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Abstract 

A detailed study has been made of the feasibility of Mszsller Scattering as a method 
for continuous monitoring of the LEP beam energy at high energies where the currently 
used resonant depolarisation technique may be unusable. Two methods, based on MSZSller 
Scattering, to measure the energy with different dominant systematic errors are discussed. 
Monte Carlo studies of the effect on the energy measurement of radiative corrections, 
target binding effects, beam parameters and calorimetric energy resolution have been 
made. It is shown how the beam parameters necessary to control the systematic error 
may he deduced from the Mszsller scattering events, and the crucial target-detector distance 
monitored using ep scattering events. The beam energy precision is expected to be a few 
MeV at 90 Ge V. The reduction of the systematic error on the W mass measurement can be 
appreciable, and for a fixed total error on the W mass may provide a considerable economy 
in running time at LEP2. The method is also applicable to precise energ 
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1 Introduction 

At LEPI with collision energies ~ 90 GeV the beam energy has been measured with a precision 
~ 1 MeV [1] using the Resonant Depolarisation (RDP) method [2]. RDP at LEPI relies on 
the existence of transverse polarisation in single circulating beams generated by the Sokolov­
Ternov [3] mechanism. At LEP2 with collision energies ~ 200 Ge V it is however not clear 
that the RDP method will be applicable. This is because the beam energy spread of 150 
MeV at Ebea.m = 90 GeV (as compared to 37 MeV at Ebea.m = 45 GeV) is comparable to the 
separation of 440 MeV between adjacent linear depolarising resonances. In the absence of RDP 
measurements of Ebea.m around 90 GeV it has been proposed to use RDP up to the highest 
possible energy (perhaps Ebea.m = 70 GeV) and then to extrapolate to higher energies with the 
flux loop [4] method. The precision obtained in this way will depend critically on the highest 
energy at which RDP may be used. The error on Ebea.m has been estimated [4] to be in the 
range 9-20 MeV. 

The beam energy uncertainty ~Ebea.m has a major impact on the precision of the W mass 
measurement at LEP2. The systematic error due to theoretical and detector based uncertain­
ties, ~M~P, has been estimated to be 24 MeV [5] . With an integrated luminosity of 500 pb-1 

per experiment, the combined statistical error on Mw of the four LEP experiments is ex­
pected [5] to be 25 MeV. Using the flux loop extrapolation method, the systematic errors on 
Mw from ~Ebea.m, ( ~M~) and from theoretical and detector related uncertainties (~Ma:P) 
are comparable, 4 and the combined systematic error on Mw is expected to be greater than, or 
of the order of, the statistical one. If a dramatic improvement, (say by a factor of 5) in ~Ebea.m 
is possible its contribution to the systematic error on Mw will be negligible. It may also be 
remarked that theory and detector related systematic errors of physical observables estimated 
in early LEP 1 studies have, in some cases, been shown in practice to be pessimistic by an 
order of magnitude or more. The impact of ~Ebearn on the total error on the W mass and the 
required integrated luminosity at LEP2 is considered in more detail in Section 5 below. 

One possibility to reduce significantly ~Ebea.m (to the level of 2 MeV at Ebea.m = 90 Ge V) 
is the M¢ller scattering technique [6, 4]. This possibility is explored in detail in this paper. It 
is proposed to cross-calibrate with RDP at any convenient low energy (say Ebea.m = 50 GeV) 
and to use the M¢ller technique at all higher energies. It is important to note that, unlike 
RDP, the M¢ller method gives a continuous measurement of the electron beam energy with 
colliding beams in the machine, thus avoiding the time dependent interpolation errors of the 
RDP method 5. Since the energy is measured at a unique point in the machine an extrapolation 
to the corresponding energies in the four experimental interaction regions is however required. 
Also in the RDP method the measured energy (the average over the circumference) must be 
similarly extrapolated. By use of a symmetric detector it is, in principle, also possible to 
measure the energy of the e+ beam, using Bhabha scattering. However space limitation in LEP 
may preclude this possibility. 

The plan of the paper is as follows: in Section 2 the basic method is explained and the critical 
parameters contributing to ~Ebea.m are introduced. In Section 3 results from Monte Carlo 

4Note that f:l.Ebeam = f:l.Mft,.. 
sIn fact these give the main contribution to f:l.Ebeam for the RDP method. The intrinsic accuracy (resonant 

line width) is only::: 250 keY at LEPI [7]. 
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simulations of the detector are presented. Effects considered include calorimeter resolution 
and gain stability, QED radiative corrections, target binding effects and finite beam size and 
angular divergence. Section 4 is devoted to calibration procedures. It turns out that all essential 
parameters, except he target-detector distance, are measurable using only the recorded M¢ller 
scattering events. Detecting also elastic ep scattering events enables precise monitoring the 
target-detector distance. The conclusions are presented in Section 5. 

Basic Method 

We consider elastic scattering of a beam electron (or positron) of energy Ebearn on a target 
electron at rest. From two body kinematics we have the relation 6 : 

(1) 


where me is the electron mass and ()o is the 'opening angle' between the two scattered electrons 
in the lab. frame defined by: 

(2) 

here ()1 and ()2 are the scattering angles of the two electrons with respect to the beam direction. 
The parameter K is the cosine of the scattering angle of the electron in the centre of mass 
system (K = cos ()*), which can be determined using the quantities in the laboratory system by 
either: 

tan ()1 - tan ()2 
(3)

tan ()1 + tan ()2 
or 

Ebearn +me E1 - E2 

Ebearn - me E1 + E2 
E1 - E2 

(4)
E1 + E2 

here E1, E2 are the energies of the scattered electrons. The principle of the M¢ller technique 
is to measure ()o and K, and determine the Ebearn using Eqn.(I). At Ebearn = 90 GeV, the 
minimum opening angle (for K = 0) is 6.74 mrad. 

The proposed detector is shown schematically in figure 1. It consists of the following ele­
ments: 

• 	 A hydrogen gas jet target (GJT) similar to that used in the U A6 experiment [8]. The 
bound electrons of the hydrogen atoms serve as target . 

• 	 A silicon microstrip detector (SMD) with full azimuthal acceptance and a polar angle 
acceptance from 2 to 10 mrad measuring (T, ¢) co-ordinates in a plane transverse to the 
beams. 

6A slightly different formula is given in Ref.[6J. It differs from Eqn.(l) only by terms ofO((E:: )2)
D1 
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• 	 A high resolution electromagnetic calorimeter (ECAL) with a similar angular coverage to 
the SMD . 

• 	 A recoil pro on detector (RPD) consisting of a small planar silicon microstrip detector in 
vacuo close to the GJT, to detect recoil protons from elastic e-p scattering. 

As indicated in figure 1 the scattered electrons are detected in a near-symmetric configuration 
where each has an energy of ~ E bearn /2 and f)l ~ f)2. Denoting by (Xl, yd, (X2' Y2) the cartesian 
co-ordinates of the impact points of the two electrons in the plane of the SMD, and L the 
distance from the target to the SMD plane, the opening angle f) is given by: 

(5) 


For two body kinematics with the target electron at rest, and the beam perpendicular to the 
SMD plane then f) = f)o where f)o is defined in Eqn.(2). Two different determinations of E bearn , 

with very different systematic errors, are possible, depending on how the value of K, in Eqn.( 1) 
is measured: 

Ebearn = EB : 

(6) 

(7) 

where EI and E2 are the energy of the electrons measured by the ECAL 7, and 

(i=1,2) 	 (8) 

where (xo, yo) is the position of the beam in the SMD coordinate system. EA is determined 
by information from both the SMD and the ECAL but is independent of the transverse beam 
position, whereas EB uses only the SMD measurement but requires the transverse beam position 
to be known. 

To study the precision required for the measured quantities f), K,A, K,B it may be noted that 
from Eqn.(l): 

(9) 


here K,Obll is the measured K, (K,A or K,B)j K,Obll = K, + SK,. In this equation and subsequently SX 

denotes the shift of the quantity X due to some systematic effect. The precision, ~X with 
which X can then be measured depends on how accurately SX can be estimated. Since SK, is 
typically much larger than Sf), Eqn.(9) is written to first order in Sf), and to second order in SK,. 

In general SX depends on some measurable or calculable parameters, for example the mean 
Fermi momentum of the target electron in the hydrogen atom, the beam size or the resolution 
of the ECAL. The aim of the simulations presented in Section 3 below is to calculate SX in 
terms of these parameters. Eqn.(9) indicates that to obtain a precision of 1 MeV on Ebearn at 
90 GeV requires that f) should be known to 5 parts in 106

• If L = 30 m, the required tolerance 

7this definition and the exact definition in (4) differs only by a factor (1 + 10- 5 ) when Ebeam = 90 GeV 
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on 1, the distance between the SMD hits of two electrons, is 1 ]Lm compared to the typical 
size of 1= 20 cm (corresponding to the minimum B) and on L is 150 ]Lm. This level of survey 
accuracy is not unrealistic. Since the M¢ller detector is cross-calibrated relative to the RDP 
measurement the absolute values of Land 1 are not required to be known. They must however 
remain constant within the specified tolerances between cross-calibrations. It should be noted 
that, compared to this absolute accuracy, the requirement on the resolution of 1is much looser. 
The beam energy has an intrinsic spread of (J'E IE = 1.5 X 10-3 , (hence (J'z/1 = 0.75 X 10-3). 

There is an effect of similar magnitude from the Fermi motion of the target electrons. Thus 
the position resolution of the SMD should be about 50 ]Lm, which can easily be achieved using 
standard silicon microstrip detector technology. From the definition in Eqn.(5) the opening 
angle B is independent of the transverse position of the beam relative to the SMD. It depends 
only weakly on the angle between the beam direction and the detector axis (beam tilt and 
beam angular divergence), and the error on Bdue to this effect is negligibly small. This is why 
ois used in Eqn.(7) instead of the more obvious choice Bo = tan Bl + tan B2 as in Eqn.(3). As 
shown in Section 4 below, the stability of L can be controlled to a fraction of a millimetre by 
observing ep scattering events. 

The effect of S", is more complicated. The third term in (9), which is quadratic in "', does 
not average to zero. The finite resolution of the", measurement therefore causes a shift of the 
reconstructed beam energy by: 

SEI E ~ -S",2. (10) 

The second term which is linear to S", may average to zero if there is no correlation between 
S", and "'ob~. However, it depends on how the quantity", is measured and how the underlying 
effects propagate. This will be studied in detail using Monte Carlo simulation in the next 
section. It should be pointed out that by restricting I"'ob" Iused in the analysis, the contribution 
from the second term can be reduced, but at the cost of event statistics. 

The major contributions to S", are different for EA and EB . In the ECAL method, EA,the 
finite energy resolution of ECAL and the gain calibration error are the dominant sources. In EB 
the finite beam size and uncertainty in the beam position, with respect to which the electron 
scattering angle is measured (Eqn.(8)), are the most important. 

Finally in this Section the statistical error of the Ebearn measurement is estimated. The 
cross sections for M¢ller (e-e-) and Bhabha (e+e-) scattering, integrated over the angular 
range -co < cos B* < co, where cos B* is the scattering angle in the CM frame, are: 

47ra2 co(9 - c~) 
(J' = -- ( M¢ller ) (11) 

s (1 - c6) 

( Bhabha ) (12)(J' = 7r:
2 

{8 [(1 ~Oc~) + In G~ ::)1 
-fS is the total CM enegy of the scattering process ( 303 MeV at Eo = 90 GeV). A minimum 
a.ccepted scattering angle of 2 mrad in the lab. frame, corresponds to the centre of mass 
a.cceptance cut: Co = 0.479 at Eo = 90 GeV. Where Eo is the mean beam energy. The accepted 
M¢ller (Bhabha) cross sections are 15.5 (4.2) ]Lb. With a luminosity (of the LEP beam on the 
target electrons) of 4 x 1031 cm- 2 sec-1 [6] the M¢ller (Bhabha) event rates are 620 (167) events 
per second. Thus in 2 hours 4.5 x 106 (1.2 x 106 

) of M¢ller (Bhabha) events will be collected. 
The statistical accuracy of the Ebearn measurement is then determined by the spread on the 
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reconstructed Ebearn distribution. The dominant contributions to the spread are due to the 
Fermi motion of the target electrons (O"E = 290 MeV at Eo = 90 Ge V) and the energy spread 
of the LEP beam (O"E = 145 MeV at Eo = 90 GeV). The RMS spread of the Ebea.rn distribution 
is found, in the Monte Carlo simulation described below to be O"E = 390 MeV. For N recorded 
events the statistical error on the mean beam energy is: 

f).E 8tat = O"E = 390Me V (13)
o ..jN ..jN 

So, in 2 hours: 

0.18MeV ( M¢ller ) (14) 

0.36MeV ( Bhabha ) (15) 

The statistical error is thus sufficiently small compared to the goal of 1-2 Me V overall accuracy. 

3 Simulation of Systematic Effects 

In order to assess the systematic effects, a Monte Carlo study was made with realistic assump­
tions. Radiative corrections, Fermi motion, beam energy spread, beam size, beam angular 
divergence and ECAL resolution were considered. The effect of each individual contribution 
was studied. The parameters of our model detector are: 

L 30 m 

SMD acceptance 2.00 - 6.00 mrad 

ECAL acceptance 1.67 - 6.33 mrad 

ECAL resolution O"E/ E = 3.37/E( GeV)1/4 % 


Beam size O"x = 1.54 O"y = 0.34 (mm) 
Divergence O"x' = 28.5 O"y' = 5.0 p,rad 
Energy spread O"E = 145 MeV (At Eo = 90 GeV) 

In the simulation of the ECAL response, the energies of the photons (produced by radiation 
from electrons) were added to those of the nearest electron if they are separated from it, in the 
transverse plane, by less than 1cm at the ECAL position. The energy was then smeared with 
Gaussian distribution to simulate the energy resolution. All of these effects were incorporated 
in a Monte Carlo event generator. The results presented below used a modified version of the 
Bhabha event generator BHAGENE3 [9J. 

3.1 Radiative Corrections 

The effects of photon radiation, (Fig.2) were investigated using three independent computer 
codes. In the first, following Ref.[6], 'effective photons' of energy E-y were radiated collinear to 
each incoming or outgoing electron with the differential probability: 

dP = (3x f3 - 1 (16)
dx 
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where 

The second code used is the Standard Model Bhabha scattering generator BHAGENE3 
[9] with a suitably re-weighted angular distribution.8 In this program up to two initial state 
and three final state photons are generated using an improved soft photon approximation in 
the full angular phase space. Mass effects in the near collinear region are explicitly taken 
into account. The shifts and smearing of the energy distributions were cross-checked using 
at. third independent code BMOLLR [10], an O(a) exponentiated Monte Carlo generator for 
e- e- ---+ e- e- +n, where n may take any value. 

The main effects of photon radiation are the following: 

• 	 Initial state radiation. Collinear photons radiated from the incoming beam or the target 
electron are not observed in the detector so EvilJ < Ebearn. The Lorentz boost between 
the e- e- CM system and the LAB depends on the photon energy so that Eqn( 1) is no 
longer valid. Non collinear initial state photons result in a non-zero angle between the 
plane defined by the scattered electrons and the beam direction. Thus (J -1= (Jo • 

• 	 Final state radiation. Collinear radiation does not effect the validity of Eqn.( 1). Also, 
since such photons are detected in the ECAL, together with the scattered electrons they 
do not effect the calorimetric measurement of E 1 , E 2 • Non collinear photons will however 
modify Eqn.(I) in a similar way to non collinear initial state photons. They may also be 
outside the ECAL acceptance and so will modify the measured values of El or E 2 • 

The energies of the detected photons were added to those of the nearest scattered electron 
to determine E1 , E2 • Figs.(3a,3b) show results from BHAGENE3 for EA and EB • For EA 
calorimeter resolution effects (see below) are set to zero. The main effect is a loss of statistics 
from the narrow central peaks, due to highly radiative events rather than a significant increase 
in the width of this peak. It can be seen from Fig.3 that the migration of events from the 
central peak is much more severe for EB than for EA. 

3.2 Binding Effects 

The kinematical effects due to atomic binding of the target electrons are similar to those 
produced by initial state radiation in that the e-e- CM energy and the Lorentz boost between 
the e-e- CM and the Lab systems are modified. If a bound electron has Fermi momentum Pi 
then the CM energy Vs is modified according to the relation: 

s' = s[l- ELcOS X] (17) 
me 

where X is the angle between Pf and the beam direction. In a GJT the hydrogen is actually 
in the form of 'clusters' of some 106 hydrogen atoms. Here the simplifying assumption is made 

8This program, written for use at LEPI energies also includes full one-loop electroweak corrections for sand 
t channel Z exchange. In this study it was used unmodified at ..;s = 200 - 300 Me V. 
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that the binding effects are the same as in atomic hydrogen. The distribution of Pi is given by 
the momentum wave function 'I! (Pi ) of the electrons in the ground state of the hydrogen atom. 
'I! (Pi ) is calculated by taking the 3-dimensional Fourier transform of the radial wave function: 

1)3 _..2:-Ro()T = (- 2"2e 40 (18) 
ao 

where ao is the Bohr radius (= 0.529..4). The result is: 

(19) 

So the probability distribution for Pi is: 

dP 2 2 PJ 

-d = 47r I'I! (Pi ) I Pi = 47r [ (/ 0)2]4 (20) 


Pi 1 + Pi Pi 

where P~ = l/ao = 3.73 keY. 

The modification of the centre of mass energy VB to P causes the opening angle e to be 
modified according to 5e /e = (Pi /me) . cos X. For a typical value of Pi = P~ and cos X = ±1, 
the shift of 5Ebearn / Ebeam. = ±3.6 X 10-3 • It causes a significant increase in the width of the 
reconstructed Ebeam. distribution (larger than the LEP energy spread). However, this shift 
averages to zero when integrated over cos X and the net shift (due to higher order terms) is 
small. E A , EB distributions, including the effects of Fermi motion simulated according to 
Eqn.(20) are shown in Figs.( 4a,4b) respectively. 

3.3 Beam Size and Divergence 

In the EB method the parameter K, is defined by Eqns. (7) and (8). The main sources of SK, are 
the uncertainties in the beam position and the finite transverse beam size. In the worst case, 
when the scattering plane is horizontal, and the collision point is also displaced horizontally 
from its mean position, the RMS of the collision point distribution is 1.54 mm. This corresponds 
to the shift in K, of 0.015 RMS. From Eqn.(10), the shift in the measured Eo is estimated to 
be 20 Me V when Eo = 90 Ge V. In order to make a correction for this shift to an accuracy of 
1 MeV, the beam size should be known to a level of 5% relative precision. Possible ways to 
achieve this precision are discussed in Section 4. The distributions of E A , EB including the 
effects of beam size, are shown in Figs.(5a,5b), and including the effects of beam divergence in 
Figs.(6a,6b ). 

3.4 ECAL Resolution and Gain Stability 

In the EA method, the ECAL resolution (J"E propagates to the resolution of K,A (when K, ~ 0) 
as (J"K = (J"E / y'2E. Similarly the relative gain calibration error between different calorimeter 
modules leads to a shift in K,. As indicated in Eqn.(10), a calorimeter with good energy resolu­
tion is important to reduce the contribution from SK,2. An energy resolution of ~ 1 % has been 
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achieved at Ee = 45 Ge V using existing techniques (crystal or lead glass calorimeters). Using 
such a calorimeter the shift due to the quadratic term in SK is about 4.5 MeV at Eo = 90 GeV. 
To make a correctiou for this shift with an accuracy of 1 MeV, the ECAL resolution should be 
known to a relative accuracy of 10-20 %. The resolution can be continuously monitored using 
electrons from ep elastic scattering (see Section 4 below). The gain calibration can be main­
tained by using a suitable monitoring system. A precision of 0.1 % level for short/medium term 
has already been achieved in existing calorimeters [11]. The gain of the calorimeter can also 
be checked using the electrons from ep elastic scattering. Within the acceptance of the ECAL, 
the energy of the electron from this process is almost the full beam energy and varies only by 
0.1 % over the range of accepted scattering angles. Thus the ECAL gain may be controlled at 
the level of ~ 0.1 %. The effect of the ECAL resolution on EA is shown in Fig.7. 

3.5 A Simulation Results 

The reconstructed Ebearn for methods A, B with all effects considered are shown in Figs.(8a,8b). 
The systematic bias due to individual contributions as well as the overall 'systematic shift for 
both methods A and B, for Eo = 90,50 Ge V are summarised in table 1. The shifts are estimated 
from the mean values of the corresponding distributions. For method A the most important 

Eo = 90 GeV Eo = 50 GeV 
Parameter EA EB EA EB 

Radiative effect 
Fermi motion 

Beam size 
Beam divergence 
ECAL resolution 

-0.2 ± 0.9 
-1.8 ± 0.3 
-0.2 ± 0.2 
-0.2 ± 0.2 
2.2 ± 0.30 

-0.03 ± 0.1 
-1.7 ± 0.3 
-8.8 ± 0.4 
-3.5 ± 0.2 

-

-0.1 ± 0.9 
-0.2 ± 0.1 

-0.06 ± 0.05 
0.06 ± 0.05 

0.3 ± 0.1 

-0.05 ± 0.1 
-0.1 ± 0.1 
-0.8 ± 0.1 
-0.2 ± 0.5 

-

All effects 1.4 ± 0.4 -6.1 ± 0.4 2.2 ± 0.3 -2.9 ± 0.3 

Table 1: Systematic shifts of the energy measurement SEi = Ei - Eo in MeV (i=A,B) for 
Eo = 90 GeV (column 2 and 3) and for Eo = 50GeV (column 4 and 5). The errors quoted are 
statistical ((J'RMS/ Vii) for a sample of 2 X 106 events. 

systematic shifts are due to ECAL resolution and Fermi motion, whereas for method B the 
finite beam size effect dominates. The results in Table 1 correspond to samples of 2 X 106 

1031 2 1Monte Carlo events corresponding, for real data with a luminosity 4 X cm- sec- , to about 
one hour of data taking. The estimator used for the beam energy is, for both EA and EB, 
the mean of a truncated distribution grun, to avoid sensitivity to the detailed form of the 
distribution. The truncation is done by using a symmetrical acceptance window centred at the 
nominal Eo of width chosen such that 90 or 95 % of all events lie within the window. The 
entries in Table 1 correspond to a 90 % window. The stability of the procedure is illustrated in 
Table 2. and Fig.9 where grun - Eo is shown in the range Eo = 50-90 Ge V, and for the two 
different (90 % and 95 %) truncation windows. The changes in the mean energy for a different 
choice of window are ~ 1 MeV for EA and ~ 2 MeV for EB over the range of Ebeam. considered. 

Attempts were made to find an empirical model defined by a few fixed parameters to describe 
the simulated EA, EB distributions. The most successful of these was a 5 parameter Breit­
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Wigner plus Gaussian model with a common mean. However subtle changes in the shapes of 
the distributions as a function of Ebeam rendered such fits unstable. 9 Although at 50 GeV 
consistent results were obtained between the mean energy parameter of the fit and EfTun, this 
was no longer the case at higher energies, when either satisfactory fits could not be obtained,

tTun 
or a good fit was obtained but with a fitted mean value very different from both E and the 
fitted mean values of neighbouring energy points. 

Eo (GeV) 50 60 70 80 90 
Estimator 

Ef;un (90 % ) 
Ef;un (95 % ) 
Ef;un (90 % ) 
Ef;un (95 % ) 

2.2 ± 0.3 

2.4 ± 0.3 

-2.9 ± 0.3 

-5.2 ± 0.3 

1.6 ± 0.4 

2.0 ± 0.4 

-7.3 ± 0.4 

-8.1 ± 0.4 

0.4 ± 0.4 

1.6 ± 0.5 

-7.9 ± 0.5 

-10.1 ± 0.6 

-0.3 ± 0.5 

0.8 ± 0.6 

-7.5 ± 0.6 

-9.1 ± 0.7 

1.4 ± 0.4 

1.2 ± 0.4 

-6.1 ± 0.4 

-7.9 ± 0.4 

Table 2: Systematic shifts of the energy measurement EfTun - Eo (in Me V) for different 
estimators and beam energies. The errors quoted are statistical for a sample of 2 X 106 events. 

4 Calibration of Important Parameters 

In this section, we discuss calibration methods for two important quantities: the distance L 
between the target to the SMD which determines the accuracy of (), and the transverse beam 
size and position relevant for the EB method. 

4.1 	 Monitoring the Target-Detector Distance using Elastic e-p Scat­
tering 

As mentioned in Section 2, a 1 MeV uncertainty on Ebeam corresponds to a relative uncertainty 
in () of 5 parts in 106 

• This implies, from Eqn.(5), that the distance L from the luminous region 
of the target to the detector plane must be controlled to the same accuracy, i.e. to a tolerance 
of ±150 pm for L = 30 m. The gas jet has a dimension of several mm along the beam direction 
and its position and the size may not be stable. It is therefore proposed to monitor continuously 
the mean value of L, (L) by detecting and analysing elastic e-p scattering events. 

From two body kinematics, the scattering angles of electron and proton, ()e and ()p respec­
tively, are related by the formula: 

2 
tan ()p 	= ------- (21)

()e(l + Ebeam/mp) 

9The problem of defining a stable estimator of the beam energy had not been fully solved when perliminary 
results of this study were presented in Ref.[4]. This explains the differences between the results shown in Ref.[4] 
and those given in Table 1. 

9 



For the SMD acceptance region: 2 < ()e < 7 mrad and 50 < Ebeam < 90 Ge V, ()p is limited 
to the range: 71° < ()p < 87°. The recoil proton is detected, in coincidence with the scattered 
electron, in the RPD, a small silicon strip detector in vacuo, built into the support of the GJT. 
A similar arrangement was used in the U A6 experiment [8]. If r is the radial distance of the e-p 
collision point from the RPD and, z and ZD are the coordinates, parallel to the beam direction, 
of the collision point and the proton hit in the RPD respectively, then the Z coordinate of the 
collision point is determined to be: 

r()e Ebeam 
Z = ZD - -(1 +--) (22)

2 mp 

If de is the transverse distance from the plane of the RPD of the electron hit in the SMD, then 
Be = (de -r)/L. The error on Z is given by: 

8z = 8z
D 

- ~(1 + Ebeam )[r8de + 8r( de _ 2r)] _ r( de - r) 8Ebeam (23)
2L mp 2L mp 

Assuming r = 10 cm, ()e = 3 mrad, the contribution from the third term is negligible (c:::: 30JLm 
even if 8Ebeam is as big as 200 MeV). The dominant contribution from the second term is the 
8r from the transverse beam size. In the worst case where the scattering plane is horizontal, 
8r c:::: 1.5 mm, giving 8z = 250JLm. Because of this large contribution to 8z from the uncertainty 
in r only a modest spatial resolution of 8zD c:::: 100JLm is adequate for the RPD. Thus, on an 
event-by-event basis, z can be measured with a precision of a fraction of a millimetre. The 
accuracy with which the mean value of z for an ensemble of events can be determined is then 
completely dominated by the statistical error O";ar g 

/ VN where N is the number of recorded 
events and O";ar g is the length of the luminous region of the target, typically c:::: 5 mm. 

Within an accuracy of c:::: 10% the observed cross section for e-p coincidence events is given 
by the Rutherford scattering formula: 

47ra2 1 1 
O"(ep ~ ep) = ~(()2 ()2 )Aq, (24) 

beam e,MIN e,MAX 

where ()e,MIN and ()e,MAX are the minimum and maximum scattering angle of accepted electrons, 
and Aq, is the azimuthal acceptance. With Ebeam = 90 GeV, ()e,MIN = 2 mrad, ()e,MAX = 7 
mrad and Aq, = 0.16 ( two microstrip detectors, back-to-back in ¢ of 5 cm width, at a distance 
of 10 cm from the beam line) Eqn.(24) gives O"(ep ~ ep) = 7.4JLb, or 296 events/second with 
a luminosity of 4 x 1031 cm- 2sec-1 • In one hour of data collection 1.1 x 106 events will be 
recorded and the mean longitudinal target position determined with a statistical accuracy of: 

O"tar g 5mm-iN - 106 =vl1.1 X 4.8JLm 

This is more than an order of magnitude better than the tolerance of ±150JLm in L required 
for 1 MeV precision on Ebeam. 

4.2 Monitoring the transverse beam profile using Moller events 

Precise monitoring of the transverse beam size and position is important for the EB method. 
Here we discuss ways to monitor them using the M¢ller events. The basic idea is that, since 
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the majority of the electron pairs are coplanar with the beam direction, in the transverse plane 
the vertex position of an event lies on a straight line between the positions of the electrons 
in the SMD plan _( see Fig.( 10)). Two methods are considered. The intersection of the line 
between the two hit positions of the electrons with the nominal Y-axis (X-axis) is, to a good 
approximation, the Y (X) coordinate of the vertex position if the line is nearly parallel to 
the X-axis (Y-axis). The X,Y beam profiles can be measured in this way. A merit of this 
method is that it allows a fast online monitoring. An example of Monte Carlo simulation of 
the reconstructed profiles is shown in Fig.(ll). The tail of the distribution is due to acoplanar 
events caused by hard photon radiation. 

The second method uses a maximum likelihood fit to a model of the distribution of the 
luminous region. The line joining the positions of the two electrons recorded in the SMD has a 
high probability of passing close to the mean beam position (Fig 12). The probability P to find 
two electrons in the SMD at (xl,yd and (X2,Y2) which are produced at (x,y) can be calculated 
event by event for a certain model of the beam profile function B(x,y;xo,yo,(J'x,(J'y), where 
(xo, yo) and ((J'x, (J'y) are the position and spread of the beam respectively. For a given ensemble 
of M¢ller events, the likelihood In £, = l: In P is maximised to obtain the beam parameters. 

The two methods have been tested by Monte Carlo simulation. It is sufficient to collect 
5000 M¢ller events to determine the horizontal beam size to a relative precision better than 
5% and the mean beam position better than 100jLm. This number of events can be collected 
in about 10 seconds. Hence the beam geometry can be monitored continuously several times 
per minute. 

Conclusion 

Two complementary methods, with different dominant systematic errors, to measure the LEP 
beam energy using M¢ller scattering have been presented. The calibration of all relevant pa­
rameters (calorimeter resolution and gain, beam size and position, target-detector distance) 
can be determined either directly from the M¢ller scattering data themselves, or from concur­
rently detected ep elastic scattering events. A statistical error of 1 MeV on the mean beam 
energy is obtainable in about 3 minutes of data taking time at 90 GeV beam energy. The 
measurement can be made during LEP physics runs, thus a continuous monitoring of the beam 
energy is possible. A detailed simulation taking into account all known systematic effects shows 
systematic shifts of :s; 2 MeV, :s; 10 MeV from the actual mean beam energy using E A , EB 
respectively, over the range 50 < E beam( GeV)< 90 (Fig 9). It should be noted that, in contrast 
to a previous similar study [6), binding effects on the electron target that give the dominant 
contribution to the energy smearing, have been taken into account. The precision of the beam 
energy measurement (since cross-calibration with RDP is performed at, say, 50 GeV) depends 
on the accuracy with which the change of the systematic shift with Ebearn is simulated. If the 
simulation is accurate to ±20%, then the corresponding error on Ebeam from EA is a fraction 
of an MeV, and from EB is about 2 MeV. 

An improved measurement of Ebeam may have two effects on the Mw measurement at LEP2. 
Firstly, for a given integrated luminosity the error on Mw is reduced. Secondly less integrated 
luminosity is required to obtain a given accuracy on Mw. These effects are illustrated by 
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considering several different scenarios for the statistical and systematic errors. The following 
a,ssumptions are made concerning these errors: 

• 	 I3.Ma-at = 25 MeV. Combined statistical error of four experiments each with an integrated 
luminosity of 500 pb-1 [5J. 

• 	I3.M~P = 10-35 MeV. Detector and theoretical systematic error [5]. 

• 	 I3.Mf;,L = 9-20 MeV. Systematic error from the beam energy uncertainty using the flux 
loop extrapolation method [4]. 

• 	 I3.MitD = 3 MeV. Systematic error from the beam energy uncertainty using RDP with 
high energy extrapolation by the M¢ller technique. Contributions of 2 MeV (RDP and 
M¢ller), 2Me V (interaction point extrapolation) are added in quadrature. 

These errors are assumed to be uncorrelated and added in quadrature to give the total error 
on Mw , I3.MWt. Three scenarios are considered : 

(I) 	In Table 3 I3.MWt is shown as a function of I3.M'{;D for the M¢ller and flux loop methods. 
Given between brackets beside the flux loop entries is the reduction factor in I3.MWt given 
by the M¢ller method. 

(II) 	If the flux loop method with 500 pb- 1 of integrated luminosity is replaced by the M¢ller 
one the integrated luminosity required to obtain the same value of I3.MWt is reduced by a 
factor 0.90 (0.61) for I3.M(;,.L = 9 MeV (20 MeV). These reduction factors are independent 
of I3.M'{;D. 

(III) 	If the M¢ller method with 500 pb-1 of integrated luminosity is replaced by the flux loop 
one, then in order to obtain the same value of I3.MWt, 565 pb-1 (1335 pb-1

) are required 
for I3.M(;,.L = 9 MeV (20 MeV). These luminosities are independent of I3.M'{;D. 

I3.Map (Me V) 10 15 24 35 
M¢ller 

Flux Loop (I3.M(;,.L = 9 MeV) 
Flux Loop (I3.Mf;,rL = 20 MeV) 

27.1 
28.4 (0.95) 
33.5 (0.81) 

29.3 
30.5 (0.96) 
35.4 (0.83) 

34.8 
35.8 (0.97) 
40.0 (0.87) 

43.0 
43.9 (0.98) 
47.4 (0.91) 

Table 3: Total errors on the W mass measurement (in MeV) and reduction factors (in brackets) 
if M¢ller replaces flux loop extrapolation 

In summary, the impact of the M¢ller method is an improvement on the overall error of the W 
rnass measurement that may vary from 2% to 20% depending on the actual values of I3.M'{;D 
and I3.M(;,.L. In all cases the improvement on the error obtained using M¢ller scattering is equiv­
alent to a reduction of the statistical error that would require a substantially larger integrated 
luminosity. The cost of the extra running time needed to obtain the latter is expected to be 
considerably in excess of the estimated ~ two million SF cost of the M¢ller detector. 

Finally it may be remarked that the M¢ller scattering method described here, unlike RDP, 
can be used for precise energy measurements in one pass linear electron colliders. 

12 




Acknowledgements 
We should like to thank M.Placidi for his continous encouragement of this work during the 
LEP2 study in 19,95, and D. Schaile for her contributions in the early stages. Comments from 
M.Bourquin, M.N. Kienzle-Foccaci, F.Muheim and J.Wenninger have helped to improve the 
clarity of the presentation. Discussions with W.Kubischta about the gas jet target are also 
gratefully acknowledged. 

References 

[1] 	 L.Arnaudon et ale Z. Phys. C66 (1995) 45. 

[2] 	 M.Placidi and R.Rossmanith, Nul. lnst. Meth. A274 (1989) 79. 

[3] 	 A.A.Sokolov and LM.Ternov, Sov. Phys. Doklady Vol. 8 No.2 (1964) 1203. 

[4] 	 Report of the Working Group on Beam Energy Measurements at LEP in Proceedings 
of the LEP2 Study (Ed. G.Altarelli, T .Sjostrand and F .Zwirner), CERN Yellow Report 
CERN 96-01 (Ed. G.Altarelli, T.Sjostrand and F.Zwirner) Vol.1 P59. 

[5] 	 Report of the Working Group W Mass Measurements in Proceedings of the LEP2 Study 
(Ed. G.Altarelli, T .Sjostrand and F .Zwirner), CERN Yellow Report CERN 96-01 (Ed. 
G.Altarelli, T .Sjostrand and F .Zwirner) Vol.1 P141. 

[6] 	 P. Galumian et al., Nucl. lnstrum. and Meth. A327 (1993) 269. 

[7] 	 A.Blondel in 'Precision Tests of the Standard Electroweak Model', Ed. P.Langacker. World 
Scientific 1995, P277. 

[8] 	 J.Antille et al., Phys. Lett. B194 (1987) 568. 

[9] 	 J.H.Field, Phys. Lett. B323 (1994) 423; J.H.Field and T.Riemann Compo Phys. Comm. 94 
(1966) 53. 

[10] 	 S.Jadach and B.F.L. Ward, UTHEP-94-0702 July 94. 

[11] 	 OPAL collaboration, Nucl. lnstrum. and Meth. A305 (1991) 275; L3 Collaboration, A.Bay 
et al., Nucl. lnstrum. and Meth. A32 (1991) 119. 

13 




Silicon Microstrip Detector Electromagnetic Calorimeter 

Hydrogen Gas Jet (GJT) (SMD) ~(E~~L)\ 

\ :>::::: < 
~ :::::>:>:,:,:.Scattered electrons 

~..----

81 

LEP beam 821\ Recoil Proton Detector (RPD) 

L 

:i::::::: 

<:< .. ::: .•.:< y 

E2 

Figure 1: The M~ller detector. 
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Figure 2: M~ller scattering diagram with initial and final state radiation. 
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Figure 12: Distribution of lines joining the two electron hits in the SMD in simulated M¢ller 
events. (Transverse View). 
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