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ABST R A CT 

Although no asymptot ic heavy quark spin symmetry, and even more no 
flavor symmetry, are expected for systems such as quarkonium , a numeri
cal discussion shows that for som e p rocesses and in a preasymptotic region 
which may roughly include charmonium and bottomonium, the use of the 
spin-symmetry m ay be useful in conjunction with chiral symmetry for light 
hadrons (soft-exchange- app roxim ation regime, SEA). We continue our dis
cussion of hadronic transitions in the SEA-regime by studying in particular 
chi ral breaking transitions such as 3 pi --+ 3 P7r°, 3 Pry, level splittings and 
transitions which break both chiral and spin symmetry, such as 'l/J' --+ J/'l/J7r 0 , 

J/'l/Jry, and IP1 --+ J/'l/J7r 0 
• 



1 	 Introduction 

T he success of heavy quark symmetry [1], when applied to systems containing one heavy 
quark, does not unfortunately justify its extension to systems with more than one heavy 
quark, such as quarkonium, etc. A critical discussion [2] of such an issue for quarkonium 
states has lead us to recognize that no asymptotic symmetry of the heavy quark type 
(neither of the flavor-type nor of spin) is expected to hold for such systems. However 
at a num erical level, when limited to a class of processes, and in a preasymptotic quark 
mass region, application of a heavy quark formalism, only for the heavy quark spin 
symmetry and excluding the flavor symmetry, may be expected to be of some use. 
This class of processes excludes those which violate the Zweig rule and is limited to 
a kinematical domain wruch we have called the SEA (Soft-Exchange-Approximation) 
regime, for which it is essential that gluonic exchanges be predominantly of limited 

momenta. 

The numerical examination of the possible preasymptotic range for the heavy quark 
mass suggests that it may be possible to use the formalism for charmonium and bottomo
nium, within the mentioned class of processes, and an effective lagrangian for quarkonia 
and light mesons was written down to be used within the SEA regime [2] . 

A number of applications [2] to transitions among charmonium states, for not too 
large momenta of the emitted hadrons, showed the usefulness of the formalism to derive 
results which would have otherwise required longer approximate QCD calculations. The 
heavy quark spin symmetry alone leads very simply to general relations for the differen
tial decay rates in hadronic transitions among quarkonium states , which in the known 
cases reproduce the result s of a multiple QCD mult ipole expansion [3] for gluonic emis
sion. Further use of chiral symmetry leads to differential pion decay distributions valid 
in the soft regime. As shown in ref. [2] and [4] the general relations following from heavy 
quark spin symmetry alone relate the allowed transitions between two quarkonium mul
tiplets, such as 351 ----t 351 + h and 15 0 1 5 0 +h, 3 P2 ----t 351 + h, 3 PI 351 + h,----t 	 ----t 

3P ----t 35 + h, Ip} ----t 150 + h, all the transitions 3P2 , 3Pl , IPI ----t 3P2 , 3pt, 3Po,
O 1 

1PI + h, those of the type 3 D3 , 3 D 2 , 3 D 1 , 1D2 ----t 351 , 150 +h, independently of the 
nature of the light final state h. Heavy quark spin symmetry, when supplemented with 
the lowest order chiral expansion for the emitted pseudoscalars leads to a general rule 
allowing only for even (odd) number of emitted pseudoscalars for transitions between 
quarkonium states of orbital angular momenta different by even (odd) units [4]. Such a 
rule can be violated by higher crural terms, by chiral b reaking, and by terms breaking 
the heavy quark spin symmetry. Specialization to a number of hadronic transit ions 
reproduces by elementary tensor construction the known results from the cumbersome 
multiple expansion in gluon multipoles , providing for a simple explanation for the van
ishing of certain coefficients which would otherwise be allowed in the chiral expansion. 
In cer tain cases, such as for instance 3 Po ----t 3 P27r7f, 3PI 3 P2 7f7f, or D - 5 transitions----t 

via 2 7f, the final angular and mass distributions are uniquely predicted from heavy quark 
spin and lowest order chiral expansion. Other processes such as 351 ----t 351 7f7f will de
pend on two chiral parameters, as in the case of 3 Po ----t 3 P27f7f and 3 PI ----t 3 P27f7f , 
whereas 3 Po ----t 3 Pl 7f7f receives no contributions, within the approximation. We shall 
not dwell here with the derivation and presentation of these results for which we refer 

to [4]. 

In the present note we shall concentrate on hadronic transitions among states of 
quarkonium which proceed either by breaking of the chiral symmetry, but consistently 
with heavy quark spin symmetry, or t ransitions which break the heavy quark spin 
symmetry. For instance the transitions among P-states, 3 P5, 3PJ7ro or ----t 3PJ 1J----t 

proceed through dural breaking but heavy spin conserving terms, whereas for instance 
'IjJ' ----t J j'IjJ 7fo or ----t J j'IjJ1J go through terms violating both symmetries. Apart from 
deriving general relations for the matrix elements of 7f0 and 1]0 emission in transitions 
among P -states, one can estimate the suppression factors entering in these transitions, 
related to t he current quark masses . For transitions T{3PJ I) T{lPJ ) where in the----t 

final state also a 1J could be kinematically allowed, one can estimate the 7f0 versus 1J 
emission ratio, roughly expected of the order 10- 2 within conventional ass umptions . 

The first tes t for heavy quark spin breaking is of course in the structure of levels. 
T he spin breaking in the formalism is expected to go by insertion of matrices (j1-''' 

multiplied by the relevant projectors at their left and right, and with a depression factor 
in front of them of the order of t he inverse of the heavy quark mass. We have tried 
to reproduce the observed level pat terns, as given by spin-spin, spin-orbit, and tensor 
splittings, in terms of (j1''' insertions, and found a general consistency for charmonium 
and bottomonium, although the lack of flavor symmetry does not allow for a reliable 
quantitative comparison between the two systems. 

We have studied the transitions 'IjJ' ---t J j'IjJ 7fo and 'IjJ' ----t J j 'IjJ 1J, which go through spin 
breaking in our formalism, and wruch are of interest as the rat.io of their partial widths is 
related to quark masses, apart from meson mixing terms. The transition 1 PI ----t J j 'IjJ7f7f 

goes through spin breaking chiral conserving terms, whereas 1PI ---t J j 'IjJ 7fo breaks both 
symmetries. In view of a recent upper limit by the E 760 collaboration and of future 
accurate experiments we have studied both transitions, getting to a rougb estimate of 
the ratio of their widths, which is in agreement with the present limits. Increase of 
experimental accuracies and availability of heavy meson factories [5J would make this 
whole field of experimentation of renewed interest. 

2 	 Discussion of the approximation and formal de
scription 

The usual descri ption of quarkonium states is based on a short-distance regime, coulomb
like apart radiative corrections , and on a long-distance regime closer to a string-like 
description. 

A velocity heavy-quark description might make some approximate sense within t he 
string-like regime, but will certainly fall down in the short distance regime. For large 
quark m ass the coulombic regime will prevail, and in such a case one would have from 
the vi rial theorem < T >= -E, where T is the kinetic energy and -E the binding 
energy. Also, from the Feynmann-Hellmann theorem, one would have a ki netic energy 
increasing linearly with the heavy quark m ass, implying a corresponding increase of 
the relat ive momentum. The exchange of hard gluons of large momentum will become 
domi nant. No spin symmetry is then expected to hold . 
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Even worse for what concerns a possible heavy-quark flavor symmetry. In general 
gl uon radiation exchanged between static quarks brings about infrared divergences. In a 
bound st ate, potential and kinetic energy playa delicate balance against each other . T he 
regularization of the infrared divergences then implies a large breaking of any flavour 
symmet ry b ecause of the explici t appear ance of t he heavy quark mass in the kinetic 

energy. 

T he conclusion is t hat , i n total contras t to t he situat ion for systems containing a 
single heavy quark, no heavy quark spin symmet ry emerges asym ptot ically for in fin ite 
heavy quark mass , and even worse for a hypothetical heavy quark fl avor symmetry. 

For an assessment of the situation in some preasymptotic region one has to look at 
t h e existing quar konium calculat ions. We can make use of calculations of Buchmueller 
and Tye [6] with a potential behaving like r- 1 at short distance and like r at large 
distance to extract mass behaviours of the type: < k >~ 1.0 m~66, < v >~ 0.5 mQO.34, 

< T >~ 0.25 m~32 for the residual momentum, the relative velocity and the kinetic 
energy T within the QQ bound state against the quark mass mQ expressed in GeV. 
These formulae are expected to hold at least up to mQ ~ 80 Ge V. From calculations 
by Quigg and Rosner [7] for a potential C log(r/ro), with C = 3/4 GeV, we obtain, 
by using the virial theorem for this case: < k >~ 1.22 m~·5, < v >~ 0.65 mQo.s, 

< T >~ 0.375 GeV. By applying the virial theorem and the Feynmann-Hellmann 
theorem to more recent calculations by Grant and Rosner [8] we obtain: < k >~ 
1.22 m~5\ < v >~ 0.61 mQ046, < T >~ 0.37 m~08 . The conclusions seems to be 
that the kinetic energy and the residual momentum increase with increasing mQ, while 
the relative velocity decreases. This seems empirically true (under all the assumptions 
for such calculations) in a preasymptotic region which contains both charmonium and 
bottomonium. On the other hand we know that the asymptotic behaviour for very 
heavy mass could well imply a linear growing of the kinetic energy, by naively applying 
the Feynmann-Hellmann theorem to a dominant Coulomb force. 

For higher waves one finds, using again the analysis of ref.[6], that for the c - C 

system the relative velocity increases of ab out 11-12 % in going from the s-wave to the 
d-wave, both for the radial states n = 1 and n = 2. In the case of the bottomonium, 
the velocity for the s, p and d states is almost the same for n = 1, whereas it increases 
of about 7% between the s-wave to the d-wave for n = 2. As a consequence we think 
that at least up to the d-waves , our approach is still consistent. 

Once we accept the conjecture that approximate subasymptotic use of heavy quark 
symmetry, limited to the spin symmetry, may be useful in the case of bottomonium 
and charmonium, we can easily develop the formalism, following the notions and the 
notations of the heavy quark theory as developed for systems containing one heavy 
quark. The applications which we had considered in our previou s note [2] showed no 
contradictions with existing knowledge and gave direct and transparent derivations of 
results which would have required a lengthy construction of Q CD multipole expansion. 
We summarize here for completeness and for the notations the description of quarkonium 
states [2]. 

A heavy quark-antiquark bound state, characterized by radial number m, orbital 
angular momentum I, spin s and total angular momentum J, is denoted by: 

m 2 .+ 1 IJ (2 .1 ) 

3 

In the limi t of no spin-dependent interactions between t he two quarks the singlet m liJ 

and the spin tr iplet m 3lJ form a single m ul tiplet J (m,l). For 1 = 0, when t he triplet 
s = 1 collapses into a single state with total angular momentu m J = 1, such a multip let 
is described by: 

J = (1 ; p) [H I",I" _ 1715] (1 ; p) (2.2) 

Here vI" denotes the fou r velocity associated to t he multiplet J ; H I" and 17 are the spin 
1 and spin 0 components respectively; the radial quant um number has been omitted. 

For orbital angular momentum I of. 0 the multiplet J generalizes to JI'I ". I"I , with a 
decomposi tion 

JI"I .·· I"I (1 +2 p) [H l"l 1"1 0 1
i +1 'a + ~(i L1 f.I"·a {3-Y+ ! f2I=l I V'" + 1) '" ' V a ,pHi,' ··'-' .,""' 

i V2l+1 I),I". - vI"· )HI"I 1".t=1 i-I 11".+1 1"1 

2 
t<J 1 0 HI 1 · 1".-11".+ 1 ·· 1"i/(2i- 1)(2i + 1) '2]gl"ll" j - Vl"iVl" j ) al"I 

+ Kr'.'" 1(1; ;01) _ . ' -' ·i" · ·' 

(2.3) 

Here Kt · · ·1"1 represents the spin singlet Ii;, and the spin triplet 31J is represented by 
Hr:~·· I"I+1 for J = i + 1, Hil ...1"1 for J = i, and Hr~~ ' I"I - 1 for J = i - 1. All these tensors 

are completely symmetric, traceless and satisfy transversality conditions 

VI"I Kil ...1"1 = 0 

Vl"l Hr:~.fi~~ , I,I-1 = 0 (2.4) 

Moreover, to avoid orbi tal momenta other than I, we require that JI"I . I"I itself is com
pletely symmetric, traceless and orthogonal to the velocity. This allows to identify the 
states in 2.3 with the physical states. The normalisation for JI"I "'I"I has been chosen so 
that: 

H I"I " 'I"I+ I Htl+l _ HI"I .. .I"I Ht l< JI"I " I"IJI"I . . 1"1 >= 2 ( 1+1 1"1·· ·1"/+ 1 / 1"1 ... 1"/ 

H I" I '.I"I-I Htl- 1 _ KI"I ...I"I Ktl )+ /-1 1"1 ···1"/ -1 1 1"1 ... 1"1 (2.5) 

where J = ,0Jt,o and < . .. > means the trace over the Dirac matrices . The following 
applicat ion s will concern only sand p states, given respectively by 2.2 and 

11 +P[ ]f l"a'a +_f.l"a{3-yJI" = -2 2 v'2 va,{3H1-y 

1 
y'3 (r1" - vl")Ho +KI" ] (1 - p)+ l'S -- (2.6)

2 

Under a Lorentz transform at ion A we have: 

JI1-1 . 1" ' -. AI1-~1 ••• A I"~ID(A) J"I ,vID(Atl (2.7) 
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where D(A) is the usual spinol represent ation of A. 

P arity and charge conjugation have the following action: 

JiJI..."1 ~ ,-/J"I .. JJI'O (2.8) 

J"I ..."I .s (- l Y+lCJ"l "I-'ITC (2.9) 

where C = i,2, O is the charge conjugation matrix. 

Under heavy quark spin transformation one has 

J JJI ...JJI ---+ SJJJI "' ''1 5't (2.10) 

with 5 , 5' E 5U (2) and [5,ll = [5',.PJ = O. As long as one can neglect spin dependent 
effects, one will require invariance of the allowed interaction terms under the tran sfor 
mation 2.10. 

Chiral breaking hadronic transitions 

In this note we restrict ourselves to hadronic transitions with emission of light pseu
doscalar mesons. Such a light sector, in t he limit of vanishing quark masses, has a 
spontaneously broken 5U(3 ) x 5U(3) chiral symmetry. The light pseudoscalar octet is 
described in terms of pseudo-Goldstone hosons , assembled in t he matrix 

2iM 
~=exPT (3.1 ) 

where I..: is the pion decay constant, 11r ~ 132 MeV, and 

A7fo + JrTJ 7T'+ K+ ) 
M = 7f- -/f7T'0 + JrTJ KO (3.2) 

( 
K- KO -IfTJ 

Frequently occurring quanti ties are the I-forms A" and V"' given by: 

A" ~ (ea"e - ea"et) 
1 ( t t)VI' 2 eaJJ { +ea"e (3 .3) 

with e = 1::. 

Under the chiral symmetry the fields eand r: transform as follows: 

e ---+ 9L(U t = U(91 

r: ---+ 9£1::91 (3 .4) 
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where 9L, 9R are global 5U(3) transformations and U is a function of x, of the fields, 

and of 9£, gR. The forms A iJ and VJJ transform as: 

AI-' ---+ UAI-'u t 


VI-' ---+ UVI-'u t + u al-'Ut (3.5) 


Under parity we have: 

}:; ~ ~t 

- A JJA I-' ~ 
VJJ ~ VI-' (3.6) 

Under charge conjugation: 

~ .s ~T 

A I-' .s A~ 

V" .s -V~ (3.7) 

In this sect ion we will discuss possible chiral breaking but spin conserving t erms , which 
are import ant for transitions forbidden in the SU(3) x SU(3) symmetry limit. Examples 
of such kind of transitions are 

3PJI ---+ 3 PJ 7T'O, 3 PJTJ (3.8) 

The transi t ions 
?jJ' ---+ J /?jJ7fo, J /?jJTJ (3.9) 

need terms which in addition violate t he spin symmetry and will be discussed in the 
next section. 

We firs t discuss the m asses and mixings of the octet and singlet 1]' pseudoscalar 
light meson states. The term which give mass to the pseudoscalar octet, massless in the 
chirallimit, is 

LTn = JL{; < M(~ + ~t) > (3.10) 

Here M is the current mass matrix: 

md (3.11 )M = ~ ( 

mu o 

1,)o 

and JL is a scale parameter with dimensions of a mass. The lagrangian 3.10 gives in 
addition a mixing 7T'0 - TJ: the physical states 7ro, ij turn out to be: 

7ro 7T'o + fTJ 

ij TJ - f7fo (3.12) 

where the mixing angle f is 

f = (md - mu)J3 (3.13)
4(m. _ mu ~ md) 

6 



The 1J', which is a crural singlet, mixes with 7ro, 1J. Such a mixin g can be described by 

the term 
if1f ' ( t) ,£'1'1' = - A < M ~ - ~ > 1J (3. 14)
4 

where A is a parameter with dimension of a mass. At fi rst order in the mixi ng angles 

the physical states are: 

7i"0 7ro + f.1J + f. '1J' 

iJ 1J - f. 7ro + (}1J' 
-,

1J 1J' - {}1J - f.' 7ro (3.15) 

where 

)..(md - mu)
f.' 

V2(m;1 - m;o) 

mu +md)f2 ).. ( m. - 2 
{} (3.16)Y3 m;, - m; 

and f. as given in 3.13. 

We will consider chiral violating, spin-conserving hadronic transitions between char
monium states at first order in the chiral breaking mass matrix M. We are thus lead 
to consider the quantities: 

< M(~ + ~t) > 

< M(~ _ ~t) > (3.17) 


The first one is even under parity, the second odd, and both have C = +1. 

The only term spin-conserving and of leading order in the current quark masses 
contributing to the transition 3.8 is 

< J,JI/ > Vpf.l"l/p<T 817 [a i~" < M(~ - ~t) > +j3 f1f1J'] (3.18) 

where a and f3 are coupling constants of dimensions (mass t2. The direct coupling to 
1J' contributes through the mixing 3.15. The spin symmetry of the heavy sector gives 
relations among the modulus square matrix elements of the transitions between the two 
p-wave states. In particular we find that 

IMI 2epo ----+3 Po7r) = IMI 2 ep2 ----+3 Po7r) = 0 (3.19) 

and that all non-vanishing matrix elements can be expressed in terms of 3Po ----+3 P l 7r: 

1M 12 eH ----+ 3 PI 7r ) ~ IMI 2ePo ----+3 H7r)
4 

5 12 3 3 )IMI 2ePI ----+3 P27r) -1M (Po ----+ P I 7r
12 

IM I2eP2 ----+3 P27r) ~ 1M 12 ePo ----+3 Pl 7r )
4 

IM I2CPI ----+1 H7r) IMI2epo ----+3 P I 7r) (3.20) 

7 

where 7r st ays for 7ro or 1J. T he relations 3.20 can b e generali zed for any spin conserving 
transi tion between I = 1 multiplets, leadi ng to the same results of a QeD double 
multipole expansion [3] 

The width for the emission of a 7ro follows from 3.18: 

2 

3 3 3 ~ 3 2 ~ )..f"
r( Po ----+ PI 7ro) = -8 Ip,,1 (md - m,J [a + 3f3 ( 2 _ m

2 
) 

] 
(3.21 ) 

7r mry' "0 

where p". is the momentum of the emitted pion in the rest frame of the decaying particle. 
The width is suppressed approximately by a factor (mu - md)2 / A2 where A = AQCD . 

For most of the transitions between P-states there is not enough phase space for the 
emission of an 1J. However a 1J could be observed for Y(3PJ ) going to Y(IPJ). For such 
transitions the ratio of the partial widths turns out to be: 

2j3 )..f" _2 
1 + - - -,--------,--

m 23 a (m2 _ )
ry' 1forePJ ----+3 PJ,7ro) = 271~13 [ md-mu ]2 (3.22)

rePJ ----+3 pJ,1J) 16 pry m. _ mu;md j3~ 
1 + - ( 2 _ m2)a mry' ry 

By assuming a small direct coupling of the 1J' (f3 « a), or by neglecting the mixing 7ro-1J' 
and 1J - 1J' (small )..), we can estimate the previous ratio. Taking md - mu = 5 MeV, 
m. = 150MeV, and the mass of Y(3PJ) equal to 10.53 GeV, as predicted in potential 
models [6]' one has for the ratio 3.22 the value: 

R = 1.3 X 10-2 (3.23) 

4 Spin breaking 

For heavy mesons there are only two types of operators that can break spin symmetry. 
The simple reason is that on the quark (antiquark) indices of the quarkonium wave 

function act projection operators (1 + '1)/2 and (1 - '1)/2 which reduce the original 
4 x 4-dimensional space to a 2 X 2-dimensional one. Obviously, in the rest frame, the 
most general spin symmetry breaking term is of the form if· ii, where ii are the Pauli 
matrices. In an arbitrary frame one observes that any r-matrix sandwiched between 
two projectors (1 + '1)/2, or (1 - '1)/2, can be reexpressed in terms of al"l/ sandwiched 
between the same projectors: 

1+'1 1
1 +'1 1+'1 

(4.24)
2 2 2 

1 + 'I ,5 1 + 'I = 0 (4.25)
2 2 

1+'1 1+'1 1+'1 
-2- 1"-2- vl" - 2- ( 4.26) 

' 1+'1 1+'1 1 1/ 1 + 'I 013 1 + 'I
-2-11"15-- "2f.l"l/o i3 V -2-a -2- ( 4.27) 

2 
1+'1 1+'1 i 1 + 'I 013 1 + 'I 
- 2- 15 (71"1/ - 2- - "2 El"l/o i3 -

2
- (7 -2- ( 4.28) 
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and analogous relations with (1 + p) /2 -t (1 - '1 )/2. We use here f0123 = +1. Let us 

define 
O'( ±) = 1 ± -p 1 ±-p (4.29) 

In the rest frame, 0'1:;) reduce to Pauli matrices. From the previous identities it follows 
that the most general spin symmetry breaking terms in the quarkonium space are of 
the form GiO'it), or G~v0'1~)' with Gfv two arbitrary antisymmetric tensors. T here is 
another convenient way to express this result by means of the P auli-Lubanski four-vector 

E - 1 v a/3 _ i v 

iJV 2 O'iJV -- -2

(4.30)I' - 4fiJvaj3V 0' - 2/6O'iJVV 

In fact , due to the following identity, O'~t) can be evaluated in terms of EiJ 

0'(+) = 2t 1 + P~a /3 1 + -pJW Jl.va/3 -'- LJ V -- ( 4.31) 
2 2 

EJl. is orthogonal to vI" and in the rest frame we have EiJ = (0, if / 2). 

We have shown that the most general operators which break spin symmetry are 0'1:; )· 
We can try to get some more insight at the problem by looking at the underlying Qe D 
theory. Following [9], we analyze the QeD equations of motion of a heavy quark 

(iD - M)1/J(x) = 0 ( 4.32) 

where D = a+ ig.G, and G the gIuon field . Introducing the velocity dependent fields 

1/J(x) = e-iMv ,z Q1) (4.33) 

we get for the projections 
(±) _ 1 ± nI.

Qv - -2 II Qv ( 4.34) 

the following equations of motion: 

iv . D) 1 1 - nI.iv . DQ(+) = _ 1 + " i V,Q(-) 1 +-- Q( -) = ___II iPQ(+) ( 4.35) 
v 2 P" , ( 2M 2M 2 "1) 

We can solve formally the equation for Q~-) 

Q~_) = _1_ 1 1 - " ( 4.36) 2M iv · D -2 i PQ(+)
1 + _ v 

2M 

and substitute the result into the fir st equation, obtaining 

iv.DQ~+)= _ _1_ 1+ PiD1 - P ~ iD 1+ PQ(+) (4.37)
2M 2 2 lV' D 2 1)

1+-
2M 

The price for eliminating Qt-) is a non-local equation for Q~+). However, t he usefulness 
of the previous equation is in t he expansion in 1/M . By using the identi ty 

1+-p 1- -p 1+" 1+" . 1+-p
- 2- 11'-2- / 1'-2- = - 2- (9Jl.v - v iJVV - 20'Jl.v) - 2- ( 4.38) 

9 

we get our final result 

iv . DQ(+) = _1_1 + p [9 - v v - iO' ] DiJ ~ DVQ(+) ( 4.39) 
v 2M 2 iJV I' v iJV tV . D v 

1+ - 
2M 

In particular , at t he fi rst order in l/M we have 

iv . DQ(+) = _1_ 1 + -p [D2 - (v . D)2 + ~G O'JW ] Q (+) (4.40)
v 2M 2 2 iJV 1) 

where 
1 

GJW = -;- [DiJ,Dv] (4.41 ) 
'/,9, 

In the rest frame, this equation is nothing but the Pauli-Schrodinger equation. We 
could also use the relation between Q~-) and Q~+ ) in the equation of motion for the 
gluons, to obtain that the only spin symmetry b reaking term is proportional to O'it) , 

with the further information that the coefficient of this operator starts with 1/M. From 
this argument we expect that any insertion of the operator O'it) gives a suppression 
factor l/M. Analogous conclusions can be reached for O'1~) by considering the heavy 
anti-quark field. 

The first example of spin breaking within the formali sm will concern the fine struc
ture of ] Jl.l ··Jl.t levels in a few interesting cases. The general expression for the fine 
structure in terms of spin and angular momentum consists of a linear combination of 

a = S 1 · S2 ( 4.42) 

b = L ·5 (4.43) 

1 2
c = (2i _ 1)(2i + 3) [12(L . S )2 + 6L . 5 - 45 L2] ( 4.44) 

where Sl and S2 are the quark spins, 5 is the total spin of the system, and L its orbital 
angular momentum. T he first term gives the hyperfine splitting, the second the spin
orbit splitting and the third comes from the tensor term. The corresponding m atrix 
elements for S, P , D states of quarkonium are given in table I. Within our formali sm, 
for the S-wave, the hyperfine splittings arise from the following term: 

A(S ) =< 0'1'1' ]O'Jl.v] > ( 4.45) 

The values of table I, column a, are reproduced with an appropriate numerical coefficient 
in front of this term and recalling our normalization for the S-wave of eq.2.5. In the 
case of the P-wave, the spin-spin, spin-orbit, and tensor terms, are given respectively 
by: 

A{F ) = < ]Jl.O'vP]iJ O' vp > ( 4.46) 

B(P) = i < ]Jl.O'Jl.v]V > -i < ]1' O'Jl.v]iJ > ( 4.47) 

C(P) = < ]Jl.O'Jl.vJpO'w > + < ]Jl.O'W ] pO'iJV > ( 4.48) 

where the last term is in effect a combination of the usual tensor and spin-spin terms . 
The analogous terms fo r D-waves are: 

A (D) =< ]iJVO'p). ]Jl.vO'P). > ( 4.49) 
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5 

for t he spin-spin t erm, 

B(D ) = i < J~(1l-'p]~ > -i < ]~(1l-'pJI-'V > ( 4.50) 

for the spin-orbit term, and 

C(D) = < j/Jv(T}Jp]). v (1P). > + < J/Jv(1P).]J..,,(1~,p > (4.51 ) 

C'(D) =< JI-'V (1/JP ]p).(1v). > ( 4.52) 

which are both combinations of the usual tensor and spin-spin terms. It is easy to build 
a linear combination of the two which gives the tensor splittings of table I. 

From the mass values of table II one can extract the physical splittings and perform 
a fit to arrive at the numerical coefficients in front of our lagrangian terms. As the 
coefficients have the dimensions of mass, we choose them to be in MeV and obtain for 
the S-wave spin-spin splitting -7.3A(S) and -2.5A(S) for cc and bb respectively, in 
front of an unperturbed mass levels of 1534 < fJ > and 4730 < J] > for the two cases. 

For P-waves the corresponding coefficients are 2A(P) and 0.8A(P), to be compared 
with the unsplitted common mass term of 1762.6 < J/Jl/J > and 4950.1 
< JI-'l/J > for charmonium and bottomonium respectively. For the splittings within 
the triplets, the mass spectra are reproduced by the following combinations: 

8.75B(P) - 2[A(P) - 1.5C(P)] ( 4.53) 

in the case of cc and 
3.5B(P) - 0.6[A(P) - 1.5C(P)J (4.54) 

in the case of bb. We see that, in agreement with our previous considerations, the spin
spin and the tensor terms are depressed with respect to the spin-orbit coupling, which 
contains a single (1I-'V insertion. Also these terms are more depressed for bottomonium 
than for charmonium. In the previous computation we have assumed that possible 
mixing terms among different waves are negligible. It is however possible, within the 
formalism, to include such mixing terms in the lagrangian. For example in the case of 
a S - D wave mixing, such a term is given by 

< J (1/Jp]/Jv (1~ > + < ] (1l-'pJ/Jv (1~ > (4.55 ) 

mixing 3 Sl and 3 D1 states. 

Spin breaking hadronic transit ions 

We apply now our formalism to the transitions "p' -r J /"p11"0 and "p' -r J /"pTJ. Of 
part icular interest is t he ra t io 

R = [("p' -r J /"p11"0) 
(5.1 )

[("p' -r J /"pTJ ) 

which provides for a measure of the light-quark mass ratio 

md- m u 
(5 .2) r = mu +md 

m.
2 

11 

Using partial conservation of axial-vector current Ioffe and Shifman [10] give the pre

diction 

_ 27 [t;] 3 r2 (5 .3) R - 16 pry 

The calculation of R is straightforward with the heavy quark formalism. E q. 5.3 will be 
recovered when neglecting t he mixin gs ITo - 'I and T/ - 'I' (or a possible di rect coupling 

of TJ'). 

The most general spin breaking lagrangian for the processes "p' -r J /"p1':0, TJ is 

vL = i€l-'vp). [< J'(1/Jv J > - < J(1/J J' >] v P X 

{)>. [i: < M('L, _ 'L,t) > +BTJ'] + h.c. (5.4) 

The couplings A and B have dimension (mass t1; the B term contributes to the ratio 
5.1 via the mixing 11"0 - TJ' and TJ - TJ' , in the same way as the j3 coupling in 3.18. There 
are no terms with the insertion of two (1; the two P and C conserving candidates 

v
€I-'VP). [< J'(1/J'T J(1'T > + < J(1/J'T J'(1/ >] vP{). < M('L, - 'L,t) >; 

€/JVP>' [< JI(1/JVJ(1P)' > + < J(1I-'VJI(1P)' >] < M('L, - 'L,t) > (5.5) 

are both vanishing. Using the lagrangian 5.4 and taking into account the mixings 3.15 
we can calculate the ratio 5.1, which is quite similar to the ratio 3.22 

2B )../1f 

27 ~ ] 3 [ ] 211 + -A -2 2R = _ P1f md - mu 3 mryl - m"o 
(5.6)[16 p~ m. -1 / 2{mu +md) 1 +!!.-~ 

Am~l-m~ 

If we neglect the mixings 11"0 - TJ' and TJ - TJ' (,\ = 0) or the direct coupling of TJ' (B=O) 
5.6 reduces to 5.3. 

Eq. 5.6 can receive corrections from electromagnetic contributions to the transition 
"p' -r J / "p11"0. It has been shown that such corrections are suppressed [11], [12J. A 
second type of corrections is associated with higher order terms in the light-quark mass 
expansion (the lagrangian 5.4 is the first order of such expansion); a discussion can be 

found in ref. [13J. 

We consider now two hadronic decay modes for the recently discovered [14J 1P1 state 
of charmonium. These processes are: 

1 p} -r J NJ1r1': (5 .7) 

1 p} -r J /"p11"0 (5.8) 

The first one is, at the leading order, spin breaking but chiral conserving, while the 
second one breaks both symmetries. Therefore one could naively expect an enhancement 
of 5.7 respect t o 5.8. Voloshin [15] suggested that t he isospin violating transition 5.8 
could be an order of magnitude stronger than the t wo pion transition 5.7. Kuang Tuan 
and Yan [16] prediction is quite different, but the E760 Collaboration [14] has set the 
upper limit 

re P1 -r J /7./; 1':1':) < 0.18 (5.9)
[{1 p } -r J /7./;1':0) 

12 



This result is consistent only with the prediction of Volosrun. We now give an estimate 
of the partial widths for these decays in our approach. 

For the decay I PI ----+ J I'I/; TrTr we can wri te down in general the following terms: 

a [< J~ulW J >+ < juiJV J Il >] < Av{v, A ) > (5.10) 

i b [< J ~u IlIJ uP'" > - < J u!-'P P 'u 
pv >] < A" (v • A) > 

with a and b arbitrary coefficients with dimension mass-I. The contributions of the 
"heavy" factors of t hese operators to the matrix elem ent of the process under study are 
of the same form so that one obtains 

4(a + b) €at3vo HaK{3V6 (5.11) 

where H is the field describing the J 1'1/; resonance and K the I Pl ' 

For the decay } PI ----+ J I,pTro we can li st three independent terms in the lagrangian 

i c €",vpa [< J "'u vp J > + < Ju"'P]iJ >] v'" < Mr. - MI;! >; (5.12) 

d €!-'vpa [< J !-'ur PJuvr > - < jlJuvr Jur P >] v'" < MI; - Mr.t >; 

e €/Jvpa [< u"r Jru vP J > - < u vP Jr u",r J >] v'" < M~ - M r.! > 

with c, d, e arbitrary dimensionless coefficients. The contribution of the heavy part to 
the matrix element of the process 1 PI ----+ J1'1/; Tro sums up to 

8(c + d + 2e )H. K (5 .13) 

For the ratio of the partial widths for 1 PI ----+ Jl,p 71"0 and for I PI ----+ J 11/J 1r1r we find : 

rCP}----+ J I,p7l"7I") 7 -2( a+ b )2 C V 2 
----':-,--:-:-----'--:'-----c- = 1. x 10 e (5.14) rep} ----+ JI,p Tro) c + d + 2e 

Due to our ignorance of the coefficient ratio in 5.14 we cannot give an exact prediction. 
However one can try an estimate. If we use our previous argument about uL;) insertions, 
we expect a to be of order IIMe and b of order I I M; . On the other hand , the coefficients 
in 5.12 are expected to be proportional to Ax (Ax>::::: 1 C eV ), and furthermore we expect 
c of order l i Me and d, e of order 11M;. Therefore, except for possible cancellations, it 
seems reasonable to assume: 

a+b 
(5.15)

c + d + 2e >::::: Ax 

leading to a rough estimate 

rcPI ----+ J I'I/; 7I"7I") -2 
(5.1 6) r ep} ----+ JI,p7l"0) >::::: 2 x 10 

T his would provide for a possible explanation of the relative suppression of the two 
pion channel. Finally we notice that in our approach the decays I PI ----+ J l,p 71"71" and 
I PI ----+ J I 1/J 71"0 can be related to other processes: 3 Po ----+ 150 71"0 and 3 PI ----+ 150 71"71". An 
analogous estimate in the case of bottomonium leads t o: 

rep} ----+ T7I"7I") >::::: 2.6 x 10-2 (5.17) r(I PI ----+ T 1ro ) 
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6 Conclusions 

T here is no theoretical basis for heavy-quark symmetry as asymptotic symmetry of 
bound quarkonium in the limit of infinite quark mass . Nevertheless, in a preasymp
totic region, expectedly including charmonium and bottomonium, numerical discussion, 
plus a number of successful applications, show the practical usefulness of adopting the 
heavy-quark formalism to describe a certain class of processes, which do not violate 
the Zweig rule, and furthermore only by limiting to (broken) heavy-quark spin symme
try, that is excluding heavy-quark flavor symmetry. The processes are characterized by 
predominantly soft gluon-exchanges (SEA regime) , both for the essential of the bound 
state description and for the occurring dynamical gluon exchanges . The usefulness of 
the description appears in particular in conjunction with use of the chiral expansion for 
t he ligh t pseudoscalars, allowing for the construction of an effective chiral lagrangian 
for charmonium states and ligh t pseudoscalars, which has been successfully applied to 
study of hadronic transitions [2], [4]. 

In trus note we have explored, within such an approach, t ransitions which proceed 
either by breaking the crural symmetry, or by breaking the heavy-quark spin symmetry, 
or both symmetries. For processes such as 3 PlI, ----+ 3 Pj1rO or 3 PJ, ----+ 3 PJTJO one can 
relate among them 71"0 and TJo emission and estimate the suppression factors in terms 
of the current quark m asses. A manifestation of the heavy quark spin breaking is in 
the observed level splitt.ings, reprod uced in this approach through spurion-type spin
breaking insertions, and corresponding to the standard spin-spin , spin-orbit, and tensor 
splittings. We have also calculated the par ti al widths of the heavy-quark spin-breaking 
transit ions 1/J' ----+ ]/1/)71"0 and '1/;' ----+ J 11/JTJo, whose ratio is di rectly related to quark masses, 
and the p-state to s-state transitions }PI ----+ J I ,p7l"1r and }PI ----+ J I '1/;71"0, both spin
breaking, the first one dural-conserving, the second one chiral-violating. Recent and 
forthcoming improvements in the experimental limits and expected fu ture availability 
of heavy meson factories will make comparison with data more precise and theoretically 
informative. 

14 



Tab le Captions 

Table I: Ma.trix elements for spin-spin (a), spin-orbit (b ), and t ensor term (c) in S, P, 
D states of quarkonium. 

Table II: Masses (in MeV) of Sand P states of charmoni um and bottomonium. All 
values are experimental, except 1PI and 1 So states for bottomonium [17]. Data 
are from [18], except for 1 PI state of charmonium [14]. 
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Table I 

State a b c 

150 -3/4 0 0 
35} 1/4 0 0 
Ip} -3/4 0 0 
3po 1/4 -2 -4 
3p} 1/4 -1 2 

3P2 1/4 1 -2/5 
ID2 -3 / 4 0 0 
3D l 1/ 4 -3 -2 
3D2 1/ 4 -1 2 

3D3 1/ 4 2 -4/ 7 

Table 11 


--bbState cc 
150 2980 9420 

351 3097 9460 

IPI 3526 9901 

3PO 3415 9860 

3P

l 3510 9892 

3 P2 3556 991 3 
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