common features of these conjugations
is to interchange raising and lowering operators. In cases (c) and II one only gets
Uq(30(3,2)). Case (b) was used in [8](see also [45,46]).

4. Deformation of the Poincaré algebra

We now want to give a physically interesting non-trivial example of a deformation
of a non-semisimple Lie algebra, the Poincaré (inhomogeneous Lorentz) algebra. The
procedure was announced in chapter 1. We recall the main steps :

1) g-deformation of so(5, C), following Drinfeld-Jimbo.
2) Cartan Weyl-basis.

3) Choice of the real form Uy(s0(3, 2)).

4) Choice of physical generators My p.

5) Contraction. v

6) Proof that we obtained a Hopf algebra.

7) Casimir operators and representations.

The contraction procedure will force us to replace the dimension-less deformation
parameter ¢ by the parameter x, with the dimension of an energy. Physically this

will imply that Lorentz invariance is broken. Rotation and translation invariance will
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be maintained at the algebra level, however the co-product for space translations will
be non-trivial.

For a fixed value of k, the amount of Poincaré invariance breaking will increase
with energy. A new x—Poincaré invariance will emerge. For k — oo, the usual

relativistic (classical) invariance is restored.

A realization of x—Poincaré with derivatives acting on a space-time with commu-
tative co-ordinates will be given. The energy—dependent breaking of Lorentz invari-
ance manifests itself in the appearance of finite-difference time operators. Finite x-
Lorentz boosts are given by elliptic, instead of hyperbolic, functions. The x—deformed
Klein-Gordon and Dirac equations will be displayed.

4.1. ¢-DEFORMATION OF so(5, C)

We start from the commutation relations (2.49),(2.50) for Uy(so(5, C)) in the
Chevalley basis, with (i, j) = (1,2):
kicijk‘-_l = qi%aijeij
[eise—j] = &ij[hilq -

(41)

where k; = qih“. The Cartan matrix a;; and its symmetrized form a;; = (o, a;),
i.e. the scalar product of simple roots, are given by

= -1
a5 = (_21 22) e i (_11 2 ) : (4.2)
The non-trivial co-product A and the antipode S are (see Eqs. (2.59) and (2.61)

Alesi) = exi @ ki + k' @ex;

ol (4.3)
Sexi)=—q 7 ex;
It turns out that the Cartan-Weyl basis can be defined as in (2.80) by
def —ayz
e3 = [e1,e3]g = erez — g “eze; = ejez — gege; (4.4)
def —ii3 :
eq = [eg,e3]g = e1e3 — ¢~ “eze = [eg, €3]
and
e_3 o le—2,e—1lg-1 = e_ge_1 — g te_je_3
s (4.5)

def
eeq = [e_3 e 1)g-1 = [e—3, 6]
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Notice the opposite normal order for the lowering operators.

The g-Serre relations are given by the analogue of (2.81) by
le1, 4] = [e3, e2]lg = 0 (4.6)

which agrees with (2.74) using the definitions (2.64).
Similarly.

le—2,e_3]g-1 = [e—3,e_4];-1 =0 (4.7)

4.2. REAL FORMS OF U.(s0o(5, C))

There are different real forms which can, a priori, be contracted to Poincaré.
One needs at least one Minkowski metric, which still leaves the choice of s0(3,2) or
s0(4,1). Furthermore, one can permute the + and — signs in the metric, for example
(+ ———+4)or (— —+ —+). For g =1, these permutations give essentially the same

result, except for some subtleties [48].

For q # 1 this is not the case. Indeed, the Cartan subalgebra generators k; play
a special role since they have undeformed commutation relations and furthermore
enter in the definition of the co-product. The relation between Cartan subalgebra
and physical generators will depend on a given permutation. In (8, 9] we imposed the
requirement that the rotation subalgebra so(3) and its co-product remain undeformed
after contraction. This is satisfied by the choice of the real form s0(3, 2) with signature
(+ — = — +), and the selection of hj and eL; for the generators of space rotations
20(3), as will be shown below.

There are still several possibilities for obtaining this real form [40,49]. In [8] and
[9] we chose the hermitean conjugation +, which is standard in the algebra sector.
In [8] we chose |g| = 1, which is non-standard in the co-algebra sector, while the
conjugate generators remained inside the Cartan-Weyl basis. More explicitly, we

chose
=1 ; AP =h;i=12;

cie =€x1 } c? =—e_3 (4.8)
e;e =—e_3 ; c;e =—e_4
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In [9] we chose ¢ € R, which is standard in both sectors, i.e.

geR ; hf=h;,i=1,2
ef=ey i ef=-ey (4.9)
ef=qé3 ; ef=-géi4
the generators é; being outside the Cartan-Weyl basis for ¢ # 1
&3 = ege; —gereg i & = [E3,€1)

o (4.10)

é_3=e_je_3—q e_ge_]; é_4=[e—1,E-3]

Notice that (4.8) and (4.9) agree in the Chevalley basis, but not in the Cartan-Weyl

basis, because ¢* distinguishes the two conjugations.

In these lectures we shall pursue only the choice of a standard real Hopf algebra
(4.9), which satisfies all the stringent physical requirements.

4.3. PHYSICAL GENERATORS AND CONTRACTION

We want to express the physical generators My p of Ug(s0(3,2)) in terms of the
Cartan-Weyl generators h, e of Uy(so(5, C)), where

Map=-Mpy=M}y: ALB=0,...,4 (4.11)
and the metric tensor
gap = diag (+———+). (4.12)
For ¢ = 1, there are two Lorentz subalgebras (see Eq. (1.2)).

The Cartan generators hy and hy commute, which allows for a certain freedom
of choice. The choice hy = Mj2 and hy = M34 would be a good candidate for a
g-deformation of the Lorentz algebra (without contraction) [50,3,51,52,20]. For the
deformation of the Poincaré algebra (with contraction), the following choice [9] (q

real) satisfies the Jacobi identities and the standard reality condition (4.9) :

space rotations :

My =Mp=nmn
1

My = My3 = E(el +e-1) (4.13)
—1

My = My = —\/-2-(61 —ej}
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boosts :
1 -
Ly =My= 5(84 —qé_g—ez+e_p)
—1
Ly = My = ?(eg +qé_g+ey+e_s) (4.14)
1 i i
Ly =My =—-——(qg"%e3+q2qé_
3= May ﬁ(q 3+q3gé_3)
translations :

RPy = Mog = h3 = hy + hy
1 N
RPy = Moy = —5(—e4 — g4 +ez + e—3)

1 N 4.15
RPy = Moz = 5(e4 — g4 + €3~ e_3) (4.15)

RPy = Moz = —Ti(q-%ea ~ q3gé_3)

For g = 1, the operators M;,i = 1, 2,3 generate rotations and L; generate Lorentz

boosts. In view of the contraction we have introduced the notation (Py = Py)

RPy=Moy, p=1,--,4 (4.16)

Contraction means R — oo, so that the P,’s become the translation operators,
since for ¢ = 1 this limit corresponds to the Poincaré algebra (see Eq. (1.6)).

However, for ¢ # 1, we run into trouble with the co-product. For example

Aleg) =e20¢3™ + g M @ ey

4.17
— ey @ i (RPo—h) | ~}(RP-h) g o, (4.17)

In the limit R — 0o, A(eg), and therefore A(Lj), become infinite. The same problem
arose when the Firenze group [18] tried to obtain the g-deformation of the Euclidean
algebra E(3) from the contraction of Uy(s(2)) ® Ug(s(2)). We follow their solution
to the conundrum and put
q= e (4.18)
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where x is a new parameter with the dimension of an inverse length, i.e. an energy
(in the usual units with A = ¢ = 1).

We now get, for R — o0
by = ed ; gM=erk o1, (4.19)

From this follows that the rotation subalgebra (4.13) is not deformed. The physical
relevance of this result deserves some comment: usual intuition would immediately
throw out any deformation of the Poincaré algebra which blew off the local spatial
isotropy. The x-deformation we propose preserves the sacrosanct three-dimensional
spatial rotational symmetry but distinguishes the dimension of time, so that the

boosts are not what Lorentz imagined.

4.4. k-POINCARE ALGEBRA

The procedure is now obvious. Use the commutation relations (4.1), (4.4) to
(4.7), to calculate the x—Poincaré algebra with the help of the definitions (4.13) to
(4.15) and the contraction (4.16), (4.18) and (4.19), taking the limit R — oo.

The commutation relations simplify considerably with the following non linear
change of variables for the deformed boosts :

1 1
Ny=1L- 4—KP2 = K(MzPa + P3My)

|
Ny =L+ LPI + —(MP3 + P3My)
T ¥ (4.20)
N3y =L3+ 2_nP3 - G(Mlpz + PaMy — Mo Py — Py M)

1 1
=Ly + 5 Py — 5 (PaMy — MyPy)
A similar change of variables was proposed by Giller et al. [53] in order to simplify
the x-Poincaré algebra of (8].
The x—Poincaré algebra finally reads most appeallingly as [9]
[M,‘,MJ'] = i‘ijl:Mk i,k =1,2,3
[M;, Pj] = iejjp Pi
[M;, Po] = 0
[Py, P))=0 p,v=0,---,3

(4.21)

31



the rotation and translation algebra is not deformed.
[M;, N;] = ieje Nk
[Po, N¢] = —iP,
e )] = gy 20 {4.22)
K
. Py 1 P
[Ni, Nj] = —ieije(Mp cosh— — mPh(PM))
the boosts are deformed.

The usual Jacobi identities and the standard reality conditions are satisfied. For

K — oo one recovers the usual Poincaré algebra.

One verifies that the x—deformation of the quadratic Casimir, describing the

quantum relativistic mass equare operator is

C1 = 2x%(cosh L 1)- P2 - p} - P}
K

4.23)
_ P 5 (
= (25 sinh 2n) P
Expanding in power of El, one gets
= 1
Cr=-P+ P+ —5 P+ 0(x7*) (4.24)
12k

8o that the energy-momentum relation ie modified at high energy for fixed x. This
could be checked by experiment, or alternatively, it could be used to give a lower
experimental limit on x (see the conclusions).

The second Casimir can be obtained by introducing the k—deformed Pauli-Lubanski

four-vector

- —~

Wo=P-M
4.25
Wi = kM sinh ﬂ)' o C,'J'kPiN]‘ ( )
. K
so that
P P2
CZ = (COGh —"— = m)Wo -W (426)

commutes with everything in the algebra and it provides us with a good quantum
number. This curious expression can be obtained from the one given by Giller et

al. [53] for the non standard x -Poincaré algebra [8] by the replacement x — ix.
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4.5. k—POINCARE HOPF ALGEBRA

To get the co-product A, co-unit € and antipode S for the quantum Poincaré
algebra, we start from Ug(so(3,2)) and perform the contraction (4.19). Because of
(4.19) and (4.13), A, € and § are trivial for the rotation subalgebra

AM;)=M;@T+I®M;
e(M;)=0 (4.27)
S(M;) = —M;
The same is true for Py because, before the contraction, Py is proportional to the
Cartan generator h3 = hy + kg
A(P0)= Po®I+1®P,
e(Py) =0 (4.28)
S(Po) =P
From (4.15), (4.10), (4.3) to (4.5), it is clear that the co-product for P; is non-trivial.

After contraction one gets
Py P
A(P) = Pi® exp(3)) +exp(~5) ® P '
e(P) =0 (4.29)
S(P;)=—P;
The expressions for A, ¢ and S of the boost generators N follow from (4.20),
(4.14), (4.10), (4.3) to (4.5). After some algebra one gets, after contraction :
P P
A(N;) = N; ® exp(5 ) + exp( =) ® Ni+
1 Py Py
+ 5 Cik[Pj ® Mpexp(30) + exp(—52)M; © P
e(N;)=0
3i
S(N;) = —Ni+ -P;

(4.30)

The coproduct and the antipode satisfy the standard reality conditions (see Eq.
(3.6))

In order to prove that the x-Poincaré algebra is a Hopf algebra one has to show
that
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1) the co-product is co-associative and it is a homomorphism of the algebra as in
(2.27),
(AeA=(IQA)A

(4.31)
A(zy) = A(z)A(y)  Vz,y € x-Poincaré
2) The maps m,i,A, ¢, S satisfy (2.28) :
mo(S®I)oA(z)=mo(I®S)oA(z) =ioe(z) (4.32)

as wellas (I®c)oA=Tand (e®@I)oA=1.

Conditions (1) and (2) involve some algebra and have been checked both for the
sets of operators (M;, L;, P,) and (M;, N;, P,) (see Eqs (4.13), (4.14), (4.15) and
(4.20)). Hence the two versions of x~Poincaré algebras given in [8,9] are real Hopf
algebras, a standard one [9] and a non -standard one [8].

Up to now we did not find a universal R-matrix, so we cannot decide whether
the Hopf algebra is quasi-triangular or not. We have found, nevertheless, R-matrices

in the four- and five-dimensional representations of x~Poincaré[54].

4.6. REALIZATIONS OF x—POINCARE

The following realization of x~Poincaré using derivatives acting on a commutative
spacetime was proposed for spin zero systems by Zaugg [55] and also, independently,
by Giller et al. [53]; the latter also proposed for arbitrary spin s [56]:

> 100
Pu=-igm
M; = eijkszk +m; (4.33)

. . Po P 1
N; = zoP; — kz; nnh-—; + exp[q:ﬁ]n; + ﬂqﬂ,ijb
where (1, 71) i a standard finite-dimensional representation of the Lorentz algebra
[mi,mj] = ie;jpmy
[ni nj] = —ie;jpm, (4.34)
[mi,nj] = ie;jany
Acting on scalar fields ¢(Z,t) the x-deformed boosts N; are realized putting
mi=n;=0 [10]

Nif(3,8) = —izot§(@,2) +inzdeld t+ 1) — HE - D). (4.35)
Oz K K
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This introduces imaginary finite time-differences, which are the trademark for the

passage from trigonometric to elliptic functions.

From the Casimir operator Cq (4.23) and the realization (4.33) one deduces the
x~deformed Klein-Gordon equation

[A _ 22 (1 - %)] E 1) = [A = (min 2‘9—;) 2] H3,8) = ME(3,t) . (4.36)

where A is the Laplacian. This should be the starting point of a x-deformed field
theory with regularized Feynman propagators [9].

After setting P; = Pp = 0 it is possible [10] to integrate the equation

[N1, Po] = P3
4.37
[N;,P3]=nsinh% (g
with the Casimir operator
a2 fu PN 2 a2
Cl = 4K sinh —2; —Fr3 = Mo . (438)
For & — oo, we get the usual result, if we first define the initial value
P, = M cosh
o(m0) : o i)
P3(mo) = M sinhng
with
P3(n) - P§(n) = M (4.40)
and then use the addition formula for hyperbolic functions to get
Po(n) = Po(mo) cosh(n — mo) + Pa(no) sinh(n — no) (4.41)
P3(n) = Po(no) sinh(n — no) + P3(no) cosh(n — no)
For s-Poincaré, the rapidity relations (4.39) are replaced by
., Po
2xsinh B = My nc (ulm) (4.42)

P3 = My sc (ujm)
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with

2
%= l+ﬁr)o
4x2
M\
m=|1+—
4x2

and 7o the rapidity. In these expressions, nc(ujm) and sc(u|m) are Jacobi elliptic
functions [57]. As one should expect, (4.42) reduces to (4.39) when x — co.

(4.43)

The x-deformation of (4.41) is now obtained by using the addition formula for
elliptic functions [57, 10].

One can use the action of the operators (4.33) on 2s + 1 component Weyl spinor
fields and calculate their finite x-Lorentz transformation[10]. For s =1/2 one gets
the x-Dirac equation, which reads as follows [10]:

0 Py ‘pfj-) ‘p$+) ! 1
(pr_r} 0 ) (\I,ﬁ?)) — (‘1’1(-_) rr = ii (444)

pE = -1 [2:: sinh (J;—:) +P. &'] [coah (gg) + ).iﬁ . &'} (4.45)
K K

and ¥(%) are two—component Weyl spinors in momentum space.
This agrees with [58].

The s Dirac equation is therefore:

s B 1 5 Po\ 5. [ M2
(nsmh(To)+§P2)'yo+exp(2—:)P7—Mo 1+4_x02 ¥ =0 (4.46)

v0 and ¥ are the usual Dirac matrices. The reader is invited to check that the
four-component spinor ¥ satisfies the x-Klein-Gordon equation. Introducing the
electromagnetic field by the minimal substitution P, — P, — eAy one finds [10] that
the x—corrections to the fine structure of the energy levels of the hydrogen atom are

of order k=2, whereas the “classical” g-factor of the electron becomes
g=201+ -;5] +0(x72). (4.47)
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with m the mass of the electron. This value of course does not include radiative
corrections, but it signals the crucial modification of our usual space-time concepts
arising from a new version of relativistic invariance, in full agreement with the hamil-
tonian description of quantum field theory which clearly distinguishes between time

and space.

5. Conclusions

The mathematical theory of the g-deformation of semisimple Lie algebras is well
developed [15,16,50]. The deformed commutation relations in the Chevalley basis
look rather simple, the new feature being exponentials of the Cartan generators (see
Eq. (2.50)). They have to be supplemented by the highly non-linear g-Serre relations
((2.68),(2.74)), except for s{(2). These relations are best expressed in terms of the
g-adjoint operator whose general definition is rather involved ((2.51),(2.55)). The
more cumbersome Cartan—-Weyl basis allows a much simpler interpretation of the
g-Serre relations ((2.77)). This basis is also more convenient, although not always
sufficient, for defining a “physical” basis ((4.13)).

The deformed co-product is non symmetric ((2.59)). This of course has its influ-
ence on the tensor product of representations([25,2,35,59| and references therein).
The real forms of g—algebras follow a pattern similar to that of classical Lie algebras.
However, the reality of the co-product imposes new restrictions go that equivalent
Lie algebras differ by the allowed values of g once they get deformed (see end of
paragraph 3.2).

There exists up to now no general theory for the quantum deformation of non
semisimple Lie algebras. A certain number of examples have been given (see the
introduction). The deformation of inhomogeneous algebras (e.g. the semi-direct
product of rotations and translations) seems particularly interesting. Three main
directions are being explored. 1) Subalgebras of semisimple Lie algebras [20,21]. 2)
Differential calculus on noncommutative space [23]. 3) Contraction of semisimple Lie
algebras [18,8,9].

In these lectures we have followed this last track, in particular the quantum
deformation of the Poincaré algebra, obtained by contraction of the g—deformed
simple algebra s0(3,2)[(8,9]. The final expression is a rather simple example of a
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Hopf algebra ((4.21),(4.22),(4.27) to (4.30)). Abstracting some general features from
this result, taking also into account quantum E(3) [18], one may hope to find a
canonical way to quantise inhomogeneous Lie algebras without going through the
cumbersome procedure of compactification. We now list some features which could

have a more general signification.

One of the generators (Py) plays the role of a Cartan generator in the coproduct
((4.29),(4.30)). As a consequence, the deformation parameter ¢ is replaced by the
dimensionful parameter x ((4.19)) [18,8,9]. The rotation subalgebra remains classical
((4.21)(4.27)). The deformation of the boosts leads to new expressions for the two
Casimir operators ((4.23),(4.26)).

The algebra can be realized in terms of partial derivatives on a commuting man-
ifold, supplemented with finite—dimensional representations of the classical Lorentz
algebra for arbitrary spin ((4.33),(4.34)). We can apply these operators on a field
and thus easely get the x-Klein-Gordon equation ((4.36)). Because P, is in the
exponential one gets a finite time difference equation ((4.35)).

We have been able to integrate the deformed boosts for finite rapidities. The
usual hyperbolic functions are replaced by elliptic functions ((4.42)). It has also been
possible to give the explicit relation between Weyl wave functions at rest and Weyl
wave functions boosted to the momentum p, for any spin s [10]. This allows to obtain
the Wigner representations for the quantum Poincaré. One can also deduce the &
covariant Dirac equation ((4.44) to (4.46)).

An open problem is to formulate a field theory with interactions. Another in-
teresting topic are the mathematical and physical properties of finite time difference
equations. We have mainly worked in the momentum representation. The structure of
space-time compatible with quantum Poincaré invariance is not yet understood[10].

The physical applications of q-semisimple algebras are numerous, especially for
two-dimensional problems : integrable systems, conformal field theory, statistical
models.

The Poincaré, or inhomogeneous Lorentz invariance, is fundamental for physics.
It is worthwhile to compare the standard relativistic algebra with another consistent
invariance algebra, depending on a dimensionful parameter «, which has the Poincaré

invariance as a limiting case.
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The first item to compare is the quadratic Casimir operator Ci ((4.24)). From
x-Poincaré one gets a dispersion relation for light in vacuum and a modified relation
between energy and momentum for massive particles [60]. An amusing effect appears
if one calculates the modified classical partition function : one finds a limiting Hage-
dorn temperature proportional to x analogous to the one obtained in string theory
[54]. A more mondane piece of data is the measurement of the energy and velocity
of 15 to 20 GeV electrons and 4-rays at SLAC [61,62]. Taking into account the
experimental errors, one finds a lower limit for x of about 10% GeV. A more stringent
test, because the energies are much higher, comes from astrophysical data concerning
the detection time of 105 to 10% GeV « -rays from the pulsar in Hercules X—1. This
requires a value of x larger than at least 10'2 GeV [63,64].

Once a x-field theory with interactions is available, one may hope that the dimen-
sionful parameter x will serve as a natural cut-off. Further tests are then possible.
One may also speculate on the modification of space-time at the Planck mass. An
unsolved problem is the pertinence of a nonsymmetric coproduct. Further mathe-
matical work and new physical insight are needed. It is a meager consolation that
this difficulty does not arise in two—dimensional systems, because, (un)fortunately,

the real world has four dimensions.
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