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Abstract 

We calculate all t he terms needed to cancel the divergences appearing 


in ene-loop calcuJations involving the Wess-Zumino term. We apply 


our resuJt to the p '·rr and P P P -y vertices, fixing the fini te part of the 


coefficients of the O(p6) terms in the lagrangi an with t he assumption of 


their saturation by the vector meson cont ribution. In all the cases t he 


con ections improve the agreement between the theoretical predictions 


and experimental data. 
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The low energy strong and eledroweak interactions of the lightest pseudoscalar 

mesons are conveniently described by Chlral Perturbation Theory [1]. In the lirrut where 

the quark masses are set to zero the QCD lagrangian has an 5U(3)L X 5U(3)R chiral 

symmetry which is believed to be spontaneously broken into its vector subgroup, SU(3)v. 

In this spontaneous symmetry breaki ng process 8 goldstone bosons appear and become 

the relevant degrees of freedom. The chiral lagrangian is writ ten in terms of the matrix 

.i!. + ....!l: 11"+ K+ )
2i 2 6,..0 0 

E = eXPjM , M = 11" - 2 + ~ K (1)
( -AT}K [(0 

containing the octet of pseudoscalar mesons, and can be expanded in terms of external mo­

menta and quark masses, which are assumed to be small compared to the chiral symmetry 

breaking scale. The lowest order lagrangian is O(p2): 

L2 = /2 tr(DjJEDjJEY t XEY + XE), (2)
8 

where / = /1< = 132 MeV and X contains external scalar and pseudosca1ar fields X = B(s­

ip). The covariant derivative, DIJE = ojJE + iL jJE - iERjJ , contains external vector fields. 

Elect romagnetic interactions can be introduced with t he identification LjJ =RjJ =eQ A jJ , 

where AI' is the photon field and Q =diag(2/3 ,-1/3,-1/3) is t he quark charge matrix. 

The quark mass matrix, M = diag( m u , md, m,) is included in the external scalar field, 

s = M +.... This allows to fix the constant B in terms of the meson and quark masses. 

Loop di agrams contribu te at higher order in the expansion according to 

D = 2 + E Nd(d - 2)t 2NL, (3) 
d 

wher(' pD is the order of the loop diagram, N d is the number of vertices of O(pd) contained 

in the diagram and NL is the number of loops [2J. The free coeffi cients of the O(pD ) terms 

in the lagrangian can be used to absorb the divergences appearing in the O(~) loop 

diagrams. Gasser and Leutwyler found all the O(p4) counterterms needed to cancel the 

divergences appearing in one-loop diagrams involving vertices from (2) and constructed 

the most general lagrangian at O(p4) [1]. 

The Wess-Zurruno term, which is O(p4), has to be introduced in order to account 

for anomalous processes [3,4]. The full action at lowest order in non-anomalous and 

anomalous processes is given by: 

S =JttxL2 - NcSwz, (4) 
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where Ne = 3 is the number of colors and 

- i Jd~ijklmt (~L~L~L~L~L) + i J Jot ~"o{3ZSwz - 24011"2 LJ r LJ j LJj LJIe LJI LJm 4811"2 a ~X~· J.I."o{3 , (5) 

where Ef = E8jEY. The full expression for Z"vo/3 can be found in [5]. Wit ten has 

shown that the coefficient multiplying the Wess-Zumino action is quantized, due to the 

impossibility of writ ing the first term in Eq. (5) in a compact form in four dimensions, 

together with the topological properties of the SU(3) manifold [4]. 

According to Eq. (3) loop di agrams involving one vertex from the Wess-Zumino 

lagrangian and one from L2 are O(p6). The divergent terms appearing in these one-loop 

calculation can be found expanding the matrix E around its elasskal value and using 

the heat kernel expansion and dimensional regularization. After a tedious calculation one 

obtains [5]: 

Z WZ _ _~ NcNf ~0{3 ([ ,xL A y
oneloop - - ~~( tr D A" + "ED R ,x,. "E 

+ ~[£\ L,x" - R,x,,] +H£\ EDAD"EY - D,x D"EEY] 

-H£",ED2EY - D2EEYj] 

X[£,, £o£{3 - ~£v(Lo{3 + RO (3) - ~(Lvo + k"o)£{3]) 

- 4~:;cp("vo{3 (tr ([~J (XEY + EX) - ¥ .c,x .c,x] (6) 

x [RJ.I." Lo{3 - L"vRo{3 + i(R"" - L"v)£o.c(3 - i.c ,,£ ,,(Ro{3 - LO {3 )]) 

- 2~J tr«x"£'Y + EX)[£,,£v(Ro{3 - Lo{3) - (RjJ" - L",,)£o£{3]) 

+t tr(£,,(Ro{3 - Lo,9» tr(£jJ(Ex + XEY - £ ,x£,x)) 

+ttr(£ )..c,,)tr(£,x £,,(Rrx{3 - Lo{3 ) +£ ,x(il"o - L"o)£{3» ) ) , 

where £1' = "f.DJ.l.EY, V,." =8"V" +OvV" + i[VjJ, Vv] for VI' = L,., RJ.I. and R,." = ER~EY. 
Notice that aU the terms in Eq. (6) are O(p6), so the coefficient of the Wess-Zumino term 

is not renormalized. Thls is the case because the tree level Swz already saturates the inho­

mogeneous pa.rt of the anomalous Ward identities, so that all the remaining contributions 

have to satisfy the homogeneous Ward identities. 
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We can now apply our result to some physical processes for which experimental 

data are available. In particular, we are going to discuss the vertices PI I and P P PI' A 

more detailed discussion can be found in [5,6,7,8]. We first concentrate on the decays ,..0, 
'7, '7 --+ /10. 

The physical fJ is known to be a mixture of the octet and singlet states, 118 and '7l, 

with mixing angle (J "" -200 [9] (we will take (J = -19.5°, corresponding to sin (J = -1/3). 

Consequently, one cannot make any prediction for the physical '7 without considering the 

singlet part. The simplest way of introducing the fJ l is in a nonet symmetry context. This 

can be easily achleved enlarging the E matrix defined in Eq. (1) with the singlet part . 

The one· loop diagrams contributing to ,..0, '7, fJ --+ 110 are the ones shown in 

F ig. 1, together wit h the ones for wave-function and I renormalization. The result of 

the one-loop calculation for real photons turns out to be finite [8] in such a way that all 

t he effects of the loops and non-anomalous L. terms amount to change / into 1~ ,""al"l. 

The values of 1.,.,8 and 1111 can be fixed from the experimental values IK 111r = 1.22 and 

Prj =3m; r(17--+ 11)/8m~r(1I"° --+ /I ) =0.62± 0.05 to be 1"8//" = 1.3 and /'111/f[ = 1.1. 
In thls way one obtains the prediction: 

3m;r(T/ -+ II) =2.6, (7)
Pt/ = m~r(~ --+ II) 

in very good agreement with t he experimental value: p~rp = 2.4 ± 0.4. 

The situation is very different when one 

of the photons is allowed to be off mass 

shell, as it is the case in the decay '7 -+ 

p+ P7. In t his case, the second diagram 

in Fig. 1 gives a contribution proportional -Q( 
to k

2 
• Thls contribution has some diver­---< 

gent terms, as well as finite ones. The di­
Fig. 1.- One-loop Feynman diagrams con­


tributi ng to the decay M - 7"'( . vergences can be removed introd ucing the 


O(p6) terms from the lagrangian with the 

divergent coefficients found in Eq. (6). The fini te part of the coefficients , however. are 

free constants in Ch.P. T.. In order to fix these constants and to be able to predict the 
2 

k -dependence of the 17 --+ J1 +PI amplitude we have to make some extra assumption. 

In a recent paper, Ecker and collaborators have found that the finite part of the 

coefficients ofthe next to leading order terms, O(p4), in the non-anomalous lagrangian are 

saturated by the low-lying resonance contribution at J1. = mp [10j . In addition , they have 
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found that vector mesons provide the dominant contribution. We will assume here that 

this is still the case for the anomalous sector, i.e. that the finite part of the coefficients of 

the O(p6) terms is saturated by the vector meson contribution. 

We have introduced vector mesons into the chiral. lagrangian using the hidden 

symmetry approach of Bando et a1. [111 assuming ideally mixed nonet symmetry. The 

coefficients of the O(p6) terms in the chi ral lagrangian can be related to t he coefficients 

appearing in the lagrangian for vector mesons, once these have been integrated out. In 

particular, the relevant coefficients for f] ~ p+PI are fixed from the ones contributing 

to t he radiative decays of vector mesons, such as w _ .,.01' In this way we can predict the 

slope parameter to be [5]: 

1 d I 2
A(M _ n ) de A.(M -II) 1-2 =0 = 1.96 GeV . (8) 

The experimental value for t he slope parameter measured in the decay f] - p + W'r is (1.9± 

0.4) GeV2 [12], in very good agreement with the just obtained theoretical prewction. 

Notice that, although the loop result and the O(p6) coefficients are p-dependent, the 

physical result is independent of p. 

A similar si tuation is found when studying the PPPI vertices. In particular, we 

will discuss the processes 11': ~ 1':01': and '7 ~ 1r+ l!'')'. For the first process we have 

stuwed the quantity F37r defined through the amplitude: 

A(f7r - ",0",) =: ipJ,,(,,"a{jA p.PlP2Po! (9) 

where PI (P2) is the momentum of the incoming (outgoing) 7r and Po is the 7r°-momentum. 

At lowest ordEr, one has F 3.,. =9.4GeV3 , in fairly good agreement with the experimental 

value F3 ... == 12.9 ± 0.9 ± 0.5 GeV3 [13]. The agreement between the lowest order 

prediction and the experimental value is worst for the ." ~ 11'+7r"'( decay width, where we 

have r(TJ --> 1\"+1':1) = 35 eV to be compared to r =,,(TJ - 1i +1I'1 ) = 53 ± 10 ell [14 ]. 

Moreover, the observed photon energy spectrum is softer than t he prewcted one [IS]. 

The lc>op diagrams contribut ing to I'" ~ 1i0 1r are shown in Fig. 2, while only 

the first thre€' diagrams contribute to ." _ 1':+ 1i1. The result of the loop cal culation 

is divergent ill both cases, but the divergences can, again, be removed introducing the 

appropriate terms from Eq. (6). The fini te part of the coefficients of the O(p6) terms in 

the lagrangian is again fixed from t he radiative decays of vector mesons.In this way we 

obtain r(1! ~ :t'+"'i) = 47 eV at next to leawng order , improving t he ageement with the 

experimenatl data. In adwtion, the loop diagrams and the O(p6) tree level contribution 

depend on the photon energy in such a way that the predicted energy spectrum is softer 
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Fig. 3.- Photon energy spectrum in theOnly Lbo firsL t hree diagr&ma contribute to 

the decay '1 - ,,-+ C1. decay TJ - r+ r-7. The dashed line is the 

lowest order predict ion. Both curves Me 

normalized to the same number or events. 

than the obtained at lowest order (see Fig. 3) [7]. Unfortunately, a wrect comparison 

with the published experi ment al data cannot be made because they are affected by the 

detect ion efficiency [15]. T he correction to F311 is complex and depends on the phase space 

variables. The absolute value of p37r increases with respect to the tree level prediction and 

the correction ranges from a. 7% at P~2 = (PI +~)2 = O.7m; and P52 = (Po + 1'2)2 = 4m; 

to a 12% at P?2 = 3.5m; and P52 = 13m;, corresponding to the largest values of the 

kinematical variables for which experimental data are available [7]. 

In con cl usion, we ha.ve discussed the next to leading order corrections to anomalous 

processes. They include one-loop contributions and tree level contributions from the O(p6) 

lagrangian. We have found all the divergent coefficients of the O(p6) terms needed to cancel 

all t he divergences appearing in one-loop calculations involving the Wess-Zumino term. and 

one vertex from L2• We ha.ve st udied the vertices Pn and P P PI' fixin g the finite part 

of the coefficient s of the O(p6) terms t hrough the assumption of their sat uration by the 

vector meson contribution. In all the cases the corrections improve the agreement between 

the t heoret ical predictions and experimental data. 
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