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The spin-spin correlation function of the spherical model being precisely at an
anisotropic Lifshitz point of arbitrary order is calculated exactly. The results are in
agreement with scaling. The scaling function is shown to be universal. The direction-
dependent long-range correlations may change from ferromagnetic to antiferromagnetic
behaviour and back as the dimension is varied. The form of the scaling function is
compared to predictions following from local scale invariance for strongly anisotropic
critical systems.
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In magnetism, a Lifshitz point (of first order) is defined as the meeting point of the tran-
sitions between a paramagnetic, a ferromagnetic and an ordered incommensurate phase
[1}. Lifshitz points have been observed experimentally, a familiar example being MnP
[2]. They can be realized in lattice models by considering anisotropic competing inter-
actions extending beyond the conventional nearest-neighbour interactions. Models of
this kind have been investigated extensively, see [3] for a recent review. A well-studied
example is provided by the ANNNI model [4]. While the ANNNI model only contains
next-to-nearest neighbour interactions, the extension to more general interaction types

with Hamiltonian H = 3; H(a) where

1 Introduction

d m n
H(a) = —J (Z sasare; + Z Z Nn5&56+(i+1)gj) (1.1)
j=1
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has been studied at length as well. Here s; are the spin variables at site @ of a
hypercubic lattice of dimension d, m is the number of directions in which the competing
interactions are taken, n is the number of interacting neighbours in these directions
and «; parametrize the competing interaction terms. We take J to be positive.

The definition of Lifshitz points [5, 6] is quite analogous to the definition of multi-
critical points. The phase diagramm of the model eq. (1.1) can be quite complex and
contains both ordered ferromagnetic and helicoidal phases. A Lifshitz point of first
arises when these two ordered phases meet with the disordered one [1]. If several of
the x; are non-vanishing, the phase diagram may contain a line of Lifshitz points of
first order. This line terminates in a Lifshitz point of second order. Lifshitz points of
higher order can be defined analogously.

The anisotropies introduced in the lattice model eq. (1.1) may survive in the ther-
modynamic limit. The critical behaviour of the correlation functions in a system being
exactly at the Lifshitz point becomes dependent on the space direction. The correla-
tion function C(7, ) depends on whether correlations are studied along those d —m
directions with only nearest neighbour interactions (referred as to L) or those m di-
rections where competing interactions are present (referred to as ||). At criticality, one

has [1]:

C(0,7) ~ rppldmd-tm)

d—d_
(==+m)

C(#.0) ~ 7 (12)

where d_ is the lower critical dimension and @ is defined below. This defines the
direction-dependent exponents 7, which for Lifshitz points of first order are also
referred to as 74 42, respectively, in the literature. Similarly, two types of correlation
length £|,¢. are defined and are direction-dependent as well:

G ~T-T)™, & ~(T-T)™ (1.3)

while the critical exponents a, §, v can be defined as usual from the specific heat, the
order parameter and the susceptibility. The scaling relation among the exponents for



isotropic systems are replaced by anisotropic scaling relations {1}

2—a = my+(d-m
2
7 = (2-mn= (5 = 77||) Y (1.4)
where
§=2 (1.5)
vy

is the anisotropy exponent. Equations (1.4) replace the conventional scaling relations
involving v and 5. Consequently, there are three independent critical exponents which
describe the leading bulk critical behaviour.

The strong anisotropy of a system being at the Lifshitz point leads, via standard
renormalization group arguments [1], to the following well-known scaling of the corre-
lation function

d—d_
COWF,AYo7,) = A PWC(7), 7). (1.6)
This is equivalent to the scaling form:
C(ﬂ|,FL) ~ rI(d—d-H)l)q) (T_y) (1.7)
L

which defines the scaling function ®(z) where
= 1.8
& ” (1.8)

is the scaling variable. Note that any attempt to calculate @ from a lattice model
requires that the scaling limit | — oo, 7, — oo such that z is kept fixed has to be
taken.

In this paper, we consider Lifshitz points of arbitrary order in the spherical model
with additional competing interactions in m directions. In the literature, this system
is known as the ANNNS model [3, 5] or the R-S model [7]. Throughout this paper, we
restrict attention to anisotropic Lifshitz points, that is we only consider the situation
where 1 < m < d — 1. Although this model is of no direct experimental relevance,
it may provide useful insight since all physical quantities of interest can be evaluated
exactly. In this respect, the spherical model has been quite a useful tool in providing
explicit checks on general concepts in critical phenomena, see [8, 9, 10, 11, 12, 13, 14].
The critical exponents of the ANNNS model are for dimensions between the lower
critical dimension d_ and the upper critical dimension

dy=d_+2=44+m-m/L (1.9)

given by [5]
m=mn=0 , y=57 (1.10)
2L
Y H
(d—2-m)L+m
m + L(d — 4 —m)

= mALd-2-m) (L)
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for a Lifshitz point of order L — 1. Here we obtain the exact scaling function ®(z) in
eq. (1.7) for anisotropic Lifshitz points of arbitrary order.

Finding the exact scaling function of a system with a strongly anisotropic scaling,
see eq (1.6), is of interest by itself. In particular, we shall find regions of values of the
scaling variable z, where the long-range correlations become antiferromagnetic. How-
ever, our main motivation for undertaking this work is as follows. Given the fact that
local scale invariance has lead to an enormous increase of understanding the critical
behaviour of static, isotropic systems using conformal invariance, at least in two di-
mensions (see e.g. [15]), one may wonder whether at least some of these ideas might be
useful in more general situations. In fact, Cardy [16] had proposed to use conformal in-
variance in the context of critical dynamics, starting from the hypothesis of dynamical
scaling of the time-dependent correlation function (@(r,)¢(0,t)) = t=2*/*®(r?/t). He
considered time-dependent systems in two space dimensions where the static system
by itself is conformal invariant, this is, at the critical point. Using conformal transfor-
mations, the problem is mapped irom the two-dimensional infinite plane to a strip of
finite width and it is argued, since the strip is finite that it were permissible to use van
Hove theory. For a purely relaxational dynamics without any macroscopic conservation
law, this leads to [16]

B(y) =™ (1.12)

where u is a non-universal constant. Note that this result is apparently independent
of the dynamical exponent z.

On the other hand, for 2 = 2 but for an arbitrary number of space dimensions,
the global scale invariance eq. (1.6) can be generalized to a local one [17]. Then the
coordinate transformations to be considered are those given by the Schrodinger group.
Then for example the two-point time-delayed correlation function (¢(r,t)¢(0,0)) =
t=2*/2®(r?/t) is fixed completely where ®(y) is in turn given by eq. (1.12) [17], but now
without the restriction to two space dimensions and without having to appeal to van
Hove theory. We stress that z = 2 does not need imply that the system is described
by van Hove (mean field) theory, the best-known example probably being the one-
dimensional Ising model with Glauber dynamics [18]. The form of the three-point
correlation functions was also found.

We consider the spherical model at a Lifshitz point of order L — 1 as a convenient
tool to test these general ideas using the following analogy. In critical dynamics, we
have d space dimensions and one time direction, the rescaling of which is described by
the dynamical exponent z. This situation can be mimicked by considering either the
case of just m = 1 direction with additioned competing interactions which leads to the
analogy z = § = 1, or the case m = d — 1 which would be analogous to z = 3 = L. As
we shall show, there exist examples confirming the hypothesis of local scale invariance.

The paper is organized as follows. In section 2 we give the general procedure to
calculate the correlation function. The case of a Lifshitz point of first order is described
in section 3, while Lifshitz points of higher order are treated in section 4. In section
5 we compare the exact results obtained with the expectations from local scaling and
conclude.
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2 Correlation functions
The correlation function for the (mean) spherical model is defined as

Cn (Z—;T) =< 050 >N — < 05 >§V (2.1)
As is well known, see e.g. [8,9, 10, 14], it is given in the thermodynamic limit (V — oo)
by .

cos (L ¢
_cx(ld) 22)

J(0)¢ = J(¢)

where J(¢) is the Fourier transform of the exchange integral

MOEDY J([)exp (1[5) (2.3)
r

ciT) = (;“TY;(‘/_:.../_:dqﬁl...dm

and ( is given by the spherical constraint. It can be shown that { =1 for T' < T,. We
are interested in the behaviour of eq. (2.2) at the critical point where { = 1 and we
restrict ourselves to this case throughout the paper. In fact, the case we are going to
consider is technically the hardest one and all other situations of physical interest are
easily obtainable from our results.

For a m-axial Lifshitz point of order L — 1, J(¢) is, see [5, 6]

J(@)=2J <Z cos ¢; + i f: ricos((i+ 1)¢j)) (2.4)

j=1i=1
which can be expanded

n

d m
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Consider for a moment the case n = 2. A line of first-order Lifshitz points is obtained
for Ky = —(1 + 4k1)/9 where k3 > —2/5 is a free parameter and ¢; = (2 + 5x1)/6 > 0.
A second-order Lifshitz point is found if k; = —2/5 and x; = 1/15 with ¢z = 1/30.
The phase diagram is known exactly (19] and we do not repeat this calculation here.
Similar results could be obtained without much effort for n arbitrary and yield explicit
expressions for c¢p. If the s;’s were chosen such that ¢, would become negative, the
correlation function becomes modulated and the simple expansion around the assumed
ground state given by é=0is no longer applicable.

The evaluation of the correlation function closely follows techniques which go back
at least to the classic work [20] on random walks on the lattice. As shown in [20], for
|I] big enough the principal contribution to the integrals comes from |¢| ~ 0, and the
leading singular behaviour of C(ETc) is contained in

5 kT. m n (4
a1 = gw)d / déy ... dgy— cos(l¢) (2.6)

2*](. =m L?:m+1 %ﬂb? +cr Z_;nzl ¢§L

It is here that the scaling limit mentioned in the introduction is taken. In this limit,
it is enough to restrict attention to C4, since all other terms contributing to C can be
made arbitrarily small [20]. In the sequel, we always suppress the distinction between
C and C;. Using the identity

2l = /:c e du (2.7)
we can rewrite C([: T,) as
CUT) = g3 i 4Pt (28)
with
(e . 2 ‘ T ; 1,
Flu)="% {JI;II [/_" exp (1¢’le' - chSjLu) dqﬁj} j:l,:[+1 {/4 exp <'L¢~jlj - 5@?11) dqﬁj]}
(29)

where R denotes the real part. An Abelian theorem for the Laplace transform [20]
states that if F'(u) is analytic, the behaviour of C([, T.) is determined by the behaviour
of F(u)at u — oco. For u > 1 we can therefore replace the range of integration (—n, )
on the ¢; integrals by (—oo, c0).

The correlation function now reads

i) = st [ (3] {7 ot - cstey ]|

g=1 H =0
d—m
2m\ 7 1 &
x | — - B 2.
(u) exp( o ,_Z ])) (2.10)
j=m+1
Expanding the cosine and integrating term by term we get

o 2L 1 % & (—1)F k 12 ’
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In the sequel we specialize to the choice

N = 11750 2 l,-:O(i:Z,..,m),
d
d= 38 (2.12)
j=m+1

and the correlation function becomes

kT, IN™ 1\™ 1y
i) = ——z= (1) '(5;) (&) 2.13
it = rem== () Tz (2.13)

2
x/wdu u%(l"i)‘%exp _n
0 2u




The integral converges if
d>2+m—%:d_ (2.14)

and the sum is absolutely convergent. Exchanging the sum with the integral, we thus
obtain an exact expression for the correlation function

Clrypyri;Te) = #(%)mr( ) ( )lﬂz(%)

k
s (—1)“ k 1 k d l/L 7‘“
i (L 8 =
2 i \z )t L

(2.15)
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We remark that the series is absolutely convergent on the whole real axis and that the
correlation function is of the form

g ((2) 1
ClrprssT) ~ AlLm, 8 ((2) B, d) (216)
cr, T

where A(L,m,d) is a constant and ®(z; L, m,d) the desired scaling function. This is
in agreement with the expected scaling form eq. (1.6) and serves as a useful check of
our calculation. Furthermore, since the scaling form of the correlation function only
depends through the constant ¢; on the details of the lattice structure, we verify the
universality of the scaling function.

While this already an exact and complete answer to our problem, it is useful to
rewrite this result in a more handy form. This will be done in the next sections. The
general strategy is as follows. We use first the identity

L-1 k
2)! = k!(2r) T2 T o :
(ok) = ke S T 1 (E 4 243 (27
and the correlation function finally becomes
d—d_ 2T 7
C(ry,r1;T.) = B(L,m,d)yr;* )z (L =L (2.18)
2 4LCL r?

where the constant B(L,m,d) is given by

kT. 1n™ 1N™ ! /1 \TT da-d_ ,
Bl mle— e (2 (L (—) - .
(L,m, d) J(21)45~<L) (2L) cr % (2.19)

All properties of C(ry,7.;T.) are contained within the series

o 1\k P .’E+
E(Laz)=3 O <£ al) 2+ (2.20)
=0 KU oTIECIT (z + 55+ %)

which we proceed to study in the following. It is sufficient to consider only those cases
where 0 < a < 1, since the other cases can be found from the recursion

Z(L,a+1;2) = aZ(L,a;2) + L = ._.(L ) (2.21)

In the sequel, we shall use the abbreviation
e 2.22
CTRTY T T T (2.22)

For a = 0, the model is at the lower critical dimension d_, while for @ = 1, it is at the
upper critical dimension d,. For the convenience of the reader, we give in table 1 the
values of a if both d and m are integers for the cases L = 2 and L = 3.

L =3 m
d il 2 3 4 5 6
3 |1/4 0
4 3/4 1/2 1/4
5 |5/4 1 3/4 1/2
6 |7/4 3/2 5/4 1 3/4
7 |9/4 2 7/4 3/2 5/4 1
=3 m
d 1 2 3 4 5 6 7 8
3 1/6
4 | 2/3 1/3 0
b 7/6 5/6 1/2 1/6
6 | 5/3 4/3 1 2/3 1/3
7 13/6 11/6 3/2 7/6 5/6 1/2
8 8/3 7/3 2 5/3 4/3 1 2/3
9 19/6 17/6 5/2 13/6 11/6 3/2 7/6 5/6

Table 1: Some values of the parameter « = $(d—d_)for L = 2 and L = 3 as a
function of d and m <d — 1.

If d and m are integers, =(L, a; z) can be reexpressed in terms of well-known tran-
scendental functions. We shall derive these expressions for L = 2 and L = 3 below. In
particular, we shall be interested in deriving the behaviour of the correlation function
for large values of the scaling variable z and we shall obtain explicit expressions for
any L.



3 Lifshitz points of first order

We first study the case of a conventional Lifshitz point, also referred to as a Lifshitz
point of first order [5]. This corresponds in the above equations to have L = 2. As we
have seen above, the correlation function becomes

0 d—d_ [ 1 7
X _ —(d—d-) J
C(TH!TLVTC) = B(Z,m,d)T‘L v ( 5 32, T'J.) (3.1)

where ¥(a, z) is defined by the series

< (1T (5+4a) ,
¥(a,2) = E(2,0i2) = EO( L-l!) %JF—S;:

1

(3:2)

and a is defined in eq. (2.22). Because d and m are integers, we have a = n/4 where n
is a positive integer. It is sufficient to distinguish between the four cases n = 1,2,3,4,
which we shall examine below. Indeed, the other cases can be easily found from the
recursion relation eq. (2.21). In figure 1, we display the normalized scaling functions
¥(a,z)/¥(a,0) for the cases we now proceed to study.

31 a=3

For this case we separate our absolutely convergent series ¥(a,z) in two series for the
odd and even terms and use eq. (2.17) (with L = 1)

1

q,(l z) _ @ o*P(k+]) & o rEH

I
|
8

Z:

I
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z= 1 T(k+d) N .5
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Then we use the identity eq. (10.37.7) from [21]
at I'(k+a)

2 = /rz' P (2 34
kgk!r(ﬂza)r(“aﬁ) -4(%) 4
and find
o ( 1\ T k+l R
v (L) YoV bl k) IO L @) (@] () e
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where I, and K, are modified Bessel functions. This gives the exact correlation func-
tion. Using the known asymptotic form of the Bessel functions [22], the asymptotic
behaviour is, as z — oo

iy I (FLTC | ST

1
3.2 a = 2
We again split the expression for ¥(a,z) as before and get

Sy 6

o kI (k +2)
T 1 (r)”‘
—— )y — | = (3.7)
2,§F(k+§)l“(k+§) 2
Then we recall the identities egs. (10.7.11) and (10.7.18) from [21]
= ! 2%

—_— T
,; k'T'(k +a)

o) - v

= z!'7%,_,(2z)
- 1 2k 3

—— ¢ = z2°L__1(22z 3.8
I oy 1(22) (3.8)

where L,(z) is a modified Struve function. The asymptotic behaviour of this is given
in eq. (12.2.6) of [22] for £ — oo and we finally obtain

5)) (3.9)

3.3 a:%

For this particular case the series reduces to an exponential
3
4 (Z,x> =g " (3.10)

34 a=1

In this case the model is at its upper critical dimension. The calculation proceeds along
the same lines as above and with the same relations as for the case a = % we find

1 z\1
¥(l,z) = ﬁ(m+(5) [L%(x)—l%(z)]>

1 1 1
—————— 140 (—) } 3.11
or (%) z? { =4 (3-30)
where the analytic continuation I'(-1/4) = —4I'(3/4) was used. We note that in this
case the correlations show a predominantly antiferromagnetic behaviour. In particular,
since ¥(1,0) > 0, this implies that there exists some z such that ¥(1,z) = 0, that is,
the universal part of the correlation function vanishes. A numerical calculation yields

zo ~ 2.80187... and from figure 1, it can be seen that this is the only zero of ¥(1,z)
for z positive.



4 Lifshitz points of arbitrary order

Going beyond the simplest case L = 2, we could attempt to repeat the approach of
the last section. In fact, we may write for any L the scaling function in terms of the
generalized hypergeometric function ,F,. For L = 3, this leads to

Z(3,a;2) Heg 1Fy (a;l 1zs _9:_3) (4.1)

" V/I(5/6)

1‘(a+é) 12574 2° F(a+5) 27435 2°
B (R Epn S S S S Bty 24 g e
" (a+3’3’6’6’3’ 27)+ v /Ar(/6)’ ‘(“+3‘6’3 23 727

A much simpler form can be obtained for the two special cases

= LYo (=2 _ AN 172\ p: (8 1/2
..(3,5,13) —ém = (38887l’) Al( \/1_2.2 / )Al (\/ﬁz /) (42)

and

=(33. ) -5 _(=2)
“(3’6’ >_,§,k!I‘(‘§°+%) (4.3)

= g3 [Ai (—6/5:1/2) Af (\‘/ﬁw?) + AY (—Wml/z) Ai ({/ﬁz”’)]

where Ai(z) is the Airy function and the prime denotes the derivative. For the proof
of these see appendix B. We shall see below that these two cases are rather distinctive
in their asymptotic behaviour for large values of z. We display the scaling functions
for L = 3 in figure 2. As we have already noted for the case L = 2 above, we may
have either long-range ferromagnetic or antiferromagnetic behaviour. In distinction to
the examples seen so far, in these two cases it is known from the properties of Ai(z)
that there are infinitely many zeroes of the scaling functions in the cases a = 1/2 and
a=5/6.

While these examples use some peculiarities for a given value of L or a, we now
examine the asymptotic behaviour as £ — co. This follows from a general theorem
due to Wright [23] on the asymptotic behaviour of an extension of the generalized
hypergeometric function. We summarize those of his results relevant for us in appendix
A. As it has been shown for the Lifshitz point of first order in the previous section, the
form of the asymptotic behaviour of Z(L,q;z) depends quite sensitively on the value
of a.

4.1 Algebraic asymptotic behaviour

We first consider the case of generic values of 0 < a < 1. Then from theorem 1 of
appendix A [23], we see that the asymptotic behaviour of the function Z(L,a;z) is
given by the poles of the coefficients of its series expansion eq. (2.20). For generic
values of a, the I-function in the numerator will not cancel with one of those in the
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denominator. Working out the residues at those points where I'(k/L 4 a) has a pole,
we find the asymptotic behaviour of (L, a; z) for £ — oo to be algebraic and given by

= (L, & f)d‘«,x) ~Y P M) (4.4)
“ >0

with

_(-1) Lr (L (i+%=))

CPOHOEIT (n - e 1 )

The reader may compare this general form with the specific results for L = 2 found in
section 3.

Since the leading term is given by [ = 0, let us consider Py. We first note that there
will be a cancellation of factors in eq. (2.20) if

R (4.5)

_2n+1

s =Ll (4.6)

a= ay '
and we take the convention that ag := 0. In fact, if a = a,, we have to reconsider the
asymptotic behaviour and we shall do so below. However, we note that P, changes
sign if we pass from a < a, to a > a, for some n = 1,...L — 1. We therefore see that

Py >0 ; ifa,<a<a, withn even
P, <0 ; if a, < a < anyy withn odd (4.7)

From table 1, it is now easy to see for which values of d and m the leading long-range
behaviour of the spin-spin correlation function will be ferromagnetic or antiferromag-
netic, respectively. In fact, it is quite surprising to see that already at the Lifshitz point
the anisotropies of the model can become so strong that the ferromagnetic behaviour
may be changed into an effective antiferromagnetic behaviour. In those cases, where
the system is antiferromagnetic for large values of z, it follows that the universal scaling
function vanishes for some finite g, since Z(L, a;0) > 0. If ¢ = zo, one phenomeno-
logically observes effective exponents different from those quoted in the introduction.
In fact, the mechanism of modifying scaling relations of apparent exponents by the
vanishing of the scaling function (in distinction to the presence of dangerous irrelevant
variables) well below the upper critical dimension appears to occur quite generally, see
[24]. However, as can be seen from figure 2, even in cases where Py > 0, this does not
necessarily imply that the correlations are ferromagnetic for all values of z. An example
is provided by Z(3,1;z) which has two zeroes at zgl) ~ 1.231... and a:(oz) & 16 . s,
see figure 2. The correlations are antiferromagnetic for :L'E,l) <z < :c(()z). Ferromagnetic
correlations appear to be kept for all z, however, if a < a;.

4.2 Exponential-like asymptotic behaviour

The case where ¢ = a,, with a, given by eq. (4.6) marks just the borderline between
regions of long-range ferromagnetic and antiferromagnetic behaviour. If 1 <n < L—1,

11



two I'-functions in eq. (2.20) with the same argument cancel and we get

E(L,a,,;:c): i (—l)k;gl:

SHIGIT (b + ) b T (F+ 5 +4)

(4.8)

The asymptotic behaviour of this series as ¢ — oo is exponential-like as found from
theorem 2 of appendix A [23]
2L \} (2w ive)
Z(L,axx) =~ a(27r)“§ <L — 1> <%>M nAe

L-1__+ _, i T L
X exp [2 7 LIZ-1) " z2L-1) cos (7 )]

2 L—1
y [szle%ylﬁ- <7r L >+7r L <1 1+ >]
Rl A TV ATy Y AR Y n

x{1+0<x‘ﬁ?)>} (4.9)

where a = 1/2if L = 2 and a = 1if L > 2. Note that for L > 2 the argument of the
exponential is always negative. We also see the presence of an oscillating term, which
is absent only for L = 2. This indicates the presence of an infinite set of values of z
for which the scaling function will vanish.

5 Discussion

We have found exactly the spin-spin correlation function for the anisotropic Lifshitz
points of arbitrary order L realized in the spherical model with competing interactions
extending beyond the nearest neighbors. The calculation was performed using the
scaling limit where 7,7, — co simultaneously but such that the ratio rH/ri 1s kept
fixed, where § = 1/L. The result can be generally written in the form

wild— T
Clryri; T2) = Bir[ ™o (BZT%) (5.1)

1

The explicit expressions for the scaling function ® and the non-universal metric factors
By and B, are given in eq. (2.18). We have described in sections 3 and 4 the explicit
representation of ® in terms of well-known transcendental functions. Our results are
as follows.

1. The general form eq. (5.1) is in agreement with the expected anisotropic scale
invariance. The scaling function @ only depends on the number of dimensions d,
the number m of dimensions with competing interactions present and the order
L of the Lifshitz point. It is independent, for example, of the values x; and we
confirm the expected universality. Properties of the model dependent on further
details of the lattice only enter into the metric factors B, ;. We also note that
the dependence on m of ® only enters via the lower critical dimension d_.

12

2.

(2]

In general, the leading asymptotic behaviour of @ for large values of its argument
is given by a remarkably simple structure

l )
— |~ Al 5.2
‘I’() () .

where A is a known constant, see eq. (4.4). This is consistent with the known
critical exponents. If we had known beforehand that the leading behaviour of
®(z) for z large would be a power law, we could have predicted eq. (5.2) from
matching the correlation function scaling forms eq. (1.2).

. The scaling amplitude A may be either positive or negative, corresponding to

long-range ferromagnetic or antiferromagnetic behaviour, respectively. It is sur-
prising to see that already at a Lifshitz point, the effect of the competing interac-
tions may become so strong as to be capable to create effective antiferromagnetic
correlations. Which of the two possible situations is realized only depends on the
quantity d — d_ as given in eq. (4.7), since A is proportional to Fp.

. In those cases where the long-range behaviour is antiferromagnetic, there is always

a particular choice ¢ = z of the scaling variable such that the universal scaling
function ®(z¢) = 0. The long-range correlation is ferromagnetic for z < z¢ and
antiferromagnetic for ¢ > z,. Antiferromagnetic correlations will be present for
at least some values of z if d ~d_ > 3/L.

. The borderline between the long-range ferromagnetic and antiferromagnetic be-

haviour occurs when d — d_ = 6(2n + 1) with n being a positive integer and is
characterized by an exponential-like behaviour

d—d_

ul ul s (11+55) 0\ ™
‘P(E) = (*) o ﬁ(ﬁ)
X cos ('y 16 <%>H> (5.3)

where a, 3,7 and § are known constants, see eq. (4.9). We have seen that in this

case there may occur infinitely many changes between long-range ferromagnetic
and antiferromagnetic behaviour as the scaling variable is varied. For a Lifshitz
point of first order, no zeroes occur.

. Our results may be considered as an analogy to the calculation of time-delayed

correlation functions in dynamical problems. The analogy with these works for
the cases m = 1, where the role of time is played by 7| and where the analogue
of a dynamical exponent z = 1/L, and for m = d — 1, where z = L and the role
of time is played by 7.

. Considering the case of a dynamical exponent z = 2, we see that indeed for

L =2,d=6and m =5, the prediction eq. (1.12) following from the hypothesis of

13



Schrédinger invariance at an strongly anisotropic critical point is reproduced. For
all other d < d., the upper critical dimension, the scaling function has a different
form. Since local scale invariance is central to this hypothesis, a consideration of
the cases where d > d; does not appear to be of much interest in this context.

8. Considering the analogy with a dynamical exponent z # 2, a simple pattern
emerges for the cases where the scaling function has a leading exponential-like
behaviour of the form (where g is a non-universal constant)

()5

for large values of its argument, and where we suppressed the oscillating and
power-like prefactors. If z = L, this case is realized for the dimensions d =
L+2(n+1),n=1,...,L -1, while for L even and z = 1/L, this case appears
only for d = 4. We note that the form of this result contains the number of
dimensions only implicitly through the value of the dynamical exponent z. The
form eq. (5.4) is quite distinct from the conformal invariance prediction [16] of
the z-independence of the time-dependent correlation function.

Summarising, we have seen that already such a simple strongly anisotropic model
like the spherical model with competing beyond nearest neighbor interactions such as
to display Lifshitz points has quite a complicated behaviour of its spin-spin correlation
function. The results are in agreement with scale invariance and allow for the first time
to ask questions about the form of the scaling function itself. While in a few cases, the
results can be understood in terms of local scale invariance, it remains a challenge to
develop a better conceptual understanding of these fascinating phenomena.

Acknowledgement: It is a pleasure to thank M. Droz for useful comments.

Appendix A

We recall a few results on the asymptotics of the following extension of the generalized
hypergeometric function
k
B8 (o (A1)

|
0 L

[Me

P]:q(x) =
k

where

70 = (Tl tant + 8) (1T 760 + m)_l (A2)

r=1 r=1
If a, =1 and p, =1 for all values r occurring, we recover the generalized hypergeo-
metric function as defined e.g. in [25]. The numbers a, and p, are all real and positive

and
q P
n:l+Zp,—Za,>0 (A.3)
r=1 r=1
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For our purposes, where
2
c=2-= A4
=21 (A4)

we need the asymptotic behaviour along the positive real axis for values of 1 < x < 2.

For the convenience of the reader we restate the relevant theorems obtained by Wright

[23]. The full asymptotic expansion for any complex argument and for any s > 0 can

be found in [23].

Theorem 1: If 0 < & < 2, then the asymptotic expansion of ,F4(z) for z — co is
»Fq = J(z) (A.5)

where J(z) is defined below.
Theorem 2: If f(t) has only a finite number of poles or none, then k > 1 and the
asymptotic ezpansion of ,Fy(z) for z — oo 15 given by
Folz) = IZ)+1(Z)+ H(z) (1<k<2),
Fiz) = 1(Z)+HE) (x=1) (A.6)
where I(X), H(z) and Z are defined below. If f(t) has no poles, then H(z) = 0.
The following notation is used. Let

h= (I:]f‘) (rlillpf"'» 9=3 B - Lur+%(q—p) (A7)

r=]1 r=1

The variable Z is defined as

Z = x(hz)t/re™x (A.8)
and we write J(X) for the exponential asymptotic expansion
I(X) = AX?eX [14+ 0(X 7)) (A.9)
where
1 1 2 Br=L ! iy
Ag=(2m)i g 30 [[ar F [[ 027", (A.10)
r=1 r=1

and J(y) for the algebraic expansion

‘](y) = X:ZIDr,Iy_(H-ﬁr)/O‘Y (All)

P
=1 )z

r

o

where P, are defined from the poles of f(¢) in the following way. The poles of f(t) are
among those of [[2_, I'(a.t + 8,) at the points

_i+B,

Qr

t= (A.12)

If f(t) has a pole of degree s at this point, we write for the residue
s Py A < Res (T(-t)f(t)y") (A.13)

If f(t) has only a finite number . of poles, then P,; = 0 when | > [, and H(y) is

the finite sum
Pl

Hy) =YY Py~ & (A.14)

r=11=0
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Appendix B

We analyse a few sums arising in the calculation of some of the scaling functions

discussed in the text. We begin with
_ 1 S —z k
P(z) :::(3,§;x> =) ()

ok (5 +3)

where z is real and positive. To bring this into a more tractable form, we use the

(B.1)

identity
L 1
(3k)! = (2m) 54 kT (k4 )T (k+ %) (B.2)
and get ¥ = 91 + ¥, + %3, where each term is treated separately. The first one is
B )3k
Y= 2 3k) 'r (k +5/6)
k
27/6 oo -1 k 11:3
_ ™ Z ( ) (27 ) (B.B)

VB = KIT(k + 2/3)T(2k + 2/3)
where we reused eq. (2.17). Next, we recall the identity eq. (10.40.2) from [21]
(-l)kz‘”‘

,;) kT(k + a)T(2k + a)

=227, (22)ao1(22) (B.4)

where I,(z) and J,(z) are Bessel functions, and get

= 2 Ly (04 () (B.5)
with the abbreviation 64 14 »
=(3) = (B-6)
The second term is treated in an analogous fashion and we have
RS S €
= BE+1)'T(k+7/6)
_ e (DA (Ee)’
VB 3 = kIT(k + 4/3)I'(2k + 4/3)
= «%Jﬁlé(X)J%(X) (B.7)
The third term finally is
= 3k+2
- (:)’ $ (—z/3)*
V3 \3/) Z kT (k+3/2)I(k +4/3)I'(k +5/3)
B (-1) {(%)1/4 x”"rkﬂ
= 2w 3, (B.3)

(2k + 1)'T(k + 4/3)T(k + 5/3)
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We now use the identity eq. (10.40.8) from [21]

) (_1)k$4k+2
2 (2k+ 1)T(k + 3/2— a)[(k + 3/2 + a)
_ mi — [J2a(20)-20(22) = J_2(20)1aa(22)) (B.9)
and find g
Y3 = g\/ﬁ[J%(X)I {(X) = I (X)L (X)) (B.10)

We collect the results and get
2

¥@) = 3 w2 (I3 (X)L (X) — I (N1 (X) + 31 (014 (X) = J_y (XT3 (X))]
= g e 34 (X) + I3 (X)] - [1s(X) - L(X)]
- (38887r3)1/6Ai( V122'2) Ai (V1221?) (B.11)

where Ai(z) is the Airy function. This is the result quoted in the text.
We next consider the function

= é _ o (7z)k
e e= B (3’ s'x> N Ea kI (% +1) (B.12)

We use again eq. (B.2) to get the decomposition ¢ = ¢, + @2 + w3 and turn to study
these terms separately. The first one is

oo )Sk
g 3k) 'F k+1/2)
k
S Gt
B.13
[2:: I'(k+1/3)'(k+2/3) ( )
This is rewritten via the identity
o ( l)k dk
B.14
é Ik+1/2-a)l(k+1/2 +a) ( )
z
= *4 rpp— {Jza(2l)l,2a_1(2x) = J_20(21)12a_1(211)
—J2041(22)oa(22) + Jous1(22) 1 00(22)}
We postpone the proof of this and proceed with the calculation. We get
T
o= -~ 1—2X {J%(X)L%(X) - J‘%(X)I_%(X) = J;(X)I_%(X) + J§(X)L%(X)}
(B.15)
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For the second term we have

& (~:l:)3k+l
¢ = L GE T IIk15/6)
y (-1 (#=°)
= 2/[3 2 4T k+2/3)F(2k+5/3) e

This is evaluated by using the identity

l)k ak Il—2a

= ( = z Z z T
z:: k+a)F(2k+a+1) - 2 [Ia—l(2 )‘]u(2 )+Ia(2 )Ja—1(2 )] (B17)

which we prove below. We find

X [13(20)33(X) + 1 (X)I_y (X)] (B.18)

3

and for the last term we get, again using eq. (B.17)

)3k+2

= {=
#s = § (3k + 2)IT(k + 7/6)

— 973 Y& (_1)k(i7 S)k
- \[( ) Zk‘l“k+4/3) T(2k +17/3)

\/j( (X0 (X) + 14(X)34 (X)] (B.19)

Combining these three terms, we find

e = \fx 1,00 1500 - L é()()]JrJ_l,(X) [L3(X) — 13(X))]
+32(X) [l (X) - Ly(X X) LX) -L(X)]}  (B.20)

(0] +3
\/gx{[ J(X) +I2(X ]Kg(v)+[ 2 (X) = 33(X)] K3 (%)}

recalling the familiar relationship between the modified Bessel functions 1,(X) and
K,(X) and using the recursions eq. (B.26) below and

Kon(2) = Kua(2) + 2K, (2) (B.21)

Using the relationship with the Airy function Ai(z) and its derivative the final result
is

p(z) = -/ [Ai (~V/12212) A (V12212) + AV (- V/122'%) Ai (V122'/7)] (B.22)

which is the form stated in the text. In the same way, the representation of Z(3, a; z)
in terms of the generalized hypergeometric function ; Fy can be obtained.
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We now prove the identities needed in the calculation. For the proof of eq. (B.17),
let

~
i
J8

(71)1\114&:

ET(k + a)(2k 4+ a + 1)
(k + a)(=1)*z*

Ik +a+ 12k +a+1)

a+ Zai) (z7%L(22)da(22)) (B.23)

L
1l

0

|
)MS

Il
A

where eq. (B.4) was used. We then use

d‘i( “Ja(2)) =~z Van(z) % (z7L(z)) = 2™ Lan () (B.24)
and find
T= zlz_ - Kgla(?w) +Ia+1(2z)) Ta(22) + (%J“(Zm) —Ja+1(2z)) [,,(2:)] (B.25)

Then eq. (B.17) follows from the recursion relations of the Bessel functions

2 2
L_i(z) = ;ylv(r) +La(z) , Jooa(z)= %Ju(’f) = Jia(=) (B.26)
For the proof of eq. (B.14), let

(——1)}°234k

) ,§>127c)!T(k 11/2—a(k+1/2+a) (B.27)

We separate off the term with £ = 0. For the remaining sum, we make a shift in the
summation index and have the decomposition S = Sy + S; where

Sy = E;E (B.28)
B 1= (41)kx4}c+4
= —5§ k+1 2k F)IT(k+3/2 —a)T(k+3/2 +a)
R zdyi ( l)ky“k“
o TS k+ 1)k +3/2-a)l(k+3/2+a)
- 745;1”/0 duw [T ()L ga(t) — J_pa(u)za(w)] (B.29)

where the identity eq. (B.9) was used. To evaluate this, we use the following, see
eq. (11.3.29) in [22]

/:du wl, (ku)I_,(lu) = g (k3,41 (kz)_ (lz) — 13, (kz)I_yp1 (i2)]
vl (kz)J_, (lz) + lljﬂo vl (ke)J_,(le) (B.30)
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We now use the relation with the modified Bessel function
I(z) = exp (%) 1.(iz) (B.31)

and take k = 1 and | = :. With the leading behaviour of the Bessel functions for small
values of their arguments [22] and some algebra, we obtain the identity

& T
/0 dund (@) = 3 Bon(@)u(z) + L(2)ln (@)
—vl ()l (z) + S”‘ﬂ"” (B.32)
Insertion into eq. (B.29) then yields the following
z 2a
§ = o |2 (Jaa(20)L2a(20) + _2a(20)1as(22)) (B.33)
4sinma z :

+ Toar1(22)1o20(22) + Joa(22)]_2011(22) — J_gass(22)Toa(22) — Jﬁza(2$)lza+l(2x)}

and eq. (B.14) is obtained with the help of the recursion relation eq. (B.26). This
completes the proof.
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Figure captions

Figure 1: Normalized scaling function ¥(a,z)/¥(a,0) for the values a = 1/4,1/2,3/4
and a = 1 as a function of z.

Figure 2: Normalized scaling functions Z(3, a;z)/Z(3,¢;0) for a = 1/6,1/3,1/2,2/3,
5/6 and a = 1 as a function of z.
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