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ABST RA CT : We give an elementary introduction to the Drinfeld-Jirnbo pro ­


cedure oft he quant um deformation Uq(g) of semisim ple Lie algebras g. The q­


Serre relations are discussed in some detail, in the Cheval ley and t he Cartan­


Weyl basis . We review the real forms of 9 and Uq(g ). The general procedure 


is illustrated by the examples Uq(sl(2)) and Uq(so(5, C)). After some gen ­


eral considerations on non- semisim ple Lie algebras, we discuss in detail the 


quantum deformation of the Poincare algebra, involving the cont raction of 


Vq(",o(3 ,2)). Some physical conseq uences of the resulting ~-Poincare Hopf 


cLlgt: bra are mentiont:d . 


To appear in the Proceedings of the XX III GIFT seminar Recent Problems ill Matll­
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i. 	Introduction 

Th~ aim of these lectures is to give an elementary introduction to 80m~ problems 

in "quant um groups" and "quantum algebrll.ll" . The!e term8 do not denote group8 and 

Lie algebrll.ll, but particular deformations of Lie groups and Lie algebrll.ll, and belong 

to the more general category of Hopf algebru . We shall 8p~ak of "q-deformation" 

Gq of a Lie group G and q-deformation Uq(q) of a Lie algebra g. The emphasi8 will 

be on the latter . 

We shall first d~8cribe the well e8tablished theory of q-deformation of 8emisimple 

Lie algebras, particularly .,1(2). Then we 8hall discu88 real forms of q-algebru. Fi­

nally, examples of the les8 well known quantum deformation of non-semisimple Li~ 

algebras will be given, e8p~cially the Poincare alg~bra. 

Quantum groups were first introduced in physics in two-dimensional integrable 

sY8tems and soon applied to conformal field theorie8 (8~ the lectures in these pro­

ceedings by L. Faddeev, C. Gomez, G. Si~rra , and reference8 [1,2,3, 4J). 

Another application of q-deformed algebras is to provide a new possibility of 

symmetry breaking. The fir8t example i8 the H~isenberg model of a one-dimensional 

metal, or X X X quantum spin chain , 801ved by Bethe. It is invariant under .,1(2), 

whereas the X X Z chain is only invariant under the classical U( I) but actually also 

under the quantum Uq(.,1(2)) [5,6,71. In the8e lecture8 we shall discus8 the possible 

breaking of Lorentz invariance at high energy by the quantum deformation of the 

Poincare algebra in 4 dimensions [8,9, W]. Although at present there i8 no exper­

imental evidence for such violation, it is intere!ting to get a "'figure of merit" of a 

theory by comparing it to another theory wi th similar powe~ of prediction, the latter 

being obtained by continuous deformation of the former. In addition, the corre8pond­

ing field theory could provide a new way of regularizing the quantum field theories 

of particle physics. Finally, i t is likely that space-time i8 drastically changed at the 

Planck mass [Ill . For other ~xamples 8ee the Firenze group [121. 

As mentioned above the q-deformation theory of semis jmpl~ Lie groupll G (Fad ­

dttv et a l.[IJ], Woronowicz [1 4]) and semisimple Lie alg~bras 9 (Drinfeld [15], Jimbo 

[161) is well established. They are special examples of Hopf algebras . We shall adopt 

the procedure giv~n by t he two las t authors. However, th~r~ is no such generalsch~m~ 

for non-semisimple Lie algebras . Exampl~ are known [1 7,18 ,19] and hop~fully t hey 

http:algebrll.ll
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will be helpful in finding their general features . In these lectures we shall discuss in 

detail the non-trivial example of t he quantum deformation of the Poincare algebra 

[8,9J. 

1.1. THREE METHODS TO DEFORM INHOMOGENEOUS LIE ALGEBRAS 

Most of the above examples are semidirect sums of a semi simple and an abelian 

algebra, such as rotations and translations in 3 dimensions = E(3) [18], the inhomo­

geneous Lorentz algebra = Poincare algebra [8,9], etc. There exist several methods 

to quantum deform these algebras : 

a) 	Contraction. One starts with a simple or semisimple Lie algebra, deforms it 

according to Drinfeld-Jimbo and rescales lome of the generators, which in the 

limit correspond to an abelian invariant translation algebra. It is then shown 

that the deformed E(3) [18J or Poincare [8,9] are Hopf algebras. 

b) Subalgebra. The simple algebra &0(4,2) contains the Weyl algebra, that is Poincare 

plus dilatations. A deformation of "0(4,2) yields a q-Weyl Hopf algebra [20,21]. 

Unfortunately, the deformation thus obtained of the Poincare algebra i1l not a 

Hopf algebra by itself, i.e. the subalgebra hierarchy is not preserved by the 

defonna tion. 

c) Non-commutative space [22]. As an example consider the q-deformed Lorentz 

algebra acting on a four-dimenaional Manin space. The differential operators in 

this q-geometry correspond to q-translations. In this way one gets q-Weyl as a 

Hopf algebra [23] . 

We shall discuss in detail only method (a) , the contraction. 

1.1.1. Classical contraction procedure 

Let as sketch the contraction procedure for getting Poincare in the classical case , 

that is for q = 1. 

Start with the complex simple algebra ,,0(5, e). It has the three real forms $0(5), 

.80(4, 1) and "0(3,2) corresponding respectively to the diagonal metrics (+ + + + 
+),( - + + + +) and (- + + + - ). The generators 

MAB = -MBA A,B = 0"",4 (1.1 ) 
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satisfy the commutation relations 

[MAB,MeD J = 9ADMBC + 9BCM AD - 9AC M BD - 9BD M AC ' (1.2) 

involving the metric tensor 

gAB = gBA 	 (1.3) 

with ±1 on the diagonal as above . The de Sitter and anti-<ie Sitter algebras ,,0(4,1) 

and &0(3,2) contain a Lorentz subalgebra with generators 

MJlV , JL, II =0"" ,3 . 	 {l .4) 

Putting 

MJl4 = RPJl 	 (1.5) 

and letting the "radius of the fifth dimension" R tend to infinity, R ----+ 00, it follows 

that 
1 

[PJl , Fv] = R2 [MJl4 , M v4] ----+ 0 
(1.6) 

[MlJv, PAJ = 9Jl'APv - 9v'A PIJ • 

which is the customary Poincare algebra. 

1.1.2. Quantum contraction 

The actual practical program for obtaining the q-deformation of Poincare can be 

summarized in the following six steps : 

1) For q = I, st art wi th the simple Lie algebra ,,0(5, e) and its 10 generators M AB . 

It is convenient to introdace right away some nomenclature . We shall see below 

the exact rela.tionship between the usual M AB a.nd t he generators hi, ej which we 

shall refer to as follows: 

hI, h2 Cartan basis 
hI , h2, e±be±2 Chevalley basis (1.7) 

hI. h2, e±t. e±2, e±3 , ~4 Cartan - Weyl basis 

2) To introduce the quantum deformation, q-deform .80(5, C) a la Drinfeld-Jimbo 

in the Chevalley basis to get Uq(,,0(5, e». Introduce the more cumbersome but 

necessary Cartan-Weyl basis. 
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3) 	Find the real form of Uq(,,0(5, e)) corresponding to Uq (-,0(3, 2» or Uq("o(4,1». 
(T he "real form'" is a fancy name for some specific linear combinations of the 

Cartan-Weyl generators with special properties under complex conjugation.) 

Calculate the (anti) hermitean "physical" generators MAB , which provide the 

unitary representation. 

4) 	Compute the q-deformation of ,,0(3,2) in the "physical" basis. 

5) 	Contract to get the quant um Poincare algebra. 

6) Check that quantum Poincare is indeed a Hopf algebra. 

1.2. 	PLAN OF THESE LECTURES 

The above introduction motivates the course. My main goal is to describe the 

above six steps. In order to do so, I will first introduce some notation and ba.sic 

formalism about quantum groups. Then I will develop the construction program 

applied to the de Sitter algebra and obtain the quantum Poincare Hopf algebra. 

T he reader is invited to check the a.ssertions pencil in hand to acquire the necessary 

technical skill in algebraic manipulations. At the end, our reward will be to explore 

some physical consequences of the quantum-deformed Poincare algebra. Accordingly, 

the lectures are organized a.s follows : 

. Drinfeld-Jimbo deformation in the Chevalley and Cartan- Weyl basis (ch apter 2). 

- Real forms of (q-deformed) lIemisimple Lie algebra.s (chapter 3). 

- quant um deformation of the Poincare algebra using contraction (chapter 4). 

- Physical elucubrations (chapter 5). 

2. g-Delormation of semisimple Lie algebras 

2.1. 	THE PARADIGMATIC QUANTUM GROUP UQ(81(2)) 

We st art with the q-deformation of 81(2), which ha.s already many of the essential 

features of the general ca.se. 

T he simple Lie algebra "/(2), t he symmetry algebra of spin ! systems, ha.s three 

generators with commut ation relationa 

[h, e±l = ±2e± 
(2.1)

[e+, e_J = h 
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We shall see further ahead (chapter 3) that by taking linear combinations of e+ and 

e_ one gets the two real forms "u(2) and su(1, 1), but for t he time being let us remain 

general and talk about 8(2). 

The q-deformation of ,,1(2) was proposed long ago [241i only the thi rd commuta· 

tion relation is changed : 

[h, e±1 = ±2e± 
(2.2) 

[e+, e-J = [hJq 

where the square bracket (wi t h a subindex q, often omitted) stands for the following 

q-deformation of any quantity (number or operator) 

[xJq =<t - q-~ 	 (2.3)
q- q ­

We understand the formal parameter q as a complex number . When q ---+ 1, [xl q ---+ x: 
the limit q ---+ 1 will often be referred to as classical, in the sense that there is no 

deformation whatsoever. 

Remarkably, in equation (2.2) all positive and negative powers of h appear . Hence 

(2 .2) does not define a Lie algebra in the purest sense, but rather the q-deformation 

of the universal enveloping algebra of sl(2). This q-deformation of U(sl( 2» is noted, 

not suprisingly, Uq (81(2». We shall see that it is necessary to include also powers 

of e+ and e_ , so that Uq ( ..1(2» contains all the for mal power series in h, e+ and e_ 

modulo (2.2) . 

It is useful to introduce 

k = qh/2 (2.4) 

and replace the first equation (2.2) by t he equivalent "commutation" relation 

ke±k-1 = q±le± . 	 (2.5) 

For most purposes it is enough to coruider only polynomials in k , k- 1, e+, e_ . 

The fundamental representation of s/(2) , corresponding to spin ~, is identical to 

the fundamental representation of Uq(sl(2» . One obtains higher spin states (where 

q- dependent terms will appear explici tly) through tensoring, so we must specify how 
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to introduce the tensor product of repr~entations. For "[(2), the generators act 

t rivially on one factor (like a derivative) : 

a(h) = h ® I + I ® h (2.6a) 

a(e±) = e± ® I + I ® e± (2.6b) 

This operation a, which tells us how to act with the generators of ,,1(2) on the teMor 

product of two repr~entations , ia called the co-product or co-multiplication, and I 

is the identity. The reader ia familiar with this co-product from quantum mechanics, 

where t he action of an angular momentum operator on a many-particle system ia the 

sum of ita actions on the one-particle atates. 

For k defined by (2.4). the operation (2.6a ) implies 

a(k) = k ® k 	 (2.6c) 

The ~product a must be a homomorphism of Lie algebras , meaning that it 

must preserve the commutation relations (2.1). Since the commutation relations of 

Uq(.9l(2» are different from those of ..1(2), we should expect that the co-product for 

Uq(sl(2» is also different from that for ,,1(2). This is indeed the case. For Uq(sl(2» , 

(2.6a ), or equivalently (2 .6c ), ia retained. but (2 .6b ) ia replaced by 

a(e±) =e± ® k + k-1 ® e±. 	 (2. 7) 

This co-product respects the commutation relations (2.2). i.e. it is a homomorphism 

of Uq(.9l(2»: 

a(ab) = a(a)a(b) Va , bE Uq(sl(2». (2.8) 

Perhaps the most noteworthy feature of the co-product a for a q-deformed alge­

bra Uq("L(2» ill that it is not symmetric, i.e. that t:l..(e±) acts non-symmetrically on 

the two factors . Formally, the co-product is a map 

a : Uq(sl(2» --+ Uq(sl(2» ® Uq(.ti(2». (2.9) 
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Motivated by the concept of Hopf algebra (see next paragraph) we define the 

co-unit map e : 
e: Uq --+ C 

e(ab) = e(a)e(b) Va, b E Uq($1(2» 

e(1)= 1 
(2.10)

e(k) = 1 


e(h) = 0 


e(e±) = 0 

and the antipode map 5 (which at the group level Gq is the q-deformation of the 

inverse) : 
5 : 	 Uq("1(2» --+ Uq($1(2» 

5(ab) = 5(b)5(a) Va, b E Uq (.9l(2» 

5(k) = k- t (2.ll) 

5(h) = -h 

5 (e±) = _q±le± . 

Because the co-product a ia not symmetric , one can define a lIecond co-product 

a' as it8 tranllpose 
a' = poa 

(2.12) 
P(a®b)= b®a a,bEUq 

Explicitly, a' of the generators of Uq(sl(2» reads as follows: 

a'(k) = k ® k 
(2.13)

a /(e±) = e± ® k-1 + k ®e± 

The two co-products a and a/ are related through a "similarity transformation" 

by the so-called R.matrix, R E Uq("[(2» ® Uq(sl(2» 

1R t:l..R- = a' 	 (2 .14) 

It is often useful to use the "braid-group k -matrix" which differs from the a.bove by 

a permuta.tion: 

R =PoR 
(2. 15) 

Rak-1 = a. 
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An explicit expre8sion for R can be given [25] in terms of e± and h (but not k) by 

1 (1 - q- 2t (n_n 2 ) n ..
R = qjh0h ~ q 2 qih(e+t ® q- l h(e_)n (2.16) 

L; [n]q!
n~O 

Thill universal R-matrix can be shown [25] to satisfy the famous Yang- Baxter equa­

tion, a key property of two-dimensional integrable models [1] 

R12R 13R 23 = R 23R 13R 12 	 (2 .17) 

or equivalently 

R12R23R 12 = R23 R 12R23 	 (2.18) 

where, if the general form of R is 

R= LZi®yi Zi,yi E Uq{&l(2)) (2.19) 

then the subindexed notation means 

R12 = L Zi ® yi ® I 

R13 = L Zi ® I ® yi (2.20) 
i 

R 23 = L I ® Zi ® yi 

Note that the indices i go up or down without any implication about a dual. 

2.2. HOPF ALGEBRA 

We now have all the ingredients necessary for defining the general concept of a 

Hopf algebra, of which Uq(sl(2» is a particular example. We shall do it in several 

steps [26,27]. 

Let A be an as80ciative algebra with unity I over C. This means that the product 

m: 	 Uq(sl{ 2» ® Uq (sl(2» -t Uq($l{2» 

(z, y) f-4 m(z , y) = zy 
(2.21 )

(z,1) f-4 z 

(I , y) f-4 Y 
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is aBsociative, 

(zy)z = z{yz) (2.22) 

A bi-algebra is a set of two algebras sharing t he same base !let : t he first algebra proper 

(A, m , i) with product m and unit i, the !lecond algebra or co-algebra (A,~, ~) with 

co-product ~ and co-unit ~, defined by : 

m :A®A -t A 

z ® y f-4 z y 
(2 .23) 

i:C-tA 

..\ f-4 ,,\1 

and 
~:A -t A® A 

Z f-4 L Zi ® zi 

(2 .24) 
~ :A -t C 

I f-4 1 

Again, the short-hand above does not mean that zi belongs to the dual of A. 

Just like the product m is taken to be associative, the co-product ~ i8 assumed 

to be co-associative, namely 

(~®1)~={I®~)~ 	 (2 .25) 

or more explicitly 

L ~(Zi) ® zi = L Zi ® ~(z i) (2.26) 

The co-product ~,and by extension the co-algebra (A , ~, ~), is called co-commutative 

if~=~/. 

T he two algebras are related if ~ and ~ are homomorphisms of the first algebra, 

that is of (A , m, i): 
~(zy ) = .6.{z)~(y) 


~(I) = I ® I 


~ (zy) = ~( z)t:{y) (2.27) 


{I®~)o~= I 

(t: ® I) 0 ~ = I . 
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In this case the algebra and co-algebra usemble into a bi-algebra (A ,m, i , .!l, e). 

A Hopf algebra is a bi-algebra with an antipode S, i. e. it is given by the set 

(A, m, i,.!l, e, S) with the bi-algebra conditions above and furthermore: 

m 0 (S ® J) 0 ~(z) = m 0 (1 ® S) 0 ~(z) = i 0 e{z) (2 .28) 

which relate all elements of the set. The antipode can be thought of as a co-inverse. 

We can verify (2.28) on the example of Uq(d(2» . Using (2.7) for .!l and (2.11) 
for S we first get 

m 0 (S ® 1) 0 ~(e± ) = m 0 (S ® I ) 0 (e± ® Ie +Ie-I ® e±) 

= m 0 (S(e±) ® Ie + S(Ie-1} ® e±) 
(2.29) 

;:: mo (- q±le± ® k + Ie ® e±) 

= - q=2:1e±k + lee± . 

Similarly, we obtain 

Tn 0 (1 ® S) 0 £\(e±) = e±1c- I - l:-Irle± (2.30) 

Using now Eq. (2.10) and (2.23) for e and i , we get 

i 0 e(e±) = 0 . (2.31) 

With the help of the commutation relations (2.5) we find the equality of (2.29), (2.30) 

and (2.31). 

Not ice that we could have used (2.29) and (2.31) to calculate S from £\, m, i and 

e, and use (2.30) to check the consistency of the Hopf algebra structure. 

Finally, one defines the concept of quasi-triangular Hopf algebra to be a Hopf 

algebra (A , m, i , ~,e, S, R) with an R-matrix satisfying (2. 14), i.e. 

M=~/R (2.32) 

and [ef. (2.20)] 

(£\ 01)R = R13~3 

{I ® £\ )R = R13 R12 (2.33) 

(S ® I)R = R-1 . 

10 

One can verify [25J that Uq("'l(2» is indeed a quasi-triangular Hopi algebra. 

Crucially, t he Yang-Baxter equation (2.17) for R follows from the requirements 

of quasi-t riangularity, namely equations (2.32) and (2.33). 

Quite often, a quasi-t riangular Hopf algebra is referred to simply as a quantum 

group. 

2. 3. Ug{q) IN T HE CH EVALLEY AND CARTAN-WEYL BASIS 

Let us sketch the general procedure due to Drinfeld [15] and Jimbo [16] for q­

deforming a semisimple Lie algebra g. It also applies to Kac-Moody algebras [28] 
and, with some minor and obvious modificat ions, to superalgebru [28, 29J . 

2.3.1 . Lie algebra. q In the Chevalley basis, one uses only the Cartan subalgebra 

h I, · ··, hI.> l = rank of g, and the raising and lowering operators e±l , ··· , e±i corre­

sponding to the simple roots a I ,' . . ,ai' Nevertheless, t he commutation relat ions in 

the set (hi, e±i) mlUt be supplemented by the so-called Serre relations which ensure 

that 9 is semisimple [30] : t his is the price to pay for using a small basis . 

The main new ingredient is the Cart an matrix aij which gives t he scalar products 

of the simple roots a i. For t he simply- laced algebras Al , Di and El , t he Cartan 

matrix aij is symmetric. This is not the case for the non-simply laced algebras 

Bl, Cl , F4 and G2 . In t he latter case it is convenient to introduce t he symmetrized 

Cartan matru
. 

ai
S
j ' 

The commutation relations for any semisimple Lie algebra or Kac- Moody algebra 

with symmetrizable Cartan matrix [31] are, in the Chevalley basis, 

[hi, hi] = 0 
(2.34) 

[hi, e±i] = ±aZe±i 

[e+i, e-i ] = bijhi (2.35) 

where 

i,j = 1,···,l = rank of 9 e± i == e±Q, (2.36) 

Remark: One can write the commutation relations in terms of the non-symmetrized 

Cartan by a simple rescaling of the generators . 
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Note that equatioIUI (2.34) and (2.35) define a semisimple Lie algebra iff the 

following Serre relatioJUI are sat isfied : 

(ad e±i)l-a; je±j = 0 i =I j 	 (2.37) 

where 

(adz)y = zy - yz = [z,y] (2.38) 

and aij is the non-symmetrized Cartan matrix. 

2.3.2. An exa.mple: C2 

We shall illustrate the general procedure on the example of the simple algebra 

B2 = "0(5) = "p( 4) = C2, which will be used for the quantum deformation of the 

Poincare algebra via contraction (see the Introduction and chapter 4). 

The Lie algebra C2 has two simple roots aI, a2 with lengths squared one and 

two: 

a~ = 1 a~ = 2. (2.39) 

The Cartan matrix is 

,, _ 	 2(ai,aj) _ (2 -2) (2.40)a1) - 2 - -1 2 
a·

1 

The notation (ai, aj) stands, as usual , for the scalar product of the simple roots . 

The symmetrized Cartan matrix is obtained from aij by left multiplication with the 

diagonal matrix D: 

a~ = Daij j D = ~ 	 (2.41)(3 ) 

aZ = (Cti,aj) == aij = (!1 --;1) (2.42) 

The Cartan subalgebra i8 hJ, 11.2 and the "simple" generators are e±l, e±2. 

T he Serre relation8 for Cz are the following: 

0 12 e2(adq )1 - = (adet}3e2 = tel, [elh,e2lll 
(2.43) 

= e1e2 - 3e~e2el + 3ele2e~ - e2et = 0 

12 

(ad e2)I-a21 et = (ad e2)2el = [e2[e2, elll 
(2.44) 

= e~el - 2e2ele2 + ele~ = 0 . 

The Serre relations have a simple interpretation in the Cartan-Weyl basis where 

one considers all the generators corresponding to the root diagram, and not only those 

associated with simple roots. For C2 we have, in addition to hi and e±i (i = 1,2), 

the four generators e±3 and e±4 corresponding to the remaining non-simple roots 

±a3,±a4. From the root relations 

a3 = al + a 2 
(2 .45) 

a4 = al + a3 

one define8 the associated generators 

e3 = reb e2] 
(2.46) 

e4 = let, e3l . 

The important observation is that al + a4 and a2 + a3 are not roots, hence 

[et,e4l = 0 
(2.47) 

[e3, e2l = 0 

which are precisely the Serre relations (2.43) and (2.44), as the reader will check with 

the help of (2 .46). 

2.3.3. 	The quantum gronp Uq( g) 

We now come to the q-deformation of gala Drinfeld-Jimbo. The scheme is a 

simple generalization of Uq("l(2». 

The commutation relations (2.34) are unchanged : 

[hi, hj] = 0 
(2.48) 

[hi, e±j1= ±a~e±j == ±aije±j . 

Defining ki = q~ h; these relation can be rewritten as 

kikj = kj~ 
(2.49)

k-l ±!Q"kie±j i = q 2 I]e±j 
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On the other hand, the commutators (2.35) between raising and lowering opera­

tors do change, and they become 

[ei,e_j) = 6ij[hi]q . (2.50) 

The tecllllical problem is now to q-deform the Serre relations. Recall that in the 

limit q = I. that is for claBBical g. we uaed the adjoint representation in equations 

(2.37) and (2.38). So we should try to q-deform the adjoint operator ad. The 

main property we want to maintain is u8ociativity. The following definitions, rather 

involved. do the trick [17,32,33]: 

ad+ {z) ~(mL ® mR) 0 (I ® S) 0 a(z) 
(2.51) 

ad-(z) ~(mL ® mR) 0 (S ® I) 0 a(z) . 

Here, the left and right multiplications mL reJp. mR are given by 

(mL ® mR) 0 (z ® y)(z) ~£ zzy . (2.52) 

In general, the co-product ~ ill a IlUrn of terms, as in equations (2.6) and (2.7) 

for the simple!!t case of Uq("l(2». which can be formally written as 

..::l(Z) = LZ~ ®zIJ == zIJ ®zIJ . (2.53) 
IJ 

Using (2.52) and (2.53) , ad+z applied on 11 givell 

({mL ® mR)(1 ® S)~(z»(y) = (mL ® mR)(z~ ® S(zIJ»(y) = z~1IS{zJ.') (2.54) 

Hence 
(ad+z)(y) = zl-lyS{zIJ) 

(2.55)
(ad- z)(y) = S{zIJ)yzlJ . 

A811O<iativity of ad± is defined by 

(ad+zy)(z) = (ad+z)« ad+y)(z» 
(2.56)

(ad-zy)(z) = (ad-y)({ad-z)(z» 
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from which follows the repre!!entation property: 

(ad±[z, y])(z) = ±({ad±z)«ad±y)(z» - (ad±y)«ad±z)(z»} . (2.57) 

The proof of the associativity of the adjoint gOe!! as follows : 

(ad+zy)(z) = (mL ® mR) 0 (I ® S) 0 ~(zy)(z) 
Va{zy) = ..::l(z) 0 a(y) = (z~ ® z~) 0 (yv ® yV) = zlJYv ® zlJy

(I ® S)..::l(zy) = zlJYv ® S(z~yV) = z}lYv ® S(yV)S(zl-l) (2.58) 

(ad+ zy)(z) = z~yvzS(yV)S(zlJ) = zl-l(ad+ y)(z)S(zl-l) = 

= (ad+ z)(ad+y)(z» . 

Clearly, in order to compute t he adjoint action we need the explicit forms of the 

co-product and the antipode. For 9 semisimple. in the Chevalley basis, the co-product 

~ of Uq(g) is very similar to the..::l of Uq (d(2» : 

..::l(hi) = hi ® 1 + 1 ® hi 

a(ki ) = k i ® k i (2.59) 

a(e±i) = e±i ® ki + kit ® e±i . 

The co-unit is again 
e(hi) = e{e±i) = 0 

(2.60) 
e{ki ) = e(1) = 1 . 

The relation mo (S ® 1) 0 ~(z) = m 0 (1 ® S) 0 ..::l(z) = i 0 £(z) give!! for the antipode 

S: 
S(hi) = -hi 


S{ki ) = kit (2.61) 

- l -±lQ"S( e±i) = - kie±iki = -q 1 ue±i . 

We now have all the ingredients t o calculate ad± . Using (2.55), (2.59) and (2.61) 

we get 

(ad±hj)(y) = [hi ,y] 

(ad+e±-i)(Y) = (e±iY - k;lykie±i)k;1 (2.62) 

(ad-e±i)(y ) = ki(ye±i - e±ik;lyk; ) . 
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Let us specialize (2.62) to y = e±{ 

(ad+e±i)(e±j) = (e±ie±j - q=rtoii ~je±i)ki l 


(ad+e±i){e=rj) = (e±ie=rj - r tOii e=rje±i)ki I (2.63) 

1 

(ad-e±i)(e±j ) = ki(e±je±i- q=rjOii e±ie±j) . 

In order to get t he q-Serre relations, we could try to replace in Eq. (2.37) ad by 

ad±. It turns out t hat the factors ki and kil in (2.62) complicate matters. We 

can eliminate them by a change of variables which leaves the algebra untouched but 

modifies the co-product and the antipode: 

E . ~f e-k- l 
1 - 1 i 

E - d,;f l.-e - (2.64) 
-I ~-I 

Hi ~f hi . 

Hence, from (2.49) and (2.50) we get 

k-l ...±.!o -- EkiE±j i = q 2 OJ ±j 
(2.65) 

[Ei' E_j] = bij [Hi]q 

which have the same structure lUI the commutation relations (2.49) and (2 .50) for e±i . 

The generators E±i are the natural ones in the contour representation of quantum 

groups [3,4] . 

From (2.59) and (2.61) we obtain 

Ll(Ei) = Ei ® I + ki2 ® Ei 

Ll( E_i) = E-i ® k; + I ® E_i 
(2.66) 

S(Ei) = -k;Ei 

S( E-i ) = - E_iki2 . 

From (2.53), (2.55) and (2.66) we calculate 

(ad+ Ei)(E±j) = EiE±j - q=rOii E±jEi == [Ei ' E±j]q' 
(2.67) 

(ad- E_i)(E±j) = E±jE_i - q=rOii E_iE±j == [E±j' E_i]q' 

where <I = rl. The right-hand side is called a q-commutator. 
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Thanks to the above change of basis , one can write the q-Serre relations in the 

simple form 

(ad+ E±i)I-a;j(E±j) = 0 i =J j (2.68) 

For conciseness , from now on we display the explicit expressions only for ad+; it is 

left as an exerciser for the reader to carryon with ad-. For actual computations, the 

following iterative formula is useful: 

(ad+ Ei)P+I(Ej ) = Ei(ad+(Ei»P (Ej) - q-POii-Oii (ad+(Ei»P(Ej )Ei (2.69) 

so that, for instance , 

(ad+ Ei)2(Ej) = [Ei[Ei, Ej]q]q = 
(2.70) 

= Ei[Ei,Ej]q - q-Oiiq-Oii[Ei, Ej]qEi . 

To establish these formulae, we use (2.55),(2.66) and (2.67) to find 

(ad+ Ei)(EjElIJ = Ei(EjE/c) - q-Oiiq-Oil>(EjE/c)Ei . (2.71) 

Notice that this can also be written: 

(ad+ Ei)(EjE/c) = (ad+ Ei)(Ej)E/c + q-Oii Ej(ad+ Ei)(E/c) . (2.72) 

Hence, ad+ can be considered as a q-derivation obeying a q-Leibniz rule [34,35]. 

For the simple Lie algebra C2 we have seen [recall equations (2 .40) and (2.42)] 

( 2 -2)aij = -1 2 ltij = a~ = ( ! 1 -;1). (2.73) 

Hence, the q-Serre relations for Uq(C2) are, using (2 .67) to (2 .70) : 

E~EI - (q +q- l )E2EIE2 +EIEr = 0 
(2 .74) 

EfE2 - (q + 1 + q-I)(ErE2EI - E1E2Er) - E2Er = 0 

whjch reduce to (2.43) and (2.44) for q = 1. 

Notice that the q-Serre relations are invariant under q ~ q-l. The same is 

t rue for the whole algebra (see Eq. (2.65) and also (2.48) to (2. 50», but not for the 

co-algebra. 
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2.3.4. 	 Cartan-Weyl basis 

As was the case for q = 1, the Serre relations have a much simpler interpretation 

in the Cartan-WeI} basis. This is defined in a similar way for q = 1 and q 1= 1, 

replacing the operator ad by ad±. But since q enters in a non-symmetric way into 

the definition of ad± I it is necessary to order the p08itive (negative) roots in a specific 

way [36,28] . Namely: 

• Definition 1 : The syatem ~+ of poaitive roots is in normal-order if each non­

eimple root 'Y = 0. +13 E ~+ , where a 1= ),.{3 , a, p E ~+, is written between a 

and /3. 

The q-analog of the Cartan-Weyl basia is conatructed uaing the following induc­

tive algorithm [37} . 

• Definition 2 : Fix some normal ordering in ~+ Let 0., f3, 'Y E ~+ be pairwiee 

non-collinear roote, euch that'Y = 0. +13. Suppose, moreover, that between a and 

13 (in the normal ordering at hand) there are no other roots 0.' and f3' such that 

a' + (3' = 'Y. 

Then, if E±o and E±f3 have already been conatructed, we set (d . (2.82» 

E7 = (Eo, Ef3]q , E-, = [E_f3' E_alq- l (2.75) 

and we get the commutation relations 

[hi, E7 1= (ai,'Y) Ey 

[E-" E-7) = 47 [H71q 
(2.76) 

H7 =Ha + Hfj 

where a, is a function of q. We 8ay that 0: < 13 if a is located to the left of 13 in the 

normal~rdered ~+. 

Now the q-=Serre relations are equivalent to the statement that, jf a + 13 ie not a 

root, the q-commutator (2.82) is zero : 

[Eo, Ef3] q == 0 , a	 +!3rt ~+, 0:<f3. (2.77) 
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To complete t he Cartan- Weyl basis in the co-algebra sector, one uses the homo­

morphism and antihomomorphism properties applied to (2.75) : 

~(zy) = ~(z)~(y) 

o!(zy) = e(z)t:(y) (2 .78) 

S(zy) = S(y)S{z) . 

The diligent reader will check that 

m 0 (S ® I) 0 ~ = m 0 (I ® S) 0 ~ = i 0 e (2.79) 

2.3.5. The example of C2 

As an example, consider again Uq(C2)' Choo8e the normal order: a}, a.t, 0.3, 

0.2 	where ~ = 0.1 +0.3,0.3 = 0.1 + 0.2· 

First define, according to (2.67) and (2.75) , 

E3 ~{ [EI,E21q = EI E2 - Q-auE2E. = EIE2 - qE2E t 
(2.80) 

E4 d~f (EJ, E31q = 	EIE3 - q-al)E3El = (Eb E3! 

recalling that 0.1.; = (0.;.,0.;). 

Then, since 0.1 + 0:4, 0:4 + 0.3, 0.3 + 0:2 are not root.s : 

(E}, E4)q = [EI [EI , [E I , E21qlq1q = 0 


[E4,E3}q = 0 (2.81) 


[E3, E2Jq = [[EJ,E2Iq, E2}q = (E2 , [E2,Ell1q]q = o. 


these are the same equations 88 (2.74), (the eecond equation is a consequence) , where 

the q-commutator ie defined by 

[Eo , Ef3}q = EaEf3 - q- (a ,f3)E{3 Ea . (2.82) 

Similarly, 

E-3 = [E-2' E-l]q-l 
(2 .83) 

E-4 = [E_3, E_1 ]q-l 
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and 

[E-2, E-3Jq- l = [E-3, E_4Jq-l = [E_ 4,E_1 Jq-l = 0 . (2.84) 

It turns out that it is p08sible to obtain t he q-Serre relat ions and the Cartan­

Weyl basis in terms of the generators ei substituting Ei by ei in the equations (2.74) 

to (2 .84). The reader is invited to verify this. 

3. R e al forms 

3.1. DEFINITION OF REAL FORMS 

The simple Lie algebra -'l(2) is generated by hand e±. It is a vector space 

over complex numbers. In physics one is often interested in the spin operators Si(i = 

1, 2,3) which are hermitean (S+ = S) and generate the unitary representations (finite 

rotations) U = exp(iS). In order to get Si in the framework of -'l(2), one should first 

define the hermitean conjugation + acting on the generators of -'l(2) and then find 

the complex linear combinations of h, e± which are hermitean. The result is called 

a real form of -'l(2) [38]. A real form is a vector space over real numbers . (The 

representation matrices may be, however, complex). There are different choices of 

conjugations , and therefore different real forms. One of them is compact (-,u(2) or 

-,0(3) in our example) the others are non-compact (-,u(l, 1) or -,0(2,1) or -,l(2 ,1Il». 

The numbers inside the parentheses ( , ) refer to the signature of the metric. 

The situation is similar for the q-deformation Uq( g), with the difference that some 

real forms which are equivalent for g, are not so for Uq(g). For example Uq(su(l, 1» -# 
Uq(-'l(2, Ill», 8.8 shown below. This is due to the fact that the co-product Ll now 

contains the complex number q. Two main choices are p08sible : q E III or /q/ = 1. 

(The choice q E illl is not essentially new [39]). We shall show that Uq(-,u(I,I» 

corresponds to q E IR, whereas Uq(-' 1(2,1R» corresponds to Iq/ = 1. 

We define the conjugation + as a morphism of the algebra, by its action on the 

generators :c, y, etc ., which satisfies 

(i) It is an involution: 

(:c+)+ = 1 . (3.1) 
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(ii) It leaves the commutation relations invariant. 

(ill) 	It is an (anti) involution: 

(:cy)+ = y+:c+ (3 .2) 

like the hermitean conjugation and is called standard . 

One can also define a non-standard conjugation * by 

(iii ') 

(:cy)* = :c*y* (3.3) 

This is like the ordinary complex conjugation. 

(iv) It acts like a complex conjugation on the number field of the Lie algebra, resp. 

enveloping algebra vector space. 


For Uq(g) one requires in addition for the co-product the following 


(v) 	Standard conjugation 

Ll(:z:)+ = ~(:z:+) . (3.4) 

(v') Non-standard conjugation 

Ll(:c)ffi = Ll'(:cffi ) . (3 .5) 

The choices (iii) , (iii') and (v), (v') allow four possibilities [40,41,42]. The action 

on the antipode S is then fixed, namely : 

(:cy)+ = y+:c+ Ll(:c)+ = Ll(:c+) (So+)2=1 (3.6) 

(:cy)* = :c*y* Ll(:c)* = Ll'(:c*) (S 0 *)2 = 1 
(:c y)ffi = yffi:c ffi Ll(:c)ffi = Ll'( :z: ffi) So$=$oS (3 .7) 
(:z:y). = :c$y8 Ll(:c)8 = Ll(:c · ) S08= .o S. 

The conjugation (3 .6) will be called standard, the others , non-standard . 

The standard involution + is used by [13 , 14, 39J and in the second version of 

quantum Poincare [9J. Non-standard conjugations $ are natural in conformal field 

theory when q is a root of unity [43,44, 45J , and they were also used in t he fi rst version 

of quantum Poincare [8, 461 . 
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3 .2 . STANDARD REAL FORMS OF 81(2} AND Uq(8l(2» 

Recall the commutation relations (2.2) of Uq(8l(2)) : 

rh, e±l = ±2e± 
qh _ q-h (3.8)

[e+,e_] = [h)q = --. 
q - q 

For the standard involution +, 

[:/:,y]+ = - [2:+,y+] . (3.9) 

Therefore, the following conjugations leave (3.8) invariant, for q = 1 and q #- 1 

I 

h+ = h =? (e±)+ = ,xeT ' ,\ = ±l (3.10) 

n 
h+ = - h ~ (e±)+ = ee±, e = -1 (3.11) 

whereas e = + 1 giv~ nothing new. For Iql = 1, we get q* = q-l, which does not 

affect [h]q. 

It is elementary to find the linear combinations 11 which are antihermi tean, such 

t hat U = exp(y) is unitarv. 

Next, we shall give the action of the conjugation on the generators e±i and hi , 

and we shall display the antihermitean generators lIi. We shall also compute the 

quadratic Casimir C2 in the limit q = 1, from which we shall derive the signature of 

the metric, and thereby deduce whether the real form ill compact or non-compact. In 

thifl way we get [47] the three real forms of Uq(81(2» : 

11 

h+ = h ; (e±)+ = e=f (3.12) 

i I i 
111 = - -(e+ + e_ ) i Y2 = - (e+ - e_) i Y3 = - h (3.13)
222 

[Y1, :112] = ~ [- 2i1l3)q 

(3.14)[Y2,Y3] = Yl 

[Y3,:IItl = Y2 

22 

Since we define the signature of the metric according to the form the quadratic 

Casimir takes in the limit q -+ 1, and.in this case, C2 = Y? + Y~ + yi is invariant 

for q = 1 (remember [:/:]q = :/: for q = 1), we say that the metric in case h is 

(+ + + ), and it follows that all the generators are compact. For q E JR the algebra 

is Uq(8u{2» = Uq{8o(3» (see equ. (3.22». 

12 

h+ = h (e±)+ = - eT (3. 15) 

1 - i i 
Yl = 2(e+ + e_) ; Y2 = 2(e+ - e_) ; Y3 = 2h (3.16) 

[Yl, Y21 = ~ [-2iY3]q 

(3.17)[Y2, Y3] = - Yl 

[Y3, Yl ] = -Y2 . 

The invariant for q = 1 is -Y~ - Y~ + Yl, with metric ( - - + ), the algebra is 

non-compact. It is called, for q E JR., Uq{8u(1, 1». 

II 

h+ = - h (e±)+ = - e± (3.18) 

1 1 1 
111 = -(e+ + e_ ) , Y2 = - (e+ - e_) ; Y3 = -h . (3.19)
222 

All the coefficients are real . The algebra is called Uq(.s1(2,JR» and Iql = 1 (lee 

equ. (3.23» 
1 

[Yt. Y2] = -2 [2Y3]Q 

(3.20)[Y2,1I3] = -Yl 

[Y3, Yl] = Y2 . 

The invariant for q = 1 ill -Y? + Y~ - y~, the metric i.s thus (- + - ), and the 

algebra is non-compact . 

In the three situations above, the numbering of the generators is arbitrary, there­

fore ,,1(2,1R) is equivalent to .su(l, 1). But for q =F I, the co-product will distinguish 

between the two real forms. Actually, even for q = 1, there is a slight difference 
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between cases 12 and II, namely ill the former Y3 is compact, and Yl and Y2 non­

compact whereaa in the latter Y2 is compact [20,48]. Consider the standard action 

on the co-product , where we require .6.(z)+ = .6.{z+). Since 

.6.{e± ) = e± ® qh/2 + q-h/2 ® e± (3.21) 

there are, again, two cues 

I 

h+ = h =} q E R 	 (3 .22) 

II 

h+ = -h =} Iql = 1 (3.23) 

This shows that Uq("u(l, 1» =I Uq ("l(2,1R» for q =11. 

The choices (3 .22) and (3.23) describe standard real Hopf algebras . The Hopf 

algebraa with reality conditions using non standard involutions (see (3 .7» define 

non standard real Hopf algebraa . 

3.3. STANDARD REAL FORMS FOR Uq(g) 

For 9 semisimple, the general discussion in the Chevaliey basis has been given by 

Twietmeyer [391. Dobrev (201 gives a canonical procedure in the Cartan-Weyl basis , 

with emph8J!is on the (non)-compactness of the real forms .lt is different from the one 

followed by (39]. One may check if he gets standard real forms in all C8.8e8 . 

The features are very similar to Uq("l(2» , with the additional freedom of choosing 

an involutive automorphism 17 of the Dynkin diagram D. For example for A2 = "u(3), 

one can interchange the two simple roots, i.e. 17(1) = 2, '1(2) = 1. For A3 = "u(4), 

'1(1) = 3, '1 (2) = 2, '1(3 ) = 1. For D4 = ,,0(8) , three roots can be interchanged 

(triality). For Bn and Cn t here is no such symmetry. 

The result is the following, in the Chevalley basis [391. There are two main 

categories of real forms 

q E IR ; hi = h1)(i) ; et = ..\ie=f7](i) (3.24) 
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where '1 E Aut(D), ".,2 = I, ..\i = 1 for 17(1) =I i, ..\i = ±1 for 17(i ) = i. 

II 

Iql = 1 ; ht = -hT)(i) ; e~i = -e±1)(i) (3.25) 

where '1 E Aut(D ), 172 = I for q not a root of unity, whereas if q is an l-th root 

of unity, then 17 is allowed to be a permutation of the Dynkin diagram (provided 

l divides O-ij - O-7](i)7](j) for all i and j). 

A third possible case, with q E AIR, is essenti ally equivalent to I (39]. 

For more details on the special role played by the non-equivalent Cartan subalge­

braa see (39, 481 and [201. The latter classifies the (non-) compact Cartan generators. 

3.4. 	REAL FORMS OF Uq("o(5, en = Uq(C2) 

We shall need these real forms for the discussion of quantum Poincare. We shall 

also consider non-standard conjugations and state which metrics one obtains. For 

details see [40,9 , 49]. 

There are again two standard forms, for which 

(z y)+ = y+z+ 

il(z)+ = il(z+) (3.26) 

(S 0 +)2 = I 

In the Chevalley b8J!is : 

q E Ill. ; ht = hi ; et = ..\i e=fi ; ..\i = ±1 . (3 .27) 

For different values of ..\i one gets the met rics related to Uq(so(5» , Uq(so(4, 1» 

and Uq("o(3, 2». The 18.8t one will be contracted to quantum Poincare (see chap­

ter 4 where the hermitean linear combinations are explicitly given). This conju­

gation leads outside t he Cartan-Weyl basis (40,9 , 49] but of course inside Uq(g). 

II 

Iql = 1 ; ht = - hi ; et = "\ie±i . (3 .28) 

Whatever values ..\i = ± 1 are chosen, one always gets Uq(so(3, 2». This conju­

gation can be extended to the Cartan-Weyl basil! . 
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We now list three non-standard conjugations which can all be extended to the 

Cartan-Weyl baais. For notatioll8 see paragraph (3.1) 

a) 

q E III j hi = - hi i e±i = Aie~i (3.29) 

b) 

Iql = 1 j h~ = hi ie~ = Aie~i (3.30) 

c) 

q E III i h~ = hi i e~ = Aie±i . (3.31) 

It turns out that if one plays with the different values Ai = ±l one gets the same 

t hree metrics in caaes (a) and (b) aa in I . The common features of these conjugations 

is to interchange raising and lowering operators. In Ca8eS (c) and II one only gets 

U'1 (,,0(3 ,2». Cue (b) was used in [8](see also [45,46]). 

4. 	 D eformation of the Poincare algebra 

We now want to give a physically interesting non-trivial example of a deformation 

of a non-semisimple Lie algebra, the Poincare (inhomogeneous Lorentz) algebra. The 

procedure wu announced in chapter 1. We recall the main steps ; 

1) q-deformation of "0(5, C), following Drinfeld-Jimbo. 

2) Cartan Weyl-bam. 

3) 	Choice of the real form Uq("o(3, 2)) . 

4) 	 Choice of physical generators MA B ' 

5) Contraction. 

6) 	Proof that we obtained a Hopf algebra. 

7) 	 Casimir operators and representations. 

The contraction procedure will force us to replace the dimension-less deformation 

parameter q by the parameter te, with the dimensjon of an energy. Physically this 

will imply t hat Lorentz invariance is broken. Rotation and translation invariance will 

26 

be maintained at the algebra level, however the co-product for space tra.ll8lations will 

be non-trivial. 

For a fixed value of K., t he amount of Poincare invariance breaking will increase 

with energy. A new It-Poincare invariance will emerge. For It - 00, the usual 

relativistic (classical) invariance is restored. 

A realization of It-Poincare wi th derivatives acting on a space-time with commu­

tative co-ordinates will be given. The energy-dependent breaking of Lorentz invari ­

ance manifests itself in the appearance of finite-difference time operators. Finite It ­

Lorentz boosts are given by elliptic, irutead of hyperbolic , functions. The It-deformed 

Klein·Gordon and Dirac equations will be displayed. 

4.1 . q- DEFORMATION OF ,,0(5. C) 

We start from the commutation relations (2.49),(2 .50) for Uq(,,0(5, C» in the 

Chevalley baais, with (i , j) = (1,2) : 

k-I ±!a·· kie±j i = q l ')e±j 
(4.1) 

rei, e_j) = ~ij [hilq . 

where It;, = qth,;. The Cartan matrix aij and its symmetrized form aij = (ai, aj), 

i. e. 	 the scalar product of simple roots, are given by 

(4.2) aij = ( !1 -2) Ct,ij = (!1 -12 ) .2 

The non-trivial c<>-product t1 and the antipode S are (see Eqa. (2.59) and (2.61) 

t1(e±d = e±i ® k;. + ki l ® e±i 
!to" (4.3) 

S(e±d = -q=r' e±i 

It turns out t hat the Cartan- Weyl basis can be defined as in (2.80) by 

def [ I -a1'>e3 	 = el,e2 q = e l e2 - q - e2 el = ele2 - qe2e l 
(4.4) 

e4 ~f [el,e3lq = tIe3 - q-Q13e3e1 :;:; [el,e3l 

and 
def [l -Ie_3 	= e_2' e_I '1 -1 :;:; e_ 2e _ l - q e_ l e_2 

(4.5) 
e_ 4 ~f [e-l, e-lJq-1 = [e-31 e-lJ 
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Notice the opposite normal order for the lowering operators . 

The q-Serre relations are given by the analogue of (2.81) by 

[el, e4jq = [e3 , e2 jq = 0 (4.6) 

which agrees with (2.74) using the defini tions (2.64). 

Similarly. 

[e_z, e_3Jq-l = [e- 3, e_4J-l = 0 (4.7) q

4.2. REAL FORMS OF UQ("o(5. e)) 

There are different real formll which can, a priori , be contracted to Poincare. 

One needs at least one Minkowski metric, which stillleaveA the choice of ,,0(3,2) or 

,,0(4, 1) . Furthermore, one can permute the + and - signs in the metric, for example 

(+ - - - + ) or ( - - + - +). For q = 1, these permutations give essentially the same 

result , except for Rome subtleties [48]. 

For q f 1 this is not the case. Indeed, the Cartan Rubalgebra generators hi play 

a special role since they have undeformed commutation relations and furthermore 

enter in the definition of the co-product. The relation between Cartan subalgebra 

and physical generators will depend on a given permutation. In [8,91 we imposed the 

requi rement that the rotation subalgebra "0(3) and its co-product remain undeformed 

after contraction. This is satisfied by the choice of the real form ,,0(3, 2) with signature 

(+ - - - +), and the selection of hI and e±I for the generators of space rotations 

,,0(3) , as will be shown below. 

There are stilllleveral possibilities for obtaining this real form [40, 49J. In [8] and 

[9J we chose the hermitean conjugation +, which is standard in the algebra sector. 

In [8J we chORe Iql = 1, which is non-standard in the co-algebra sector, while the 

conjugate generators remained inside the Cartan-Weyl basis. More explicitly, we 

chose 

Iql = 1 h~ = hi , i = 1, 2 i 


ef = e_I ef = -e_2 (4.8) 

EBe = -e_l ef = -e_4l 
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In [9] we chose q E IR, which is st andard in both sectors, i.e. 

q E IR ; ht = hi , i = 1,2 

et = e_l et = - e_2 (4.9) 

et = qe-3 et = - qe-4 

the generators ei being outside the Cartan-Weyl basis for q i 1 

e3 = e2 el - qe l e2 ; e4 = [ell ed 
(4.10) 

e_l = e_I e_ Z - q-1e_ZLl ; e_ 4 = fe-I , f-3 J 

Notice that (4.8) and (4.9) agree in the Chevalley basis, but not in the Cartan-Weyl 

basis, because q* diBtinguishes the two conjugations. 

In these lectures we shall pursue only the choice of a standard real Hopf algebra 

(4.9) , which satisfies all the stringent physical requirements. 

4.3. PHYSICAL GENERATORS AND CONT RACT ION 

We want to expres8 the physical generators M AB of Uq ( 80( 3,2» in terms of the 

Cartan- Weyl generators h, e of Uq(80(5 , e»,where 

M AB = - MBA = M 1 B i A,B = O, .. . ,4 (4.11) 

and the metric tensor 

gAB = ding (+ - - - + ) . (4.12) 

For q = 1, there are two Lorentz 6ubalgebras (see Eq. (1 .2». 

The Carta.n generators hI and h2 commute, which allows for a certain freedom 

of choice. The choice hI = MI2 and h2 = Ml4 would be a good candidate for a 

q-deformation of the Lorentz algebra (without contraction) [50,3,51,52, 20 j. For the 

deformation of the Poincare algebra (with contraction), the following choice [9] (q 

real) satisfies the Jacobi identitie8 and t he standa.rd reality condition (4.9) : 

space rotations : 

M3 = MI2 = hI 
1 

MI = M2l = j2(e1 + e-d (4.13) 
-i 

M2 = Mll = j2 (et - C t) 
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boost! : 

LI = M14 = ~(e4 - qe-4 - e2 + e - 2)
2 
- i 

L2 = M24 = T(e4 +qe-4 + e2 + La) (4.14) 

L3 = M34 = - ~(q-~e3 + q~qL3) 

translations : 

RPo = M04 = h3 = hI + h2 

RPI = MOl = -~( - e4 - qe-4 + e2 + e-a) 

(4.15) 
RP2 = M02 = ~(e4 - qL{ + e2 - e-2)

2 
i • i 

RP3 = M03 = - y'2(q- 1e3 - q"lqe_3) 

For q = I, the operators Mi, i = 1,2,3 generate rotation! and Li generate Lorentz 

bOOlltll. In view of the contraction we have introduced the notation (Po = P4) 

RPIJ = Mop. p. = 1, . .. ,4 ( 4.16) 

Contraction meana R -+ 00, 80 that the PJ.I's become the translation operators, 

since for q = 1 thi! limit corresponds to the Poincare algebra (see Eq. (1.6». 

However, for q :/; 1, we ru n into trouble with the co-product. For exa.mple 

A(e2) = e2 ® q~h2 +q-~~ ® e2 
(4.17) 

= e2 ® qHRPo-h1 ) + q-HRPo-h1) ® e2 

In the limit R -+ 00, A(ea), and therefore A(L2), become infinite. The same problem 

arose when the Firenze group [181 tried to obtain the q-deformation of the Euclidean 

algebra E(3) from the contraction of Uq(Jl(2» ® Uq("l(2». We follow their solution 

to the conundrum and put 
1 

q =e;<"R ( 4.18) 
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where", is a new parameter with the dimeIUlion of an inverse length, i.e. an energy 

(in the usual units with Ii = c = 1). 

We now get, for R --+ 00 

l'J = e!f q h 
1 = e .. ~ R --+ 1 . (4 .19) 

From this follows that the rotation subalgebra (4.13) is not deformed. The physical 

relevance of this result deserves some comment: usual intuition would immediately 

throw out any deformation of the Poincare algebra which blew off the local spatial 

isotropy. The ",-deformation we propose preserves the sacrosanct three-dimensional 

spatial rotational symmetry but distinguishes the dimension of time, 80 that the 

boosts are not what Lorentz imagined , 

4.4. ",-POINCARE ALGEBRA 

The procedure is now obvioWl. Use the commutation rela.tions (4.1) , (4.4) to 

(4.7), to calculate the ",- Poincare algebra with the help of the definitions (4.13) to 

(4.15) and the contraction (4.16) , (4.18) and (4.19), taking the limit R --+ 00. 

The commutation relations simplify considerably with the following non linear 

change of variables for the deformed boost s : 

1 1
Nt = L} - - Pa - -(M2P3 + P3Ma)

4", 4JI; 
1 1 

N2 = La + -PI + - (M1P3 + P3M t}
4", 4", (4.20)
1 1 

N3 = L3 + -:-P3 - -(MIP2 + PaM} - MaP} - PIM2)
2", 4", 

= L3 + -1 
P3 - -

1 
(P2M} - M2 Pl)

2", 2", 

A similar change of variables was proposed by Giller et al. [531 in order to simplify 

the ",-Poincare algebra of [81. 

The ,,-Poincare algebra finally rea.ds most appeallingly as [91 

[Mi,Mj] = i£ijlcMk i,j,k = 1,2,3 

[Mi,Pj] = i£ijlcPIc 
(4.21 ) 

[Mi,Pol = 0 

[PIJ' Pil l = 0 Il, J/ = 0, ... ,3 
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the rotation a.nd translation &1gebra is not deformed. 

[Mi , Nj] = it:ijkNk 


[Po,Nk]= - iPk 


(4 .22) [Pi . Nj ] = - iKOij sinh Po 
K 

Po 1 ~ ­
[Ni, Njl = - it:ij k(Mk cosh - - -4 2 PI;(PM))

K K 

the boosts are deformed. 

The usual Jacobi identities and the st andard reality condit ions are satisfied. For 

K -+ 00 one recovers the usual Poincare algebra. 

One verifies that the K-deformation of t he quadrat ic Casimir, describing the 

quantum relativis tic mass square operator is 

2( h Po ) 2 2 p2CI = 2", cos - - 1 - PI - - 3P2
K ( 4.23) 

= (2 '" sinh PO)2 _ j32
2K 

Expanding in power of -b one gets 

~2 2 1 4 ( - 4) CI = -P + Po +-2Po + 0 (4.24)K
12K 

so that the energy-momentum relation is modified at high energy for fixed K. This 

could be checked by experiment, or &1ternatively, it could be used to give a lower 

experimental limit on K (see the conclusions). 

The second Casimir can be obtained by introducing the K-deformed Pauli-Lubanski 

four-vector 

Wo = ft·M 
(4 .25) 

WI; = ", MI; sinh Po + £ijlcPiNj 
K 

so that 
Po ]52 2 ~ 2 

C2 = (cOtlh- - -)Wo - W ( 4.26) 
'" 4 K2 

commutes with everything in the &1gebra and it provides us with a good quantum 

number. This curious expression can be obtained from the one given by Giller et 

al. [53] for the non 8tandard '" -Poincare algebra [8] by the replacement K - i",. 
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4.5. K-POINCARE HOPF ALGEBRA 

To get the co-product a, co-unit t: and antipode S for the quantum Poincare 

algebra, we start from Uq(8o{3,2» and perform the contraction (4 .19). Because of 

(4.19) and (4.13), a, t: a.nd S are trivial for the rotation 8ubalgebra 

a(Mi) = Mi ® I + I ® Mi 

t:(M,:} = 0 ( 4.27) 

SeMi) = - Mi 

The same is true for Po because, before the contraction, Po is proport ion&1 to the 

Cartan generator h3 = hI + h2 

a ( Po) = Po ® I + I ® Po 

t:(Po) = 0 ( 4.28) 

SCPo) = -Po 

From (4.15), (4. 10) , (4 .3) to (4.5) , it is clear that the co-product for Pi is non-t rivial. 

After contraction one gets 

Po Po 
a{Pi ) = Pi 0 exp{ 2K) + exp{ - 2",) 0 Pi 

(4.29) t:{Pi) = 0 

S{Pi) = -Pi 

T he expressions for a, t: and S of t he boost generators Ni follow from (4.20), 

(4.14), (4.10), (4.3) t o (4.5). After some algebra one gets, after contraction: 

Po -Po 
a (Ni) = Ni 0 exp( 2K) + exp(~) ® Ni+ 

1 Po Po 
+ -t:ijlc [Pj 0 Mk exp( -2 ) +exp(-- )Mj 0 Pk]

2", K 2K (4.30) 
t:(Nd = 0 

3i 
S(Ni ) = - Ni + - Pi

2K 

The coproduct and the antipode satisfy the standard reality conditions (see Eq. 

(3.6». 

In order to prove that the ",-Poincare algebra is a Hopf algebra one hag to show 

that 
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1) the ~product is co-8.8sociative and it is a homomorphism of the algebra as in 

(2.27), 

(A®l).c!l = (l®A)A 
(4.31) 

A(ZY) = A(Z)A(Y) \/z,1/ E It-Poincare 

2) The maps m, i, A, e, S satisfy (2.28) : 

m 0 (S ® 1) 0 A(x) = m 0 (1 ® S) 0 .c!l(x) = i 0 e(Z ) ( 4.32) 

as well aa (I ® e) 0 A = J and (t ® 1) 0 A = J. 

Conditions (1) and (2) involve 80me algebra and have been checked both for the 

sets of operators (Mi,Li,Pp) and (Mi.,Ni , Pp) (see Eq8 (4.13), (4.14) , (4.15) and 

(4.20». Hence the two versions of It-Poincare algebras given in [8,9] are real Hopf 

algebras, a standard one [9] and a non -standard one [8] . 

Up to now we did not find a universal R-matrix, so we cannot decide whether 

the Hopf algebra is quasi-triangular or not. We have found, nevertheless, R- matrices 

in the four- and five-dimensional representations of It-Poincare[54] . 

4 .6. REALIZATIONS OF It-POINCARt 

The following realization of It-Poincare using derivatives acting on a commutative 

spacetime was proposed for spin zero systems by Zaugg [55J and also, independently, 

by Giller et 01. [53]; the latter also proposed for arbitra.ry spin" [56]: 

P =-i~ 
IJ 8zIJ 

Mi = eijlcZjPI.: + 	mi (4.33) 

. Po Po 1
N · = zoP; -	 ltz'81nh - + exp[=f-]n· ± - C" IcP'rnlc s S 'It 21t s 21t 1) ) 

where (m, n) ill a standard fi.nite-dimeruional representation of the Lorentz algebra 

[mi, mj ] = i£ijlcm lc 

[ni, n j] = -itiji:m l.: 	 (4.34) 

[m" njl = i£ijlcn k 

Acting on scalar fields 4>(i, t) the It-deformed boosts Nj are realized putting 

rni = ni = 0 [10] 

Ni 4>(i,t) = - izo /j8 <p(i,t) + iItZi[<P(i, t + i) - 4>(i,t - ~)I . (4.35) 
xi. 	 It It 
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This introduces imaginary finite time-d.ifi"erences, which are the trademark for the 

passage from trigonomet ric to elliptic function8. 

From the Casimir operator 0 1 (4.23) and the realization (4.33) one deducefi the 

It-deformed Klein-Gordon equation 

[a -2.' (1 -co< ~)1¢(i, t) = [a - (2••in ::r] ¢(i, t) =M~¢(i, t) (4 .36) 

where A i8 the Laplacian. This should be the starting point of a It-deformed field 

theory with regularized Feynman propagators [9]. 

After 8etting PI = P2 = 0 it is possible [10] to integrate the equation 

[Nl,PO] = P3 
(4.37)

[NI,P3] = Itsinh Po 
It 

with the Casimir operator 

2 (. PO)2 P3 
2 2C1 = 41t smh 21t - == Mo . (4.38) 

For It ---+ 00, we get the usual result, if we firs t define the initial value 

Po('70) = M cosh '70 
(4.39) 

P3('70) = M sinh '70 

with 

P6(11) - PS (l1) = M2 (4.40) 

and then use the addition formula for hyperbolic functions to get 

PO(17) = PO('7o) cosh(l1 - 110) + P3(170) sinh('7 - '70) 
(4.41) 

P3(7J) = PO('7o) sinh(7J - '10) + P3(11O) cosh('7 - 110) 

For It-Poincare , the rapidity relations (4.39) are replaced by 

21t sinh Po = Mo nc (u lm)
21t (4.42) 
P3 = Mo sc (ulm) 
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with 

pj2 
0

U = 1+ _ TJO
4,,2 

(4.43) 
2)-1

m = 1 + MO 
( 4,,2 

and '170 the rapidity. In these expressions , nc(ulm) and sc(ulm) are Jacobi elliptic 

functions [57] . As one should expect, (4.42) reduces to (4.39) when" -+ 00. 

T he It-deformation of (4.41) is now obtained by using t he addition formula for 

elliptic functions [57,10J. 

One can use the action of the operators (4.33) on 2& + 1 component Weyl 8pinor 

fields and calculate their finite ,,-Lorentz transformation [lOJ . For & =1 / 2 one gets 

the ,,-Dirac equation, which reads as follows [10]: 

Prr' ) (1p~;») = ((1~+»)( p~l o (1(-) 1p(-) 	 T,T' = ±~ (4.44) 
2rr' r' r 

where 

p±l _ 1 -	 II r-Mf [21£ sinh (R20)± p. if] [COSh (Po) ± ~j5 - ] ( 4.45) 
lYJO \I 1 + ~ " 21£ 2,,' U 

and (1(±) are two--component Weyl spinors in momentum space. 

This agrees with [58] . 

T he " Dirac equation is therefore: 

(4.46) [(Uinh (~) + 2~ fi2ho + exp G:) P1 - MoV1+ :~ ]h 0 

1'0 and ,;y are the usual Dirac matrices. The reader is invit ed to check that the 

four-component spinor 1p satisfies the ,,-Klein-Gordon equation. Introducing the 

elect romagnetic field by the minimal substitution PIJ -+ PIJ - eAIJ one finds [10] that 

the ,,-corrections to t he fine structure of t he energy levels of the hydrogen atom are 

of order ,,-2, whereas the "dauical" g-factor of the electron beeomes 

9 = 2[1 + m ] + 0(,,-2) . 	 ( 4.47) 

" 
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with m the mass of the electron. This value of course does not include radiative 

corrections, but it signals t he crucial modification of our u8ual 8pace-t ime concepts 

arising from a new version of relativist ic invariance, in full agreement with the hamil­

tonian description of quantum field theory which clearly di8tinguishes between time 

and space. 

5. 	Con clusions 

The mathematical theory of the q-deformation of semisimple Lie algebras is well 

developed [15,16,50]. The deformed commutation relations in the Chevaliey basis 

look rather simple, t he new feature being exponentials of the Cartan generators (see 

Eq. (2.50». They have to be supplemented by the highly non-linear q-Serre relations 

«2.68),(2.14» , except for 81(2 ). These relations are best expressed in terms of the 

q- adjoint operator whose general definition is rather involved « 2.51 ),(2.55» . The 

more cumbersome Cartan-Weyl basis allows a much simpler interpretation of the 

q-Serre relations « 2.77» . This basis is also more convenient , although not always 

sufficient , for defining a "physical" basis «4. 13)}. 

The deformed co-product is non symmetric « 2.59». This of course has its influ­

ence on the tensor product of representations( [25, 2, 35, 59J and references therein). 

The real forms of q-algebras follow a pattern similar to that of classical Lie algebras . 

However, the reali ty of t he co-product imposes new restrictions 80 that equivalent 

Lie algebras differ by the allowed values of q once they get deformed (see end of 

paragraph 3.2). 

There exists up to now no general theory for the quantum deformation of non 

semisimple Lie algebras. A certain number of examples have been given (see the 

introduction). T he deformation of inhomogeneous algebras (e.g. the semi-direct 

product of rotations and translations) 8eems particula.rly interesting. Three main 

di rections a.re being explored. 1) Suba.lgebras of semisimple Lie algebras [20, 21]. 2) 

Differential calculus on noncommutative space [23] . 3) Contra.ction of semisimple Lie 

algebras [18,8,9] . 

In these lect ures we have followed this last t rack, in particular the quantum 

deformation of the Poincare algebra, obtained by contraction of the q- deformed 

simple algebra 	80(3,2)[8, 9J. The final expression is a rather simple example of a 
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Hopf algebra «4.21),(4.22),(4.27) to (4.30)). Abstracting some general features from 

this result, taking also into account quantum E(3) [18], one may hope to find a 

canonical way to quantise inhomogen.eous Lie algebras without going through the 

cumbersome procedure of compactification. We now list some features which could 

have a more general signification. 

One of the generator. (Po) play. the role of a Cartan generator in the coproduct 

«4.29),(4.30». As a conaequence, the deformation parameter q is replaced by the 

dimensionfnl parameter ~ «4.19» [18,8,9] . The rotation subalgebra remains classical 

«4.21)(4.27». The deformation of the boosts leads to new expressions for the two 

Casimir operators «4.23),(4.26» . 

The algebra can be realized in terms of partial derivatives on a commuting man­

ifold, supplemented with finite-dimenmonal reprellentations of the dauical Lorentz 

algebra for arbitrary spin «4.33),{4.34». We can apply these operators on a field 

and thus easely get the x.-Klein-Gordon equation «4.36» . Because Po is in the 

exponential one geta a finite time difference equation «4.35». 

We have been able to integrate the deformed b008ta for finite rapidi ties . The 

usual hyperbolic functions are replaced by elliptic functiona «4.42» . It haa also been 

possible to give the explicit relat ion between Weyl wave function! at rest and Weyl 

wave functions bOOllted to the momentum p, for any spin s [10] . This allows to obtain 

the Wigner representations for the quantum Poincare. One can aho deduce the It 

covariant Dirac equation «4.44) to (4046». 

An open problem is to formulate a field theory with interactions. Another in­

teresting topic are the mathematical and physical propertiell of finite time difference 

equations. We have mainly worked in the momentum representation. The structure of 

space-time compatible with quantum Poincare invariance is not yet understood [lO]. 

The physical applications of q-sernisimple algebru are numerOUII, especially for 

two-dimensional problems: integrable systems, conformal field t heory, statistical 

models. 

The Poincare, or inhomogeneoUII Lorentz invariance, is fundamental for physics. 

It is worthwhile to compare the standard relativi!tic algebra with another consistent 

invariance algebra, depending on a dimensionful parameter x., which has the Poincare 

invariance as a. limiting case. 
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The first item to compare is the quadratic Casimir operator Cl «4.24». From 

x.-Poincare one gets a dispersion relation for light in vacuum and a modified relation 

between energy and momentum for massive particles [60J . An amusing effect appears 

if one calculates the modified classical partition function: one finds a limiting Hage­

dorn temperature proportional to It analogous to the one obtained in string theory 

[54] . A more mondane piece of data is the measurement of the energy and velocity 

of 15 to 20 GeV electrons and "Y-rays at SLAC [61,62] . Taking into account the 

experimental errors, one finds a lower limit for It of about 104 GeV. A more stringent 

test, because the energies are much higher, comes from a8trophysical data concerning 

the detection time of 105 to 106 GeV"Y -rays from the pulsar in Hercules X-I. This 

requires a value of It larger than at leut 1012 GeV [63,64]' 

Once a K- field theory with interactions is available , one may hope that the dimen­

sionful parameter K will serve as a natural cut-off. Further tests are then possible. 

One may also speculate on the modification of space-time at the Planck masll. An 

unsolved problem is the pertinence of a nonsymmetric coproduct. Further mathe­

matical work and new physical insight are needed. It is a meager consolation that 

this difficulty does not arise in twCHiimensional systems, because, (un)fortunately, 

the real world has four dimensions. 
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