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CD ABSTRACT: Even though quantum general relativity is not renormalizable...I N it can be used consistently in the far infrared. When this is done for a positive 

LL cot) cosmological constant one finds that quantum corrections become large at late 
times in an inflating universe. Quantum gravity dominates all experimentally con­
firmned matter theories in this regime because it is unique in possessing massless 
quanta without conformal invariance. In fact quantum corrections are so strong 

as 
LL "C.­ that neither in-out amplitudes nor the usual graviton S-matrix exist when it is as­... 

sumed that a locally de Sitter background persists into the asymptotic future. One00 should instead follow the time evolution of the expectation value of the metric in 

> 
u.. the presence of an initial state which plausibly describes the conditions that might 

be expected to prevail at the onset of inflation in a realistic cosmology. When this... 

t ­
is done quantum corrections seem to act so as to slow the rate of expansion by an 
amount which becomes non-perturbatively large at late times. This has profound 

CD 

implications for the phenomenology of inflationary cosmology.> 
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INTRODUCTION 

This is a report on my work with Professor Nicholas Tsamis of the University of Crete 
on quantum gravity with a non-zero cosmological constant. 1- 5 Because this theory differs 
so radically from conventional quantum gravity we have taken to calling it, "quantum 
cosmological gravity," or QCG for short. The Lagrangian of QCG is: 

£ = 16~G ( R - 2A) FY + counterterms (1) 

where G is Newton's constant, A is the cosmological constant, and we employ an infinite 
series of local counterterms to absorb ultraviolet divergences. The astute reader will note 
that our metric has spacelike signature and our Riemann tensor is RPap,v = rPVu,J-l + 
rPJ-l)' r).vu - (J-L f-t v). 

Nick and I study QCG using conventional perturbation theory. That is, we separate 
the metric into a classical solution and a quantum graviton field: 

class h
9J-lV = 9J.iV + /\, J.iV (2) 

where /\,2 == 167rG is the usual loop counting parameter of perturbative quantum gravity. 
Our analysis is done using real time evolution on a 3 + 1 dimensional manifold. We do 
not Euclideanize, nor do we permit topology change. There are no extra dimensions, 
nor any missing ones, although our results apply to any dimension in which gravity is 
dynamica1. 1,2 vVe require no special matter content, although our results pertain to gravity 
plus any matter theory that does not require fine tuning to avoid conflicts with low energy 
phenomenology. 3,5 

We do make several assumptions. The first of these is that the cosmological constant 
is positive. Although negative A has great interest for us, we do not currently understand 
QCG well enough to say much about this case. Our second assumption is a locally de 
Sitter classical background on a manifold which admits flat 3-sections: 

(3) 

The parameter H i-s known as the Hubble constant, and in 3 + 1 dimensions its relation to 
the cosmological constant is: H2 = i A. The exponential expansion of spacetime evident 
in these coordinates is known as inflation and our chief concern is what QCG has to say 
about inflation. Our third assumption is that the natural mass associated with inflation 
is at or below the GUT scale: 

1 16M == (~)2 < 10 GeV (4) 

One consequence of this is that the natural dimensionless parameter of QCG is very small: 

",2 H2 = ( 1'111 )4 < 10-12 (5)
A1p lanck 

Not that this restriction is enormously above the bound of /\,2 H2 < 10-120 which is cur­
rently observed,6 so we have not solved the problem of the cosmological constant by fiat. 

2 




Restriction (5) can be realized naturally in some models o~ supergravity;7 and .if we ~e 
in error imposing it, we are not the only ones because (5) IS the usual assumptIon of In­
flationary cosmology.8 Our final assumption is that the various constants which occur in 
the finite parts of the local counterterms in (1) are not unreasonably large numbers when 
expressed in Planck units. This is also a widely held belief, and it would be very difficult 
to otherwise reconcile the observed success of classical general relativity. 

Nick and I have reached the following conclusions concerning QCG: 

(1) 	It can be used reliably, as a quantum theory, in the far infrared;3,5 

(2) 	Its corrections become strong at late times in an inflating universe;3-5 

(3) 	 It dominates the physics of late time inflation with respect to any matter theory whose 
phenomenological viability does not require fine tuning;3,5 

(4) 	If one assumes that the natural QCG vacuum suffers only perturbatively small cor­
rections then asymptotic graviton scattering amplitudes are infrared divergent even at 
tree order;4 and 

(5) 	Modulo some tensor algebra, QCG corrections act to slow the inflationary expansion 
rate by an amount which becomes non-perturbatively large at late times.5 

The first three results are simple to understand and I will explain them all in a single 
section. Although the fourth result is also simple to understand, its interpretation is 
sufficiently subtle as to merit a separate section. Our fifth result is the most important and 
also the most involved. I will allot one section to explaining how we derive it and another 
to elucidating the underlying physics. Three short final sections discuss, respectively, the 
few things we can say at this time about the case of negative A, why no previous studies 
have revealed our relaxation mechanism, and what our scheme may mean for cosmology. 

THE FIRST THREE RESULTS 

Quantum general relativity is not perturbatively renormalizable,9 but it can still be 
purged of ultraviolet divergences, order by order in perturbation theory, if one allows arbi­
trary local counterterms. This seemingly ad hoc procedure does not give us a completely 
consistent quantum theory of gravitation but it does give us one which can be used reliably 
in the far infrared. To understand why, let us consider the standard exercise of using Fermi 
theory to compute quantum corrections to low <energy weak interactions between fermions. 

Suppose we integrate out the Higgs boson and the massive gauge particles of the 
electroweak model. What results is a non-local effective action which depends upon the 
electromagnetic vector potential and the various Fermi fields. In low energy processes it 
makes sense to expand this functional in powers of the derivative operator, whereupon we 
recover the action of QED and Fermi theory, plus an infinite series of local counterterms. 
Note that as long as one considers the scattering of only photons and fermions below the 
heavy particle thresholds, this model is indistinguishable from the electroweak theory. One 
consequence is that this action can be used to compute loop corrections of arbitrarily high 
orders. Some of the ultraviolet divergences that appear in loops can be absorbed into 
redefinitions of the parameters of QED-Fermi theory; the other divergences - the non­
renormalizable ones - are subtracted off by divergences which occur in the coefficients of 
the local counterterms. This apparent miracle derives from the renormalizability of the 
electroweak action. 

Note that we do not even require the electroweak action in order to know the most 
divergent parts of the counterterms; they are fixed by the ultraviolet divergence structure 
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of QED-Fermi theory. What we cannot get from QED-Fermi theory is the fini te parts of 
counterterms. Although these finite parts are suppressed by powers of heavy masses, they 
do make contributions. Because most of the quanta in QED-Fermi theory have non-zero 
masses, loop corrections involving these quanta can be expanded for low in-coming and 
out-going momenta into a series of ever higher derivative contact interactions. Such terms 
are not distinguishable from the finite parts of the electroweak induced counterterms. If 
we did not possess the electroweak action we could not predict the strength of these effects. 
However, a loop which involves massless quanta - photons or neutrinos - can give rise 
to corrections containing logarithms of the external momenta. These effects can never be 
simulated by the finite parts of the electroweak induced counterterms because the latter 
are analytic at zero momenta whereas the former are not. Even if we did not possess the 
electroweak action we could still trust the predictions of QED-Fermi theory about such 
logarithm terms. An illustration of this fact is the correct calculation of the long range 
force due to the exchange of two neutrinos, done in 1968 by Feinberg and Sucher.1° 

The connection to QCG should be obvious. Neither Fermi theory nor quantum general 
relativity is perturbatively renormalizable. However, just as the renormalizable electroweak 
theory underlies Fernli theory, so there must be some consistent quantum theory of grav­
itation in back of general relativity. We do not know this theory; it probably involves 
other quanta, and its fundamental dynamical variable may not even include the metric. 
Nonetheless, for purely geometrical issues below the heavy quantum threshold - which 
is presumably the Planck mass - the unknown true quantum theory of gravitation must 
be indistinguishable from the action of general relativity plus an infinite series of local 
counterterms. Some of the counterterms renormalize A and G; these we treat by imposing 
physical renormalization conditions the same as in any quantum field theory. The other 
counterterms subtract off the various non-renormalizable ultraviolet divergences of quan­
tum general relativity; they also supply finite, higher dimension contact interactions which 
are suppressed by powers of the Planck mass. We do not know these finite terms because 
we do not know the fundamental quantum theory of gravitation, but they are guaranteed 
to give large corrections only on very small distance scales. Our procedure is therefore to 
make the necessary ultraviolet subtractions by hand and then to forget about the finite 
parts of counterterms. Because the graviton is massless the strongest infrared effects at 
any loop order will still be reliably predicted by QCG alone, without knowledge of the 
fundamental theory of quantum gravity. 

So much for the first result. Of course the reliability of infrared effects in QCG would be 
uninteresting if these effects were not significant. That they are derives from two properties 
of the theory, the first of which is that it allows massless gravitons to self-interact through 
a coupling of dimension three: 

(6) 

Most particle theorists are familiar with the notion that the infrared is dominated by those 
massless particles which have the lowest dimension self-interaction. The rationale behind 
this piece of folk-wisdom is that infrared effects influence a local observation through the 
coherent superposition of distant interactions within the observer's past light cone. These 
interactions must be transmitted by massless quanta because massive propagators oscillate 
inside the light cone and so give destructive interference. Interactions of low dimension 
give the strongest infrared effects because increasing the dimension of an interaction means 
either adding derivatives or else adding more fields. Derivatives are bad because differen­
tiated propagators show weaker long range correlation than undifferentiated ones. More 
fields are bad because this means that the interaction is transmitted by more propagators, 
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each of which tends to suppress distant correlations; one can also have fewer interactions 
at a given loop order. 

A few examples are illuminating. The long range force discovered by Feinberg and 
Sucher10 comes from massless neutrinos interacting through the dimension six coupling 
of Fermi theory. This force falls off like the sixth power of the distance between sources. 
The lowest dimension coupling in A = 0 quantum gravity consists of three gravitons with 
two derivatives distributed among them. One would expect a stronger effect from this 
dimension five coupling and this is precisely what was found by Weinbergll in his study of 
the problem. (Note again the complete irrelevance of renormalizability for infrared effects 
involving massless particles.) The canonical example of a dimension four self-interaction is 
provided by QeD which has interaction vertices between three gluons with one derivative 
or four gluons with no derivatives. Because of the lower dimension coupling we expect 
infrared effects in QeD to be stronger than those of either A = 0 quantum gravity or 
Fernli theory. In fact they are so strong that perturbation theory breaks down, but the 
long range interaction is conjectured to obey a constant force law. The infrared effects of 
QeG ought to be even stronger because the theory allows massless gravitons to self-interact 
via the coupling (6) of dimension three.* 

The second crucial property of QeG is that for positive A the curved background ge~ 
ometry enhances the tendency of low dimension self-interactions to produce strong infrared 
effects. This is because the inflationary redshift increases the population of soft gravitons. 
Of course the causal structure of an inflating universe differs from that of flat space and one 
must take account of the decoupling of modes whose physical wavelengths have redshifted 
beyond the Hubble radius. However, there is still an enhancement of the infrared because 
the number of modes whose physical wavelengths are just reaching the Hubble radius in­
creases without bound as time progresses. ** In fact the inflationary enhancement is so 
important that infrared effects in QeG become arbitrarily strong even when the spatial 
manifold is compact. 

So much for the second result. Even strong infrared effects in QeG would not be 
interesting if they could be masked by yet stronger infrared effects due to matter. This 
does not happen for any currently observed matter theory because the quanta involved are 
either massive - and hence incapable of sustaining the long range correlations necessary 
to support an infrared effect - or else the interactions are conformally invariant in 3 + 1 
dimensions. A interesting property of the de Sitter geonletry is that it allows coordinates 
to be chosen in which the invariant element is proportional to that of flat space: 

(7a) 


1 
n == Hu == exp(Ht) 	 (7b) 

* One can demonstrate the graviton's masslessness in QCG either by noting the propagator's absence of 

oscillations inside the light cone 1 or by constructing the free Hamiltonian and showing there is no mass 

gap.12 QCG shows a time dependent screening of the effective cosmological constant rather than gravitational 
confinement because infrared divergences break time translation invariance and change the relevant sense of 

"infrared" from large spatial separations at fixed time to large temporal separations at fixed position.5 

** 	The attenuation due to causality is responsible for the curious fact that quantum corrections to expectation 

values of the metric can exceed the classical result only by powers of the conformal observation time,5,13 
whereas in-out matrix elements of the same operators - which receive contributions as well from the future 

light cone - experience infrared divergences proportional to powers of the conformal cutoff time.3,4 
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When a conformally invariant Lagrangian is expressed in this coordinate system using ap­
propriately rescaled fields, all the factors of n cancel and one obtains the same Lagrangian 
as in flat space. What this means physically is that conformally invariant quanta do not 
experience the inflationary redshift which enhances infrared effects in QCG. They also lack 
the dimension three coupling; the self-interactions of conformally invariant quanta have 
dimension four. 

Gravitation is unique among the observed forces for being mediated by massless par­
ticles which are not conformally invariant. This means that even though the natural 
dimensionless coupling constant (5) of QCG is much smaller than ll:QCD, quantum gravity 
must eventually dominate the infrared of an inflating universe with respect to quantum 
chromodynamics. A simple way to understand this is that in conformal coordinates and 
using conformally rescaled fields, the vertices of QCG contain positive powers of n which 
are not cancelled by propagators. On the other hand, the vertices of QCD are constant.* 
In the far future - in other words, as the conformal time u goes to zero - the excess 
conformal factors make up for the smallness of K,2 H2 and the interactions of QCG become 
much stronger than those of QCD. 

I should mention two caveats before closing this section. The first is that the eventual 
dominance of QCG over observed matter refers only the physics of the far infrared. If 
one probes at scales intermediate between the inflationary mass (4) and the Planck mass 
then matter couplings can be much more important than gravitational ones for all time. 
For example, suppose the Bohr radius of a Hydrogen atom is much smaller than the 
Hubble radius. In this case the electron and the proton remain bound to one another, and 
electromagnetism is always a more significant determinant of the bound state structure 
than QCG. 

The final caveat is that one can imagine non-conformally invariant quanta whose masses 
are much less than the inflationary mass scale M. Obvious candidates are axions and the 
various superpartners of the graviton in extended supergravity. This sort of matter might 
compete with pure QCG for a time if inflation occurs at high scales. 

INFRARED DIVERGENCES IN TREE ORDER SCATTERING 

One constructs invariant scattering amplitudes by integrating external wave functions 
against vertices which are connected by propagators. Although the final result is indepen­
dent of the choice of field variable, the three components from which it is constructed are 
not. For QCG it turns out that these components are most efficiently represented if we 
conformally rescale the full metric: 

g/lV == n2g/lV == n2 
(1}/lV + K,'l/J/lv) (8) 

The full inverse of g/lV is denoted by g/lV, i.e., 9/lv9VP = 8 p. We call 'IjJ/lV the "pseudo­
graviton" field, and its indices are raised and lowered with the Lorentz metric. After some 
judicious partial integrations the invariant Lagranfian of QCG can be cast in a form not 
too different from that of H = 0 quantum gravity: 

£. Sv _ 1 ~~p(J ~/lv "I. "I. a (n2)
lllV- ,v--2"y-gg 9 If"P(J,/llf"v H ,a (9) 

~~afJ ~p(J ~/lV [1 "I. "I. 1 "I. "I. 1 "I. "I. 1 "I. ] n2+ y -g 9 9 9 2"lf"ap,/l If"v(J,fJ - 2"lf"afJ,p 1f"(J/l,v + 4lf"afJ,p If''/lv,(J - 4If"ap,/l 'l/JfJ(J,v H 

* There is a very weak dependence upon the conformal factor through ultraviolet regularization. 
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(Commas denote ordinary differentiation in this and all subsequent formulae.) Breaking up 
covariant derivatives and making the various partial integrations combines the dimension 
five coupling of conventional quantum gravity with the dimension three one (6) unique 
to QCG. This makes for some confusion between infrared and ultraviolet but it does give 
simple interaction vertices. Except for the first term, and the factor of n2 on the second, 
this form for the Lagrangian is the same as that for perturbation theory around fiat space 
in H = 0 quantum gravity! 

The simplest gauge fixing term is - ~FIl Fv7]IlV, where: 

(10) 


At tree order it is most convenient to give the spatial fourier transform of the pseudo­
graviton propagator:* 

Jd3 x exp(if . x) i [I'V b. pO"] (u, x; u', 0) = H~~U' exp [-ik Ib.ul] [21)l'(pI)O")v - I)l'vl)pO" ] 

+ ~: (1 + ik Ib.ul) exp [-ik Ib.u I] [21)l'(pI)O")v - 21)I'vl)PO"] (11) 

where .6.u =u' - u, parenthesized indices are symmetrized, and a bar tensor indicates the 
suppression of temporal components: 

(12) 


Except for the initial factor of H 2uu' the first term of the propagator (11) is precisely the 
same as that of the de Donder gauge propagator of conventional quantum gravity on a flat 
space background! 

The external state wave functions for physical gravitons are: 

where the polarization tensors are purely spatial, transverse, traceless, and canonically 
normalized: 

E O(k A) - k·E··(k A) - E··(k A) - 0 (14a)11 " - 1. 1) , - H , ­

E~v(k, A) = EIlV( -k, A) (14b) 

Eij(k,)..) Eij(k, )..') = 2 DAA' (14c) 

These wave functions evolve according to the free field equations of QCG. They are canon­
ically normalized: 

* To overcome the inconvenient temporal inversion evident in (7b) we define the propagator as the expectation 
value in free de Sitter vacuum of the anti-time-ordered product of the two free field operators. The alternative 
usually followed in the literature is to define the conformal time as negative, but then one encounters the 
inconvenience of needing absolute values. Note that in our conformal coordinates there is also a minus sign 
in the canonical commutation relations. 
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using the Wronskian of free QCG: 

[atJW;lr] = n(8 11 - all) n [11]a(p1]lr)tJ - i1]atJ 1]Plr] (16) 

Note especially that the inner product (15) is conserved. Integrating the wave function (13) 
into an amputated Green's function inserts an in-coming graviton with spatial momentum 
k and polarization A; the conjugate wave function removes an out-going graviton with the 
same quantum numbers. 

It is now simple to understand why QCG scattering amplitudes harbor infrared diver­
gences at tree order. The mathematics is that the various integrals over conformal time 
diverge at u = O. This is because vertices supply powers of n = 1/Hu whereas propagators 
and external wave functions fail to vanish at u = O. The physics is equally transparent: 
all gravitons are redshifted down to zero physical momentum in the asymptotic future, so 
the various plane waves are brought into ever stronger interaction with one another. 

The appearance of an infrared divergence signals that there is something unphysical 
about the question being posed. The traditional problem is that one cannot discriminate 
between nearly degenerate states. 14 Note, however, that superposing degenerate ensembles 
of states can only absorb infrared divergences when the tree amplitudes are finite. What 
Nick and I found is that infrared divergences afflict even the tree amplitudes for vacuum into 
three gravitons, and for a single graviton decaying into two.4 These processes contribute 
to the amplitude at order K,. There is simply nothing at lower order to which we can add 
soft gravitons in an attempt to cancel these divergences. 

Nick and I agree that some unphysical feature of our scattering amplitudes must be 
responsible for their infrared divergences. When the same problems were long ago noted 
for light, minimally coupled scalars, Tagirov15 concluded that such particles simply could 
not exist. The point might be debated, but no one can question that gravity exists; the 
problem must therefore be something we are assuming about it. Nick and I believe that 
the unphysical assumption is the indefinite persistence of the de Sitter background. It was 
also this assumption which led to the infrared divergences we found in computing two loop 
corrections to the in-out matrix element of the metric3 and one loop corrections to the 
graviton self-energy5. One can see this from the fact that the most divergent contributions 
come in each case from virtual gravitons that stray far into the future of the last observed 
field. 

There is a regrettable tendency upon reaching this conclusion to utterly discount the 
results of in-out matrix elements and scattering amplitudes. It is certainly true that 
precise statements about the evolution of the QCG background must be derived using a 
different formalism which we will describe in the next section. However, it is not correct 
that in-out results are devoid of content. For example, the fact that we find a non-zero 
amplitude for the vacuum to go into three gravitons implies the vacuum's decay. The fact 
that this amplitude contains an infrared divergence indicates that the vacuum must suffer 
non-perturbatively large corrections at late times. One cannot use in-out amplitudes to 
infer the rate at which changes in the background become non-perturbatively large, but 
one can rule out the notion that they remain small. For if causal evolution results in only 
perturbatively small corrections to the QCG vacuum then the assumption of de Sitter in 
the asymptotic future would not lead to infrared divergences. 

In fact, as soon as one is confronted by a guess as to the evolution of the background 
this guess can be either verified or debunked by the simple device of using it to fix the 
asymptotic vacua and then computing the associated in-out matrix elements.* If the guess 

* The designation, "in-out" becomes a little fuzzy at this point because I am considering changes in the 
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is correct at late time - at least to within perturbatively small corrections - then the 
associated in-out matrix elements will be free of infrared divergences. In this way one can, 
for example, rule out the oft-made suggestion that the background eventually settles down 
into de Sitter but with a somewhat different cosmological constant. 

Before closing this section I should mention that not all our colleagues share the inter­
pretation Nick and I have given to our fourth result. Some people believe that the problem 
can be corrected with a different choice of vacuum state but without changing the de Sitter 
background. Others reject the S-matrix and in-out matrix elements as valid observables 
in QCG. I will summarize why Nick and I do not find these objections to be convincing. 

First consider the issue of the vacuum. Our choice is the obvious one dictated by local 
correspondence with the known result of flat space and by de Sitter invariance. * We are 
perfectly willing to consider other alternatives, but it is difficult to see how this can do any 
good. Changing the vacuum alters the real part of the propagator. It also reshuffles the 
external state wave functions; in the new vacuum it will generally be a linear combination 
of wand w* which inserts an in-coming graviton. Unfortunately the problem cannot 
be cured by changing the propagator because infrared divergences show up even in the 3­
graviton tree, which involves no propagators. Neither is anything accolllplished by forming 
different linear combinations of the wave functions. The old basis was complete; as long 
as the new basis is also complete it can be used to access the same divergent amplitudes. 
And using a less than complete basis is even worse because it puts perturbative unitarity 
at risk. In this regard it is important to note that the full Fock space must be present if 
QCG is to agree with conventional quantum gravity in the limit that the Hubble constant 
H goes to zero. 

Considerably more can be said for the rejection of in-out matrix elements and the S­
matrix as QCG observables. An inflating universe possesses causal horizons which would 
seem to preclude the observability of all but a tiny portion of the final state. On the other 
hand, the initial vacuum certainly evolves to something. If we had this final state then the 
associated in-out matrix elements would be the same as expectation values. Even if our 
final state were only perturbatively close to the true one, there would be no infrared diver­
gences. Further , the same objections about observability can be made regarding matter 
theories on a de Sitter background. Yet the tree order S-matrix of QCD is not afflicted by 
infrared divergences. 4 We therefore sympathize with doubts about the observability of the 
S-matrix and in-out matrix elements on a de Sitter background, but we do not agree that 
this explains why these objects harbor infrared divergences in QCG. The correct explana­
tion is, as I have stated, that the background suffers non-perturbatively large corrections 
at late times. 

R ELAXATION IN PERTURBATIVE TIME EVOLUTION 

The appearance of infrared divergences for even tree order asymptotic scattering ampli­
tudes means that the locally de Sitter geometry (3) is not even close to the true background 
of the far future. Instead of using the in-out formalism to check another guess we shall 
derive the answer by following the evolution of the metric's expectation value in the pres­
ence of a prepared initial state. The sort of initial state we seek corresponds not to the 
mathematical ideal of a spatial section of the full de Sitter manifold but rather to a simple 

asymptotic vacua. I will try to be clear about this by using the qualifier, "associated" to describe matrix 
elements between states which are not asymptotically de Sitter. 

* There is a trivial breaking of de Sitter invariance due to the zero mode. 1,16 However, this can be ignored in 
4tree order scattering by merely choosing the momenta to be non-zero and off resonance.
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model of conditions that might realistically be expected to prevail when inflation begins 
after causal evolution from a Big Bang. We will make a brief survey of this prehistory in 
order to motivate our choice of model. 

The temperature shortly after the Big Bang must be so much greater than the infla­
tionary mass scale (4) that thermal contributions to the stress-energy dwarf those due to 
the cosmological constant. This means there is no inflation. There is also no possibility 
for strong infrared effects because thermal fluctuations disrupt the long range correlations 
needed to sustain them. During this period it is just as if there were no cosmological 
constant: the universe is radiation dominated and its background geometry expands and 
cools classically. 

Causality precludes the maintenance of thermal equilibrium throughout the entire uni­
verse during this period. One should think rather of many patches of local thermal equilib­
rium, none of them extending further than the causal horizon. The usual view is that the 
currently observed universe descends from a portion of one such patch. When the temper­
ature of this region eventually falls below M the cosmological constant begins to dominate 
the stress-energy tensor and inflation commences. Thereafter points in the region's interior 
rapidly lose causal contact with the outside universe, and we can ignore the other patches. 
We can also ignore thermal effects because even a few e-foldings of inflation redshift the 
residual temperature to practically zero. The appropriate focus of our study is therefore 
the evolution of zero temperature QCG on a single patch, starting from a homogeneous 
and isotropic initial state. 

Since interior points rapidly lose causal contact with the boundary we can simplify 
the problem further by imposing periodic boundary conditions. To be explicit, we assume 
each of the three spatial coordinates lies wi thin the range: 

(17) 

with the endpoints identified. This means we are specializing to the manifold T3 x R, 
which does admit the local de Sitter background (3) even though topological obstructions 
prevent it from possessing the full de Sitter group of isometries. Very little changes from 
the implicitly R3 x R analysis of the previous section. The spatial momenta become discrete 
of course, so momentum integrals go over to sums, and the continuum state normalization 
(15) becomes discrete. There are also zero nlodes whose evolution in free QCG is analogous 
to that of free particles in quantum mechanics rather than harmonic oscillators. 

There are many homogeneous and locally isotropic states in QCG. The simplest choice 
for perturbative computations - and the one we used - is free de Sitter vacuum for 
the non-zero modes and minimum uncertainty Gaussians for the zero modes. \Ve do not 
believe that the true initial state was actually free any more than we believe the topology 
of our universe is really T3 x R. We can afford to make these simplifying assumptions 
because the inflationary expansion of spacetime quickly imposes its own order on local 
physics. The finite number of initially low momentum modes rapidly decouple as their wave 
lengths redshift beyond the Hubble radius. (This is why the zero modes are irrelevant.) 
Any infrared effect which persists to late times must therefore derive from redshifting 
the infinite reservoir of initially high momentum modes. These reach equilibrium among 
themselves in about a Planck time. Since we must in any case assume that all observations 
come much later than the ultraviolet length cutoff, which is also the Planck time, the high 
modes have plenty of time to equilibrate. 

The exact position space propagator is an uninteresting mode sum which has been given 
elsewhere. 4 Note, however, that we require this propagator only for the narrow range of 
spatial coordinates given by (17). A similar restriction on the range of conformal times 
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derives from the fact that the onset of inflation at t = 0 corresponds to u = 1/H, while the 
infinite future at t = 00 corresponds to u = O. Within this very small range of conformal 
coordinates the mode sums comprising the propagator can be excellently approximated as 
follows: 4 

i [IWt:.PU1(u, x; u',x ') "" 4!2 t:.x2 ~~:~ + if [2'7Jl(p'7u )v - '7Jlv'7pu1 
2 - ~: In [H2 ( t:.x - t:.u

2 + if)1[2'1Jl(p'1u)v - 21}Jlv1}pu1 (18) 

where !'::lu == u' - u and !'::lx = Ilx ' - xiI, and I remind the reader that a barred tensor has 
its natural zero components suppressed as in (12). 

Schwingerl7 has developed a diagrammatic formalism for computing expectation values 
almost as simply as the usual Feynman rules give in-out matrix elements. The idea is that 
one first evolves forward from the initial state to some time in the future of the last 
observation. This is accomplished by a functional integral with the conventional action ­
over the desired time interval - evaluated at fields 'l/Jtv. One then evolves back to the 
initial state by a functional integral over the complex conjugate action evaluated at fields 
'l/Jj;v. Vertices can have either all + lines or all - lines, and propagators can link any two 
kinds of line. The ++ propagator is given in (18), while the -- is its complex conjugate. 
The +- propagator is obtained from (18) by replacing the if terms with isgn(u - U')f, 
where sgn(x) is the signum function. The -+ propagator is obtained by the replacement: 
if f---7 -isgn(u - u')€. 

To compute the expectation value of an operator one merely sums all the relevant 
diagrams. Schwinger's formalism has the important property that the various + and ­
contributions add so as to give a real result for the expectation value of a Hermitian oper­
ator such as the metric. The two kinds of vertices also interfere destructively whenever an 
interaction lies outside the past light cone of the operator being observed. This means that 
the evolution we are studying is causal. It also means that we can ignore the topological 
peculiarities of T3 x R. For example, the fact that topological obstructions prevent invari­
ance under continuous spatial rotations is not locally observable. The local field equations 
are isotropic, so if the initial background is locally isotropic - which we impose by fiat ­
then the background has this property for all time. 

The object we actually -compute is the amputated expectation value of the pseudo­
graviton field. By virtue of the initial state's homogeneity and local isotropy we can 
express the expectation value using just two functions of the conformal time: 

DJ.ltCT \ 01 K'l/JpCT(U, x) 10) = a(u) flJ.lv + c(u) 8J.l°8vO (19) 

The symbol DJ.ltCT stands for the pseudo-graviton kinetic operator: l 

D pCT_ [l7(P7 CT ) 1 pCT lcOcOCPCCT]D c 07 (PcCT)D cOcOcPcCTD (20)
J.lV = 2 v J.l °v -41]J.lv1] -2°Jl °v °0 °0 A+O(J.l °v) °0 B+°J.l °v °0 vo C 

where D A = n(a2 + 2/u2 )n is the kinetic operator for a massless, minimally coupled 
scalar and DB = DC == n a2n is the kinetic operator for a conforn1.ally coupled scalar. 
When single external lines emanate from a vertex in Schwinger's formalism they are always 
retarded propagators, so the result for the expectation value is:5 

( 0 I K'l/J J.lV (u, x) 0) = A (u) rjJl v + C ( u) bJl°bv° (21a)1
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A( u) == -4 GAt [a] (u) + Get [3a + c] (u ) (21b) 

C(u) == Get [3a + c] (u) (21c) 

The retarded Green's functions of the massless minimally coupled and conformally coupled 
scalars are respectively: 

GAt [u- 4 (Hu)E:] (u) = H2 1 {(Hu)E: - (1 -1e) -1e(Hu)3} (22a)
3e(1 - !Ie) 

Get [u-4 (Hu)E:] (u) = H2 1 {-(HU/ + 2(1- ~e)Hu - (1- e)(Hu)2} (22b)
2(1 - e)(1 - 2e) 

Note that four powers of l/u are lost in attaching the external line. Since the pseudo­
graviton is part of a rescaled metric 9J.lv = n-2 9J.lv whose classical value is constant, the 

functions a(u) and c(u) must grow faster than u-4 if quantum corrections are to exceed 
the classical result. 

Because of the special symmetries of our initial state it is simple to find an invariant 
measure of the rate at which spacetime is expanding. First write the invariant element in 
co-moving coordinates: 

(23a) 

then define the effective Hubble constant as the logarithmic derivative of the scale factor: 

(23b) 

To express this in terms of the functions A( u) and C ( u) we merely compare (23a) with 
the quantum-corrected invariant element in conformal coordinates: 

This allows us to identify the scale factor and the quantum-corrected coordinate transfor­
mation which relates u to t: 

R(t) = n VI + A(u) (25a) 

dt == -n VI - C(u) du (25b) 

We then apply (23b) to obtain: 

H t -
eff( ) ­

H 
VI - C(u) 

{ 1 _ 2 dulu A-A(u) } 
1 + A(u) (26) 

Note that this is in principle a non-perturbative result if one could somehow evaluate A( u) 
and C(u) non-perturbatively. 

Renormalization is accomplished by subtracting primary divergences using local coun­
terterms. We choose the cosmological counterterm to remove primary divergences in the 
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amputated I-point function and to enforce the condition that the effective Hubble constant 
be initially time independent: 

-d H t I -0 (27a)dt eff() t=O+ ­

The condition that Heff(O) = H is enforced by the choice of initial state, and is indeed 
obeyed by 10). Since both the coefficients A( u) and C(u), and their first derivatives, vanish 
at onset we can express the condition for 8A in terms of the initial values of the coefficients 
a(u) and c(u ): 

(27b) 

If desired we can enforce the vanishing of the other linearly independent combination 
of a(H-l) and c(H-l) by using time dependent changes in the coordinate system. We 
choose 8G to remove primary divergences of dimension two in the 2-point function. Since 

1the imaginary part of our propagator gives the correct classical response to a point mass
we know that Newton's Law is true at onset. We could use the finite part of 8G to enforce 
the initial constancy of Newton's law, but it turns out that the finite part of 8G is not 
relevant to the leading infrared contributions to the amputated I-point function. The finite 
parts of the higher dimension counterterms are even less relevant. 

To analyze the actual u dependence of the functions a(u) and c(u) we begin by extract­
ing factors of I\, and H. The n-point vertex contributes a factor of ",n-2 H-2. From (18) 
we see that each propagator is H2 times functions which depend only very weakly on H. 
If an 1:-loop contribution consists entirely of 3-point interactions there will be V = 21: - 1 
vertices and P = 31: - 2 propagators. Since we include an extra factor of '" in the definition 
(19), the 1:-loop contributions to a(u) and c(u) can be written as: 

"Y+l H 2P- 2V = (KH)2f H-2 (28) 

times the integral of a function which depends only weakly on H - and not at all on I\, ­

over the 21: - 2 free vertices. To see that this result is correct even if higher point vertices are 
involved, note that diagrams involving the higher point vertices at the same loop order can 
be obtained by contracting propagators.* Suppose we make such a contraction between an 
m-point and an n-point vertex. Before the contraction the structure contributed a factor 
of: 

m-2 H -2 H2 n-2H -2 m+n-4 H-2 
I\, x Xl\, =1\, (29) 

Afterwards we are left with a single vertex having m+n-2Iegs, so the factor-is unchanged. 
What does change is the number of vertex integrations. 

Recall that K, has the dimensions of length, while H and the pseudo-graviton field have 
the dimensions of inverse length. It follows that the coefficient functions a(u) and c(u) 
have the same dimensions as the pseudo-graviton kinetic operator: namely, inverse length 
squared. At 1: loops these functions can be written as (I\,H)2f H-2 times the integral of a 
function which depends only weakly on H. This integral has dimension of length-4 and it 
can depend only upon the observation time u , the ultraviolet regularization parameter E­

which has dimensions of length squared - and the Hubble constant H. The only strong 
source of dependence upon H is through the upper limit - H-l - of the conformal time 
integrations. Now it happens that our conformal coordinate patch actually conceals most 

* One can view the higher interaction vertices as filling out certain portions of the Schwinger parameter space 
needed to decouple unphysical polarizations from the primitive diagram. 
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of its infinite invariant volume near u = O. We must therefore expect that infrared effects 
derive mostly from the lower limits, and since they must be ultraviolet finite, it follows 
that the leading infrared effects at any order go like u -4 times dimensionless functions of 
u. These dimensionless functions can only be logarithms, and there can be at most one 
for every vertex integration. At £ loops there are at most 2£ - 2 free vertices, so we expect 
the i-loop coefficient functions to behave as: 

(30) 

Since the inclusion of higher point vertices at the same loop order results in fewer free 
vertices, the leading term at any order is composed entirely of 3-point vertices. 

One loop effects cannot make significant corrections to Heff(t) because the strongest 
growth they can give to the amputated I-point function is proportional to u-4 . From 
(21-22) - and expanding (26) to lowest order - we see that the resulting corrections to 
Heff(t) approach a constant in the far future. (This result was previously obtained by 
Ford18 using a different technique.) Since this constant must be a pure number times 
(KH)2 10-12 , anyone-loop effect has to be irrelevant.rv 

One way to understand the absence of a one loop effect is that free interaction vertices 
can contribute from anywhere within the observer's past light cone. Infrared effects derive 
from the fact that the invariant volume of this region grows - like In(u) in fact - as the 
observer evolves into the future. The longer he evolves, the greater the invariant volume 
over which free interaction vertices can contribute, and the larger the effect. But the 
vertex at the amputation point is not free, it is fixed at the observer's position. There is 
only this single vertex at one loop, so there can be no growth in time. In fact, with our 
renormalization condition (27) we ought properly to subtract off even the possible time 
independent effect. 

The first time dependence comes at two loops. One can make a strong case that both 
of the two possible logarithms occur at this order: 5 

(31a) 

(31b) 

where the "subdominant" terms diverge less strongly as u approaches zero. Substituting 
into (21-22) and from there into (26) gives: 

We do not yet know the numerical values of ao and Co but it is probably possible to 
obtain them by using a symbolic manipulation program to perforn1 the tedious tensor 
algebra which is the bane of quantum gravity. The loop integrals by themselves are not 
significantly more difficult than ones we have already computed5 for the analogous decay 
in massless qy3 theory on flat R3 x R. If the combination ao + 3cO comes out positive then 
it will prove that QCG corrections act to break inflation by an amount which becomes 
non-perturbatively large at late times. 
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A PHYSICAL MODEL OF RELAXATION 

Nick and I feel the simplest way to understand the beginning of relaxation is that 
dimension three self-interactions always generate negative vacuum energy, which is in turn 
a source for the expansion of spacetime. The time dependence - and the dominance of 
cubic self-interactions - comes about because the amount of negative self-energy generated 
in this way depends upon the size of the loops involved. Loops where the various interaction 
vertices explore a larger invariant volume of spacetime contribute more than smaller loops. 
A single loop has no free interaction vertices so it simply contributes a divergent constant 
that must be renormalized away - or absorbed into a coordinate redefinition - if the 
initial observer is to see inflation. The size of higher loops is constrained by the requirement 
that contributing interaction vertices must occur after the onset of inflation and in the past 
light cone of the observer. As time goes on these loops explore larger and larger invariant 
volume, so their impact on the expansion of spacetime becomes stronger and stronger. 

Many people find this explanation unsatisfying because they feel that any quantum 
instability must have a classical antecedent. However, no one has ever found a reason why 
the local de Sitter background (3) should be unstable in classical general relativity.12,19 
In fact a classical mechanism does act to destabilize de Sitter space, and it is easy to 
understand both why this effect is not strong enough to do the job and why its quantum 
descendant is. 

The classical mechanism I referred to is simply the presence of some gravitational 
radiation in the initial configuration. We can use QCG to study the evolution of the metric 
by taking the initial state to be not free vacuum but rather a suitably chosen coherent state. 
In perturbation theory one simply writes the coherent state as an exponential of creation 
operators acting on the free vacuum, and then expands to obtain an infinite series of Fock 
space states. The matrix element of the pseudo-graviton field between any two of these 
n graviton states can be computed using the reduction formalism Nick and I developed 
at the end of our last paper.5 Some of the Schwinger diagrams which contribute to these 
expectation values contain no loops; sunlming only these terms gives the purely classical 
effect. 

Now consider the pseudo-graviton matrix element between nand m gravitons of fixed 
momenta. What one finds is that the effect of any mode depends upon its physical wave 
length at the observation time. The dominant effect comes from modes whose physical 
wave lengths are just reaching the Hubble radius when the observation is made. When 
the physical wave length is much below the Hubble radius the interaction overlap with the 
constant background is weak; and causality cuts off the interaction from modes whose phys­
ical wave length has redshifted beyond the Hubble radius. Since all gravitons eventually 
redshift beyond the causal horizon, there is no strong classical effect at late times. 

The connection between these classical processes and the quantum loop effect we see 
in pure vacuum comes via Feynman's tree theorem. 20 This is a technique in which one 
decomposes loops of Feynman propagators, connected by local interactions, into sums of 
tree diagrams. When the method is applied to the Schwinger diagrams that give our two 
loop effect, the result is just a sum of expectation values of the pseudo-graviton field in the 
presence of various two graviton states. The crucial difference from the classical process we 
just considered is that the decomposition of the tree theorem involves sums over gravitons 
whose initial spatial momenta are arbitrarily large. The quantum effect never cuts off 
because we never run out of wave lengths which are just redshifting to the Hubble radius. 
In fact, the number of these increases with time as [22 by a simple phase space effect. 

That relaxation is a quantum effect deriving from the uncertainty principle can be 
seen by considering the Fourier transforms of the initial configuration and its first time 
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derivative: 

ql'v(k) =Jd3
x exp (ik . x) ,pI'V (k, x) (33a) 

Pl'v(k) == Jd3x exp (ik . x) ~I'V (it, x) (33b) 

For these to serve as initial value data for a well defined classical solution they must fall 
off at high momentum. This means that for high k both qpv and Ppv are being confined to 
near zero. We can do this in classical general relativity, in fact we must do it if the initial 
configuration is to have finite curvature. However, this is precisely the sort of thing that 
quantum field theory does not allow. In quantum field theory one cannot localize a qpv 

mode and its conjugate momentum to within a phase space volume smaller than 27rn x H3. 
This is what gives quantum cosmological gravity the unending supply of ultraviolet modes 
which the locally de Sitter background redshifts to the infrared. 

We do not have a good understanding of the non-perturbative regime which prevails at 
very late times. As the rate of expansion slows, so too does the redshift of high momentum 
modes. This slows down the growth in the number of modes at any given physical wave 
length, which would seem to weaken relaxation. However, a competing effect is that the 
effective Hubble radius increases, restoring causal contact with some of the modes whose 
wave lengths had redshifted beyond the larger Hubble radius of earlier times. Which of 
the two effects wins is not presently clear to us. 

Before closing this section I must debunk two misconceptions about relaxation. First, 
Nick and I are often asked the question, "if the local de Sitter vacuum of QCG is unstable, 
why can't we simply start the theory out in the true vacuum, whatever that is, and dispense 
with all this talk of time evolution from plausible initial conditions?" This appeals to the 
widespread prejudice that there should be a time independent vacuum state. The analysis 
presented above shows that there is no such state in QCG; relaxation goes on as long as 
perturbation theory remains valid. Although we do not understand the behavior at late 
times there is nothing to suggest that relaxation ever stops. 

The final misconception concerns the renormalization group. Nick and I are continually 
asked, "why not integrate out the short distance physics and then deal with the resulting 
effective field theory of long distances?" I will not attempt to prove the negative that there 
is no useful version of this scheme, but I certainly don't see one. Let me first explain why 
the procedure seems ambiguous in QCG. I will then deal with the most common friendly 
suggestion for implementing it and the most common unfriendly one. 

The heart of the problem is that QCG lacks a time independent notion of ultraviolet 
and infrared. Although free QCG evolves plane waves (13) onto plane 'vaves of the same 
coordinate momenta, the associated physical momenta redshift with the inflating universe. 
This cannot be ignored because it has dynamical consequences; for example, one reason 
that relaxation occurs is the growth in the number of modes whose momenta are redshifting 
below H at any given time. We should therefore think not of integrating out high frequency 
spacetime modes but rather of obtaining an effective theory for the evolution of those modes 
whose initial spatial momenta are below a certain scale. 

The sort of effective field equations just described can be derived but it is not clear 
that this is simple to do, or that there is any point to it. Any mode whose initial wave 
length is finite must eventually redshift beyond the causal horizon and decouple. At late 
times the initially infrared modes are not in interaction with each other but rather with 
the effective forces generated by the originally ultraviolet modes that were integrated out. 
The evolution equations of the initially infrared modes all become linear and the forces 
are {:-number functions of time. If we follow the evolution of the expectation value of a 
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given mode we can find the forcing functions directly, as we did in (31) for two of the zero 
modes. This seems much simpler than trying to erect an effective action for the infrared. 

People who like the idea of relaxation often suggest a variant of the renormalization 
group in an attempt to avoid the breakdown of perturbation theory which occurs when 
relaxation becomes significant. The idea is to evolve for a only brief time dt, during which 
perturbation theory remains reliable. One then attempts to mock up the subsequent 
evolution for another brief period by restarting the process in a modified version of QCG 
with the bare cosmological constant reset to its effective value at the end of the previous 
evolution: 

(34) 

Something like this might work in the late stages of relaxation - at least we cannot rule 
it out - but it does not capture the beginning of relaxation if ao + 3eQ is non-zero. To 
see this divide the time interval t up into N steps, dt = t / N, each of which is still of long 
enough duration that we may neglect H dt relative to (Hdt)2. Then the n-th iteration 
gIves: 

H~~)(dt) = H~~-l)(dt) {I - ~4H4 [( ~ao + ~eo) (Hdt)2 + (subdominant)] + O(~6H 6 )} 

(35) 
The result of iterating N times should agree with (32), but in fact we get: 

It is simply not true that a universe whose past includes long lived virtual gravitons is 
the same as one without the virtual gravitons but with a somewhat smaller cosmological 
constant. 

Of course not everyone likes relaxation, and some of those who do not, attempt to 
debunk it by invoking the renormalization group in a different form. Their arguments start 
with the contention that integrating out the nl0des above a certain momentum scale ­
whatever this is taken to mean - must produce the local Einstein equations, with suitably 
renormalized values for A and G, plus a series of irrelevant higher curvature terms. The 
next step is to note that one can arrange the various higher curvature terms so that they 
vanish when the metric is locally de Sitter: 

(37) 

Given the first assumption, this step is certainly correct; in fact, if we did not arrange things 
thusly the result would be just a trivial redefinition of the bare cosmological constant. The 
third step is to note that since the locally de Sitter background (3) solves the renormalized 
field equations for all time, there is no relaxation. The problem with this argument is 
that the first assumption is not correct. Theories such as QCG, which contain infrared 
divergences in gauge invariant, off shell Green's functions,5 cannot possess effective actions 
of the stated form. 

We do not have to fight this point out in the ethereal context of quantum gravity 
because it can be demonstrated past the point of reasonable dispute in the much simpler 
model of a massless scalar with cubic self-interaction in flat space: 

(38) 

17 



Veneziano proved long ago that infrared divergences preclude the existence of a perturba­
tive S-matrix for this theory when the massless limit is taken in the <jJ = 0 vacuum,21 One 
can also see that off shell Green's functions are infrared divergent at two loops and higher,5 
so the theory cannot possess an effective action of the conjectured form. However, let us 
ignore this fact and attempt anyway to follow the analog of QCG relaxation. That is, we 
will study the perturbative evolution of the expectation value of the field in the presence 
of the state that is free vacuum at t = O. If our critics are right this must obey a field 
equation of the form: 

D<jJ = ~A'¢} + g<jJ3 + local higher dimension terms (39) 

It turns out that the first secular contribution comes at two loops and from diagrams with 
precisely the same topology as the dominant two loop contributions of QCG:5 

(40) 

The conjectured field equation must consist of more than just a renormalization of the 
scalar potential - the typically assumed form - because although the solution and its 
first time derivative vanish at t = 0, it does not remain zero. In fact even allowing 
higher derivatives does not help as long as corrections are constrained to be local, Poincare 
invariant and perturbative. The assumption that integrating out the high momentum 
modes produces such an effective field equation is simply wrong. It is equally wrong in 
QCG, and for the same reason. 

THE CASE OF A NEGATIVE COSMOLOGICAL CONSTANT 

The maximally symmetric background with a negative cosmological constant is anti­
de Sitter space. As the name suggests, it is in many ways the opposite of de Sitter 
space. Whereas even a locally de Sitter patch rapidly loses causal contact with the outside 
universe, information in anti-de Sitter space requires only a finite time to flow out to ­
or in from - spatial infinity. Even for a mathematically perfect initial condition this 
raises the problem of choosing a sensible spatial boundary condition. The usual choice is 
a condition in which information from inside is reflected back.22 This has the unphysical 
consequence that one cannot make a small disturbance without making an opposing anti­
disturbance at the antipodal point - which is inside the manifold for Lorentz signature 
anti-de Sitter space. We prefer the transmissive condition studied recently by 1(]eppe.23 

However, the point is really moot when set against the larger issues arising from how the 
universe might actually enter an anti-de Sitter phase. 

Suppose first that the bare cosmological constant is negative and that deflation begins, 
as we conjecture for positive A, when the temperature ceases to dominate the stress­
energy tensor. It makes no sense to assume that this occurs simultaneously throughout the 
universe; what should really happen is the onset of deflation in a region of local thermal 
equilibrium. However, whereas the portion beyond an inflating patch rapidly becomes 
irrelevant, the opposite is true for deflation. In this case the outside universe dominates. 
The trouble is that we don't understand very well what to assume about this outside. If 
our patch is the first of its neighbors to have begun deflation then the others have unknown 
temperatures - all presumably different and somewhat larger than the deflationary mass 
scale. If other nearby patches cooled first then we know even less. 
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The most physically interesting periods of deflation are triggered by matter phase 
transitions which occur after the observed universe has relaxed from a GUT scale inflation. 
This carries the additional complication of heavy dependence on the previous history of 
relaxation. The reason for this is that relaxation means long wave length phenomena in 
QCG are suppressing a very large and positive bare cosmological constant. As explained 
previously, this is not a once-and-for-all process; it requires the constant participation of 
long wave length modes. If the local geometry begins deflating then the redshift of new 
modes down from the ultraviolet ceases, but old modes from the very far infrared resume 
interaction. If the first effect dominates then deflation cannot last long because only a small 
percentage decrease in the suppression of a GUT scale positive cosmological constant is 
required to overcome the negative effective cosmological constant that might be induced 
by the electroweak or QCD phase transitions. 

WHY THIS MECHANISM HAS NOT BEEN SEEN BEFORE 

So many people have searched for an instability of de Sitter space that one might 
wonder why the mechanism Nick and I have proposed was not studied sooner. As near as I 
can understand there are three reasons. The first is that our mechanism involves quantum 
gravity, not quantum matter theory. There is a very widespread prejudice against invoking 
quantum gravity to do anything because we do not possess a fundamentally consistent 
theory of it. Few people thought to look for relaxation in QCG. 

The second reason is that exotic forn1ulations of QCG have - it seems to us - misled 
the few people who attempted to study it. For example, there is the Euclidean version, 
with its infamous conformal rotation and the option of topology change. Then there is 
the seductive influence of de Sitter invariance. We exploit conformal flatness on a tiny 
portion of the full de Sitter manifold, thereby abandoning even the pretense of de Sitter 
invariance.4,16 Our effect derives from causal correlations which contribute over longer 
and longer times. However, if one attempts to work on the full de Sitter then there is a 
very subtle error through which it can seem that a de Sitter invariant vacuum exists and 
that its propagator is plagued by acausal correlations which grow with increasing spatial 
separation. 1,24 

The final reason is that our effect derives from interactions, not from the free theory. 
At the level of diagrams it arises because the un-fixed interaction vertices in the amputated 
I-point function can explore an increasing invariant volume of spacetime as the observation 
time increases. There are no un-fixed interaction vertices at one loop, which is why no 
effect was seen there.18 Very few people thought to look in higher loops because these are 
much harder to evaluate and there is another widespread prejudice that if something does 
not occur by one loop then it cannot occur at all. 

WHAT OUR SCHEME MEANS FOR COSMOLOGY 

If Nick and I are right then the bare cosmological constant is not unreasonably small. 
Further, there is no need for fine tuning of scalar potentials. Our view is that inflation 
happened in the early universe for no other reason than that the bare cosmological constant 
is large and positive. The current observed universe derived from a patch of about one 
Hubble volume which began inflation when the local temperature dropped below the scale 
M. 

The reason our universe is not observed to be inflating today - at least not rapidly 
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- is that infrared processes in QCG tend to screen the cosmological constant. There are 
two reasons why the effect is strong: 
(1) QCG allows massless gravitons to interact through a coupling of dimension three; and 
(2) The inflationary redshift continually increases the number of gravitons whose physical 

wavelength is about one Hubble length. 
The reason QCG acts to null inflation is that dimension three self-interactions always 
induce a negative vacuum energy, which is a source, along with the bare cosmological 
constant, for the expansion of spacetime. The reason we get any inflation at all is that 
infrared effects require time to build up. One can see from (32) and condition (5) that 
a significant diminution in the effective Hubble constant requires a very large number of 
e-foldings: 

1 
> 1012N = Ht ~ - (41)

GA 
In this respect it is the smallness of the natural dimensionless parameter of QCG which 
provides the lag needed for a long period of inflation. 

All experimentally confirmed matter quanta are either massless or else conformally 
invariant at the classical level. This means that they give only negligibly small corrections 
to the classical geometry of an inflating universe. Although certain conjectured light matter 
quanta may be competitive with QCG for a time, in the end only the graviton is left. This 
means that QCG makes unique predictions for relaxation. 

Unfortunately, the most interesting predictions of QCG are not easy to obtain because 
perturbation theory breaks down. One can see from (32) that when the two loop correction 
is of order one then the three loop effect - which ought to go like 1(6 H 6(Ht)4 - is at least 
twelve orders of magnitude larger. We do not worry that these higher order effects might 
reverse relaxation because the tendency of dimension three couplings to generate negative 
self-energy is true at every order. However, it does mean that non-perturbative methods 
must be used to gain control over the late stages of inflation. This is very frustrating 
because the end of rapid inflation should tell us what reheating temperature was reached; 
and the last sixty e-foldings governs the magnitude and spectrum of observable density 
perturbations. 

Finally, we would like to suggest two more points of potential experimental contact. 
The first arises from the fact that the universe should still be experiencing a residual 
expansion due to its not completely screened bare cosmological constant. It is conceivable 
that a modified form of perturbation theory could be used to predict this residual expansion 
rate. There is some evidence that a suitably time varying effective cosmological constant 
can explain the apparent discrepancy between the age of the oldest galaxies, as inferred 
by models of stellar evolution, and the age of the universe as inferred by the currently 
measured Hubble constant. 25 

The second point of potential experimental contact derives from electroweak and QCD 
chiral symmetry breaking phase transitions. If these occurred after inflation and relaxation 
at some high scale then they should have induced an effectively negative cosmological 
constant. We do not understand the process by which deflation is relaxed - or even if it is 
relaxed - but one would think that the time scale of this gravitational process should be 
longer than that of either phase transition. If so then there would have been substantial 
periods of deflation, which would almost inevitably have affected low scale baryogenesis 
and nucleosynthesis. 
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