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Abstract

We calculate all the terms needed to cancel the divergences appearing
in cne-loop calculations involving the Wess-Zumino term. We apply
our result to the Pyy and PPP« vertices, fixing the finite part of the
coefficients of the O(p®) terms in the lagrangian with the assumption of
their saturation by the vector meson contribution. In all the cases the
corrections improve the agreement between the theoretical predictions
and experimental data.
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The low energy strong and electroweak interactions of the lightest pseudoscalar
mesons are conveniently described by Chiral Perturbation Theory [1]. In the limit where
the quark masses are set to zero the QCD lagrangian has an SU(3)L x SU(3)g chiral
symmetry which is believed to be spontaneously broken into its vector subgroup, SU(3)v.
In this spontaneous symmetry breaking process 8 goldstone bosons appear and become
the relevant degrees of freedom. The chiral lagrangian is written in terms of the matrix
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containing the octet of pseudoscalar mesons, and can be expanded in terms of external mo-
menta and quark masses, which are assumed to be small compared to the chiral symmetry
breaking scale. The lowest order lagrangian is O(p?):

2
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where f = fr = 132 MeV and x contains external scalar and pseudoscalar fields y = B(s—
ip). The covariant derivative, D, X = §,Z + iL,Z — i{ZR,,, contains external vector fields.
Electromagnetic interactions can be introduced with the identification L, = R, = ¢QA,,,
where A, is the photon field and Q = dieg(2/3,-1/3,-1/3) is the quark charge matrix.
The quark mass matrix, M = diag(my, mq,m,) is included in the external scalar field,
s = M +---. This allows to fix the constant B in terms of the meson and quark masses.

Loop diagrams contribute at higher order in the expansion according to

D=2+ Ny(d-2)+2Np, 3
d

where p? is the order of the loop diagram, Ny is the number of vertices of O(p®) contained
in the diagram and N is the number of loops [2]. The free coefficients of the O(p?) terms
in the lagrangian can be used to absorb the divergences appearing in the O(pP) loop
diagrams. Gasser and Leutwyler found all the O(p*) counterterms needed to cancel the
divergences appearing in one-loop diagrams involving vertices from (2) and constructed
the most general lagrangian at O(p*) [1]. '

The Wess-Zumino term, which is O(p*), has to be introduced in order to account
for anomalous processes [3,4]. The full action at lowest order in non-anomalous and
anomalous processes is given by:

S = / 6Ly~ NSz, 4)
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where N, = 3 is the number of colors and
; .
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where 2{‘ = ¥£6;3Y. The full expression for Zuap can be found in [5]. Witten has
shown that the coefficient multiplying the Wess-Zumino action is quantized, due to the
impossibility of writing the first term in Eq. (5) in a compact form in four dimensions,
together with the topological properties of the SU(3) manifold [4].

According to Eq. (3) loop diagrams involving one vertex from the Wess-Zumino
lagrangian and one from L2 are O(p®). The divergent terms appearing in these one-loop
calculation can be found expanding the matrix I around its classical value and using
the heat kernel expansion and dimensional regularization. After a tedious calculation one
obtains [5]:
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where £, = £D, %Y, V., = 8,V, + 8,V +i[V,,, V] for V, = L,,, R, and R,, = TR, TY.

Notice that all the terms in Eq. (6) are O(p®), so the coefficient of the Wess-Zumino term
is not renormalized. This is the case because the tree level Sy z already saturates the inho-
mogeneous part of the anomalous Ward identities, so that all the remaining contributions
have to satisfy the homogeneous Ward identities.
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We can now apply our result to some physical processes for which experimental
data are available. In particular, we are going to discuss the vertices Pyy and PPPy. A
more detailed discussion can be found in [5,6,7,8]. We first concentrate on the decays #°,

7,1 — 770,

The physical 7 is known to be a mixture of the octet and singlet states, 7 and n;,
with mixing angle 8 ~ —20° [9] (we will take 8 = —19.5% corresponding to sin8 = —1/3).
Consequently, one cannot make any prediction for the physical n without considering the
singlet part. The simplest way of introducing the 7 is in a nonet symmetry context. This
can be easily achieved enlarging the ¥ matrix defined in Eq. (1) with the singlet part.

The one-loop diagrams contributing to 7°, 5, 7 — 770 are the ones shown in
Fig. 1, together with the ones for wave-function and f renormalization. The result of
the one-loop calculation for real photons turns out to be finite [8] in such a way that all
the effects of the loops and non-anomalous Ly terms amount to change f into fr ., -
The values of f,, and f;, can be fixed from the experimental values fx/fr = 1.22 and
pn = 3m3l(n — 77)/8m3T(x® — y7) = 0.62+0.05 to be f,,/ fx = 1.3 2and f,,/fr = L.1.
In this way one obtains the prediction:
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in very good agreement with the experimental value: pt™ = 2.4 £ 0.4.

The situation is very different when one
of the photons is allowed to be off mass
shell, as it is the case in the decay  —
ptpy. In this case, the second diagram
in Fig. 1 gives a contribution proportional
to k*. This contribution has some diver-
¥, Tl loop: Beynritan diagrams o gent terms, as well as finite ones. The di-
tributing to the decay M — 7. vergences can be removed introducing the
O(p®) terms from the lagrangian with the

divergent coefficients found in Eq. (6). The finite part of the coefficients, however. are
free constants in Ch.P.T.. In order to fix these constants and to be able to predict the
k’-dependence of the p — ptpy amplitude we have to make some extra assumption.

In a recent paper, Ecker and collaborators have found that the finite part of the
coefficients of the next to leading order terms, O(p*), in the non-anomalous lagrangian are
saturated by the low-lying resonance contribution at g = m, [10]. In addition, they have
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found that vector mesons provide the dominant contribution. We will assume here that
this is still the case for the anomalous sector, i.e. that the finite part of the coefficients of
the O(p®) terms is saturated by the vector meson contribution.

We have introduced vector mesons into the chiral lagrangian using the hidden
symmetry approach of Bando et al. [11] assuming ideally mixed nonet syﬁxmetry. The
coefficients of the O(p®) terms in the chiral lagrangian can be related to the coefficients
appearing in the lagrangian for vector mesons, once these have been integrated out. In
particular, the relevant coefficients for 7 — utpu~ are fixed from the ones contributing
to the radiative decays of vector mesons, such as w — x%9. In this way we can predict the
slope parameter to be [5]:

LM = )l = 196 GeV2, ®)
AM — ¥7) d¥* F=0
The experimental value for the slope parameter measured in the decay n — ptpyis (1.9+
0.4) GeV? [12], in very good agreement with the just obtained theoretical prediction.
Notice that, although the loop result and the O(p®) coefficients are y-dependent, the
physical result is independent of p.

A similar situation is found when studying the PPP~y vertices. In particular, we
will discuss the processes yr — x°r and n — #+xv. For the first process we have

studied the quantity F°" defined through the amplitude:
A(yr — 7%7) = iF3"e**P A, p) papo, (9)

where p;(P,) is the momentum of the incoming (outgoing) 7 and pg is the 7°-momentum.
At lowest order, one has F3" = 9.4GeV?, in fairly good agreement with the experimental
value F?" = 12.9 4+ 0.9 4 0.5 GeV> [13]. The agreement between the lowest order
prediction and the experimental value is worst for the 7 — 7+ 7y decay width, where we
‘have T(y — 7*xy) = 35 eV to be compared to Top(n — nt7y) = 53 £ 10 eV [14].
Moreover, the observed photon energy spectrum is softer than the predicted one [15].

O are shown in Fig. 2, while only

The loop diagrams contributing to y7 — =«
the first three diagrams contribute to 7 — #+#zv. The result of the loop calculation
is divergent in both cases, but the divergences can, again, be removed introducing the
appropriate terms from Eq. (6). The finite part of the coefficients of the O(p®) terms in
the lagrangian is again fixed from the radiative decays of vector mesons.In this way we
obtain I'(n — #try) = 47 eV at next to leading order, improving the ageement with the
experimenat] data. In addition, the loop diagrams and the O(p®) tree level contribution

depend on the photon energy in such a way that the predicted energy spectrum is softer
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.Fig. 2.- One-loop Feynman diagrams con-
tributing to the process 2° — =20, .
Only the st three diagrams contribute to Fig. 3.- Photon energy spectrum in the
the decay p— xtx=7. decay n — x*x~+. The dashed line is the
lowest order prediction. Both curves are
normalized to the same number of events.
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than the obtained at lowest order (see Fig. 3) [7]. Unfortunately, a direct comparison
with the published experimental data cannot be made because they are affected by the
detection efficiency [15]. The correction to F°" is complex and depends on the phase space
variables. The absolute value of F3" increases with respect to the tree level prediction and
the correction ranges from a 7% at p, = (p1 + p2)? = 0.7m?2 and pd; = (po + p2)* = 4m?
to a 12% at p?, = 3.5m2 and pd; = 13m2, corresponding to the largest values of the
kinematical variables for which experimental data are available [7].

In conclusion, we have discussed the next toleading order corrections to anomalous
processes. They include one-loop contributions and tree level contributions from the 0(p%)
lagrangian. We have found all the divergent coefficients of the O(p®) terms needed to cancel
all the divergences appearing in one-loop calculations involving the Wess-Zumino term and
one vertex from L,. We have studied the vertices Pyy and PP P, fixing the finite part
of the coefficients of the O(p®) terms through the assumption of their saturation by the
vector meson contribution. In all the cases the corrections improve the agreement between

the theoretical predictions and experimental data.
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