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ABSTRACT. The purpose of this paper is to initiate the study of the re
lationship between systems of differential equations whose respective symme
try groups are related by a contraction. As an example, we have constructed 
a "basis" of 50(2, 1)-invariant scalar equations of order two that contract to 
p( 1, 1 )-invariant equations. A step toward a systematical study is presented. 

PACS numbers: 02.20 +b, 02.30.+g 



2 

1. Introduction 

The application of continuous (Lie) groups to systems of differential equa
tions was started by Sophtis Lie around the middle of the nineteenth century. 
He essentially unified all the known integration techniques. Since then, im
portant developments were done (See, for instance, the Reference [1]). On 
the other hand, the theory of contractions of Lie groups was introduced 
in the fifties by E. Inonu and E. P. Wigner [2]. It stemed from the need 
to relate mathematically the symmetries underlying different physical phe
nomena. The purpose of this paper is to combine the two subjects. This 
article constitutes, to our knowledge, the first attempt to relate systemati
cally different systems of differential equations, whose respective symmetry 
Lie groups are related through a contraction. 

Many fundamental equations of physics (gravitation, particle physics, 
physics of fluids, etc.) are complicated and in general, nonlinear. Their 
symmetry Lie group can help to simplify them (through the symmetry re
duction method), to obtain new solutions from known ones, to classify the 
solutions, etc. Like numerical integration and reduction to linear or in
tegrable nonlinear equations, the gToup theoretical methods help to solve 
nonlinear differential equations. The theory of contractions was motivated 
by the study of physical phenomena. Given two physical theories or physical 
systems, from which one is a limit (or an approximation) of the other, the 
contraction procedure allows one to obtain the Lie group/algebra (and its 
representations) of the approximate theory from that of the exact one. The 
specific example considered in the original paper by Inonii and Wigner [2J 
was the contraction from the Poincare group to the Galilei group, which are 
the symmetry groups of the Einsteinian and Galilean Relativity, respectively. 
Along with the contractions of the Lie algebras, methods to contract their 
representations were devised [3-9J. 

Hence, it is natural to apply the contraction methods to the Lie algebras 
underlying systems of differential equations. By suitably identifying some 
contraction parameters into an initial system of differential equations, such 
that for some limit values, these parameters lead to a different system of 
equations, one would possibly find that its solutions contract to the solu
tions of the contracted system of equations. (Such an approach offers new 
possibilities in relating different special functions, as done in Reference [2]). 
Physical example is an electrical circuit, with an associated equation or sys
tem of equations, and some symmetry group. Then if some component of the 
circuit burns out, the equations may be modified continuously in such a way 
that their group is a contraction of that associated with the original system. 
Another example occurs in quantum field theory, where one can take some 
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constants (e.g. masses, coupling constants, etc.) in the Lagrangian going to 
zero. 

For example, Inonii and Wigner [2J pointed out that the asymptotic be
havior of the associated Legendre function F1m into the Bessel function Jm, 

Jm(p) = lim F1 
m (cos(p/l)) ,

1-00 

is related to the contraction of the group of rotations 50(3) into the Eu
clidean group in the plane E(2). This relationship induces a limit process 
linking the respective differential equations. In fact, the associated Legendre 
function satisfies the modified Legendre equation, 

whereas the Bessel function satisfies the Bessel equation, 

Both equations arise in various domains of physics. Changing x into cos(p/ l) 
(where 1 is a constant), the Legendre equation becomes (after multiplication 
by sin2(p/l)) 

2l2sin2(p/l)ypp + lcos(p/l)sin(p/l)yp + [sin2 (p/l)l(l + 1) - m ] y = o. 

In the limit 1 ~ 00 (such thatsin(p/l) rv p/l, cos(p/l) rv 1), it becomes the 
Bessel equation. However, the structure of this relationship is different from 
that considered in this paper. 

The study of the contractions of systems of differential equations (and 
their solutions) can be done in two ways. The first and the most natural 
one is to identify contraction parameters (e.g. physical constants) into the 
equations and see if these parameters pass into the expression of their sym
metry Lie algebra, and if, in the singularity limit, they lead to a contracted 
Lie algebra that corresponds to the contracted system. The second way to 
proceed is rather to introduce the contraction parameters into the structure 
of a Lie algebra right from the beginning. Then we construct a "basis" of 
differential equations invariant under this group (such as done, for instance, 
in 'Reference [10]) and look for what happens in the contraction limit. Here 
we haved used the latter way to proceed for it is more systematical. Within 
this point of view, the interest lies essentially in the Lie algebras considered, 
while for the former point of view, the interest rather lies in the equations 
themselves. 
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In the next section, we outline the mathematics needed. As a first work
ing example, we find in Section 3 the scalar equations of order 2, in two 
dimensional spacetime, with the symmetry groups 50(2,1) (de Sitter) and 
P(l,l) (Poincare). In the Section 4, we present a first step toward a system
atical study, based on the method of graded contractions [11-13]. Concluding 
remarks are in Section 5. 

2. Mathematical preliminaries 
We first sketch the method to obtain the symmetry Lie group of a system 

of differential equations. After, we describe the general theory of contractions 
of Lie algebras, and particularly the theory of graded contractions. 

Hereafter, we consider Lie point symmetries of differential equations. 
Thus, when we talk of "the symmetry group of a system of differential equa
tions", we mean the largest local Lie group of point transformations that 
acts on the independent and dependent variables of this system and leaves 
invariant its solution set. In other words, it transforms solutions into each 
other. More details and examples about this are in Reference [1]. 

Consider a system of m differential equations of order k, 

(2.1) 

where a = 1, ... ,m, and where we have p independent real variables, 

(2.2) 

and q dependent real variables, 

(2.3) 

In (2.1), u(k) = {U,U(l), ... ,U(k)} is the set of all derivatives (up to order k) 
for every u. 

The symmetry group G of the system (2.1) is defined as the set of diffeo
morphisms Xg(x,u) and Ug(x,u), 

(X,u) -t (Xg(x,u),Ug(x,u)), (2.4) 

that leave the system (2.1) invariant. 
In order to get a geometrical picture of the problem, note that we consider 

functions f of x, 
U o = fo(x), (a=l, ... ,q) (2.5) 

and their k-th prolongations, 

(2.6) 
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where fxle denotes k-th derivatives. This induces an extended space, called 
jet space, which consists in the set of independent variables, of dependent 
variables and their derivatives. The action (2.4) induces a "prolonged" action 
of G over the jet space. That the prolonged action leaves invariant the system 
of equations is the fundamental cri terion for G to be the symmetry group of 
that system. 

As S. Lie did, it is much more manageable to work out the Lie algebra L 
(of G), realized in terms of the vector fields 

p . a q a 
v = L C(x,u)-a. + L cP°(x,u)-a . (2.7) 

. Xl U o
1= 1 0=1 

The coefficients ~i and cPo determine L. They must satisfy the condition that 
the k-th prolongation pr(k)v annihilates (2.1) on its solution surface, 

(2.8) 

witha,b=l, . .. ,m. 
Let us introduce the notation 

(2.9) 

where J = (j1, . .. jp) is a set of nonnegative integers and I J 1= j1 + ... + jp. 
We also need the total derivative operator, 

a q a 
Di = ax- + LLUo,J+Jia:;;- ' 0 ~I J I~ k, (2.10) 

t 0=1 J o,J 

for i = 1, ... ,p, and where Ji denotes a p-tuple with 1 on the i-th position 
and zeros elsewhere. 

The prolongation formula is 

(2.11) 

where' 1 ~I J I~ k. The coefficients cP°,J are obtained from the recursive 
formula 

p 

cP°,J+Ji = DicP°,J - L (Di~j) uo,J+Jj' 1J 12 1, (2.12) 
j=l 
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starting from the first order coefficients 

cPQ,h = DicP
Q 

- L
p 

(Die j
) u~,Jj' (2.13) 

j=1 

which is nothing but (2.12) with J = (0). 
The prolongation formula (2.11) is a differential operator acting on the 

jet space and, when substituted into (2.8), provides a system of auxiliary 
equations to be solved for the ei and ¢>Q of (2.7). These in turn determine 
the Lie algebra L. Many concrete examples are in the Section 2.4 of Reference 
[1]. 

As noted in the Introduction, here we reverse the method by starting from 
a given Lie algebra, forming a realization (2.7) and looking for a "basis" of 
differential equations which satisfy (2.8). Such a construction is presented in 
Reference [10]. 

We now turn to a brief description of the general theory of contractions 
of Lie algebras [2-9]. In general, a contraction is a limit process which 
allows to obtain, from a given Lie algebra, another Lie algebra (in general, 
nonisomorphic) named contracted algebra, or contraction. Clearly, both have 
same dimension. The traditional contraction methods consist in taking a Lie 
algebra L with commutation relations [,], forming a family of Lie algebras 
Le, which depend on a parameter (or set of parameters) c, by modifying the 
commutators as 

(2.14) 

The automorphism (je is nonsingular for every [ except the singularity points 
['. However, at these points, the commutator 

[a, b]' = lim [a, b]e, (2.15) 
e-e' 

may be well-defined and then, the commutator [,]' determines a contracted 
algebra L'. It is often convenient to take L associated to all c = 1, and L', 
to some c = O. In this formulation, the c-dependent automorphism is the 
key object. For example, in the original article [2], it was defined to be 

(2.16) 

where A, Bare subspaces of L (A being a Lie subalgebra) such that 

L = A -+ B. (2.17) 
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The singularity point is c.' = O. Many generalizations and applications of the 
concept to the representations of the Lie algebras were introduced [3-9]. 

In Section 4 , we . shall use the method of graded contractions [11-13]. 
It first consists in grading (i.e. vector decomposing) the Lie algebra L as 
follows, 

(2.18) 

with 
(2.19) 

for all J-L, 1/, J-L + 1/ E r. Systematical study of the Lie gradings was initiated 
in Reference [14]. For our purpose, r is an abelian finite group. It thus 
consists in a tensor product of cyclic groups . The grading subspaces are 
then eigenspaces of L under some set of comilluting automorphisms of finite 
order. Everywhere in the paper, we use the notation + for the product in r . 

Rather than introducing an c.-dependent family of automorphisms singu
lar at some point, we modify the comillutator directly, 

(2.20) 

It clearly preserves the r -grading. By enforcing the Jacobi identities to the 
new commutator, we find that the c.-parameters must satisfy the 2-cocycle 
relations 

(2.21 ) 

for all J-L , 1/, pEr. The 6'-parameters are symmetric, (i. e. 6'p.,v = 6'v,p.). A 
solution of (2.21) provides us with a contraction of the Lie algebra L. 

The contraction of representations is treated similarly. Along with de
composition (2.18), we decompose the (to be contracted) L-module V as 

(2.22) 

such that 
o =1= Lp. . Vv ~ Vp.+v. (2.23) 

The action of L over V is modified by introducing parameters 'ljJ , 

(2.24) 

For a given contraction 6' , the 'ljJ-parameters must satisfy (from d~fining rep
resentation relations) 

(2.25) 
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for all J.l, v, pEr. A solution 'ljJ provides a contraction of the representation. 
The method to contract tensor product of representations is introduced in 
I:{,eference [12]. We shall not use it hereafter. 

The basic idea of the present paper is to introduce contraction parameters 
into a realization (2.7) of a given Lie algebra L, to form the prolongation 
operator (2.11), look for the invariant differen:tial equations, and see what 
happens when the parameters go to their limit values. The way we introduce 
the parameters is dictated by the specific contraction method employed. 

Having explained how to find the symmetry group of a system of differ
ential equations, and the general contraction theory, we end this section by 
stating more precisely the question studied in this paper. Consider a real Lie 
algebra L and a realization VL in terms of vector fields defined over the space 

(f"V Rp+q) of variables x and u. Let ~~;. be a set of elementary L-invariants 
of order k , obtained via the realization VL . Now suppose we use some con
traction procedure to construct a family of Lie algebras Le and realizations 
Vu;. Let L' = lime _ e , Le be a contraction of L for which we have the limit 
realization Vu == lime _ e , Vv~. Now suppose we can construct the invariant 

systems ~<"::lt! and ~<":::,. The question is whether it is possible to construct 
a realization VLt! such hat 

A(k) _ 1· ;\(k)Uv - 1m Uv . (2.26)
L' e-e' Lt! 

Hereafter, we do not attempt to treat this question in all its generality. 
Rather, we present in Section 3 a "plausibility example", and in Section 4, 
we make one step toward a systematical construction, by using the theory of 
graded contractions. 

3. Application to (1 + I)-de Sitter group 

In the present section, we construct a realization for L == 80(2,1) (de 
Sitter group in (1 + 1) dimensions) for scalar equations of order two, with 
two independent variables x and t, such that (2.26) is satisfied for L' == p(l, 1) 
(Poincare in (1+1) dimensions). Hence we display a basis of 80(2, I)-invariant 
differential equations that suitably contract to p( 1, 1 )-invariant equations. 
More information about the de Sitter groups and their contractions to the 
"kinematical groups" is found in References [15-17]. 

Half of the work is already done, for the p( 1, 1 )-invariants are given in 
[10] . The Lie algebra p(l, 1) == {Po, PI, I(} has commutation relations 

(3.1 ) 
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and can be realized as 
Po = 8t , 


PI = 8x , (3.2) 


I{ = x8t + t8x. 


Note that there is another class of realizations (see [10]), but we shall not 
consider it hereafter. 

The invariance conditions (2.8) read 

(f-l = 0,1), 

pr(2) K· ~ = [x8t + t8x - Ut8u:z: - u x8ut - 2u xt( 8u:z::z: + 8utt ) (3.3) 

- (Utt + uxx)8u:z:t] . ~ = O. 

We must solve the system of characteristics for this set of equations . It 
provides us with the following five elementary invariants 

~I = U , 

A 2 2U2=U t -Ux' 


~3 = Utt - Uxx , (3.4) 


~4 = (Ut - Ux)2(u xx + 2U xt + Utt), 


~5 = (Ut + Ux)2 (U xx - 2U xt + Utt). 


The more general p( 1, 1 )-invariant equation has the form 

(3.5) 

The details about this construction, and other examples, are given in Refer
ence [10]. 

Now we turn to 80(2, 1), and construct a realization that contracts to (3.2) 
and such that its invariants contract to (3.4). The commutation relations of 
80(2,1) = {Po, PI, I{} are 

[Po, K] = PI, [PI,I(] = Po, [PI, Po] = I{. (3.6) 

It is isomorphic to 81(2, R) = {La, L+, L _ }, 

(3 .7) 

The latter is realized in terms of the vector fields over a 2-dimensional 
manifold (with independent variables x+ = x + t, x- = x - t), 

L+ = 8_, 

La = -x-8_ + x+8+, (3.8) 

L_ = -(x-)28_ + (2x-x+ - a)8+ , 
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where a is an arbitrary constant. 
This realization may be Inonu- Wigner-contracted to the realization (3.2) 

of p(l, 1) by 

(1) defining L± = cL±, Lg = L o, 
(2) changing the variable x - ~ x - Ic, 
(3) choosing a = 	-IIc, 

before 	going to the limit c = O. Thus, before contraction, the realization is 

L+ = 8_, 

Lg = -x-8_ + x+8+, 	 (3.9) 

L=- = -c2(x-)28_ + (2c2x-x+ - ca)8+. 

We see that in L=-, only the last term does survive after the contraction. 
The second-order prolongation systelll (analogous to (3.3)) is 

pr(2) L+ = 8_, 

pr(2)Lg = -x-8_ + x+8+ + u_8u _ - u+8u + + 2u __ 8u __ - 2u++8u ++, 

pr(2)L=- = -c2(x-)28_ + (2c2x-x+ - ac)8+ + 2c2(x-u_ - x+u+)8u _ 

- 2c2x-u+8u + + 2c2 (u_ + 2x-u __ - 2x+u_+)8u __ 

- 2c2 (x+u++ + u+)8u _+ - 4c2 x-u++8u ++, 
(3.10) . 

where u+ = a:~' etc. The associated system of characteristics leads to five 
elementary invariants, 

L\~ = u, 

L\~ = u++lu~, 
Ae 2 + u_u++ 
u3 = 2c x u+ +ca - cau_+, 

u+ (3. 11 ) 
L\~ = c2(x+)2u~ - cau_u+, 
Ae 2 2 2 	 2 2 4 3 +Us = c a u_+ - c a u __ u++ - ac x u+u_+ 

+ 4ac3u_u+ - 2ac3x+u_u++ + 4c4 (x+)3u+it++. 

Going to the limit c = 0, with ac = -1, they contract to 

L\~ = lim L\f = u, 
e--+O 

L\~ = u++lu~, 
AI _ u_u++ 
U3 - - + u_+, 	 (3.12) 

u+ 

L\~ = U_U+, 
AI 2Us = U_+ - U__ U++. 
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Substituting back the initial independent variables x = (x+ + x-)/2, t = 
(x+ - x-)/2, the contracted invariants read 

(3.13) 

which all satisfy (3.3) and hence are all p(l, 1) invariants! Moreover, they 
constitute a complete ba/3i/3, for all p(l, I)-invariants (3.4) can be expressed 
in terms of them, 

~1 = ~~, 

~2 = 4~~, 

~3 = -4(~; + ~~~~) , 
(3.14) 

~4 = 16~~~~ 2
, 

A = 16(~; + ~~~~? - ~; 
L...l5 ~,. 

2 

The ~s are in (3.4) and the ~'s, in (3 .13). Note that the change to variables 
x, t may be performed in (3 .11). 

In summary, we have found a basis of 80(2 , 1)-invariant scalar differential 
equations of order two, in two dimensions, such that . 

(3.15) 


is the more general 80(2, 1) invariant equation. In the limit € --+ 0, they 
contract to a p(l, I)-invariant equation (3 .5) and so should do their solutions. 
However, the contractions of the solutions (related to the contractions of 
special functions) is to be considered elsewhere, 

4. Application of graded contractions 

We now suggest a systematical approach to the problem, using the theory 
of graded contraction/3. It can be applied at once to all Lie algebras. The 
basic idea is to start from a graded representation, as shown in (2.22)-(2.23), 

http:2.22)-(2.23
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and to realize that representation in terms of vector fields on a space hav
ing the same dimension as the representation. If these vector fields induce 
prolonged vector fields (2.11) that do provide well-defined invariant equa
tions (through (2.8)), then it is completely straightforward, using (2.24), to 
introduce contraction parameters into the vector fields and hence, into the 
invariant equations. Note that as a particular case, one can study the con
tractions of the ordinary invariants of Lie algebras (such as classified, for 
instance, in [18]). To do so, one just has to consider the adjoint representa
tion and to construct the invariants from the vector fields themselves (and 
not from their prolongations). 

We now explain this more precisely. Consider a general d-dimensional real 
Lie algebra L, having basis {aI, ... , ad} and an n-dimensional representation 
T(L), 

(4.1) 

where i = 1, ... , d; j, k = 1, ... , n. For the adjoint representation, the Ts 
clearly correspond to the structure constants. From (2.23), we see that if 
ai E L Jl and k E VlI then j E J.l + v. If we include the grading index, (4.1) 
reads 

TJll . = [T(a .)] '. ( 4.2) (Jl+lI»),lIk - III (Jl+lI»),lIk 

Representation (4.1) provides us with the following n-dimensional vector 
field realization of L, 

v(ai) = ~ Xj Tjk Ok , 

j,k 

( 4.3) 

or, in terms of (4.2), 

v( aJli) = ~ X(Jl+lI)jT(Jli+lI)j,lIkOllk. ( 4.4) 
j,k 

It is straightforward to build the prolonged operator (2.11) by using 
(2.12)-(2: 13), and by identifying the variables x and u to the basis elements 
ai. But it is not so easy to find the invariants, as done in Section 3. vVhen
ever it is possible, we introduce contraction parameters, following (2.24), so 
that (4.4) becomes 

i 
v tP (aJli) = ~ X(Jl+lI)j'ljJJl,lI T(Jl+lI)j,lIkOllk . ( 4.5) 

j,k 

The 'ljJ parameters will clearly be contained within the expression of the 
invariant equations. It is also clear that, by taking the limit values of the 'ljJs 
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in these equations, we shall obtain equations invariant under the contracted 
algebra. Hence, from the set of invariant equations of the initial Lie algebra 
alone, we can readily obtain invariant equations of all its contractions. 

When we consider contractions of the invariants of the Lie algebra, we 
must start with the adjoint representation, 

(4.6) 

where the cs are the structure constants of L. The ensuing contracted vector 
fields are, in analogy with (4.5), 

e 
v ( aJLi) = L X(JL+v)jC Il,V c(;+v)j,vk 8vk ' (4.7) 

j ,k 

As a simple example, we go back to the contraction from 80(2,1) to 
p( 1, 1) ~ and consider the ordinary invariants of the algebras (not the invariant 
differential equations). We denote the basis of 80(2, 1) and p(l, 1) as 

(4.8) 

From (3.6), (4.3) and (4.6), we have that for 80(2, 1), 

v(al) = -X302 - X283, 

v(a2) = x 381 - X183, ( 4.9) 

v( a3 ) = X281 + x182~ 

from which we deduce the invariant 

2 2 2 2 2 2 }',.. 2 p'2 P 2Xl - X2 + X3 ~ a1 - a2 + a3 =\. - 0 + l' ( 4.10) 

For p(l, 1), we have from (3.1), 

v(al) = -X302 - x 283, 

v(a2)=x381, (4.11 ) 

v( a3) = x281, 

and the ensuing invariant is 

2 2 2 2 p'2 p2X2 - X3 ~ a2 - a3 = 0 - l' ( 4.12) 
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Now let us endow so(2, 1) with the following r = Z2-grading structure, 

so(2, 1) = Lo +L I , 
(4.13)

L o = {a I }, L I == {a2' a3 } , 

so that the vector fields (4.9) become, following (4.7), 

v~(al) = cO,1 (-X382 - X283), 

v~(a2) = CO,lx38 1 - CI,IX I 8 3 , (4.14) 
e 

v (a3) = CO,lx28 1 - CI,IX I 8 2 . 

The Lie algebra p(l, 1) is obtained by taking cO,1 = 1 and CI,1 = o. It 
thus "kills" [a2,a3]. The general invariant provided by (4.14) is 

2 2 2 2 2 2 (4 15)CI,IX I - cO,IX2 + CO,IX3 ~ cI,la l - cO,la2 + CO,la3 · . 

In the limit leading to p(l, 1), it becolnes (4.12). 

5. Concluding remarks 

We recall that the purpose of this paper is to initiate research in the appli
cation of contractions of Lie algebras / groups to the symmetries of systems of 
differential equations. As a particular example, we have shown how so(2, 1)
invariant scalar equations of order two in (1 +1) dimensions are contracted 
to equations invariant under p( 1, 1). Generalizations can be made in many 
ways. Here we studied Lie point symmetries and a possible generalization is 
to consider also the "generalized symn1etries", discussed in Reference [1]. In 
Section 4 we considered linear realizations of the algebra, that is, the coeffi
cients of the 8s were linear in the xs. It would be interesting to generalize this 
construction to nonlinear realizations, and see how to introduce contraction 
parameters into these realizations. In practice, the symmetry groups of dif
ferential equations are often infinite dimensional. The contraction procedure 
of Section 4 directly applies to infinite dimensional Lie algebras and repre
sentations. The actual application of the Inethod to the present problem still 
remains to be done. 

As we mentioned in the Introduction, the reverse study (i. e. starting from 
a given system of differential equations) is more natural. It should be inter
esting to look at concrete examples (fron1 various domains of physics) where 
constants in the equations can be seen as actual contraction parameters. The 
passage from the solutions of the initial (or exact) system to the approxi
mate ones should be made in terms of these constants. The question related 
to the contraction of solutions, and to the general study of contractions of 
special functions (using the material of References [19-20]) can naturally be 
regarded from the point of view of the present article. The whole subject 
certainly deserves further study. 
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