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Classical Fluids of Negative Heat Capacity 
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ABSTRACT: It is shown that new parameters ){ can e define . such that the ' 

heat capacity ex == T( ~)x is negative, even when the canonical ensem";;le (j.e.~ '--a.tl 
fixed T = (~)y and Y 1- X) is stable. As examples we treat black body radiation 

and general gas systems with nonsingular "'T' For the case of a simple ideal gas 

we even exhibit an apparatus which enforces a constraint X(p ,V) = const . that 

makes ex < O. Since it is possible to invent constraints for which canonically stable 

systems have negative heat capacity we specula.te that it may also be possible to 

infer the statistical mechanics of canonically un,~table systems - for which even the 

traditional heat capacities are negative - by imposing constraints that stabilize 

the associated, noncanonical ensembles. 

http:specula.te
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The idea of negative heat capacities for black holes [1], and for interacting classical 

systems like stars [2], is by now well known. The physical realization of many familiar 

thermodynamic constructions is problematic in both cases because of the important role 

played by gravitation [3]. In view of the long range and universal character of this interac­

tion it is very doubtful that a thermal reservoir which is large enough to enforce a sharply 

defined temperature would not also co~pletely dominate the gravitational dynamics of 

any small system to which it was coupled. This is an important practical problem in the 

thermodynamics of gravitation but it should not be allowed to obscure the fundamental 

problem that a system whose heat capacity is negative cannot reach thermal equilibrium 

even with an idealized reservoir. 

The physical argument is of course that a system with negative heat capacity warms 

up by losing heat and cools down by gaining it. If heat flows from hot to cold then any 

temperature difference with respect to the reservoir will engender heat flows which increase 

the difference. The mathematical argument proceeds by contradiction. Let H represent the 

system's Hamiltonian and let Y stand for the usual extensive parameters in addition to the 

energy. (This discussion can be generalized to include the case where any of the extensive 

parameters Yi is replaced by its intensive conjugate, Pi == (*). See, for example, [4].) If 

the system is in equilibrium with a reservoir at fixed Y and fixed temperature T = (m-)y 

then elementary statistical mechanics gives the canonical partition function: 

(la) 

where j3 == k~T and the trace extends over all states of fixed y~. Taking the logarithm 

gives -,3 times the Helmholtz free energy, F(T, Y). Using the standard formulae for the 

entropy and heat capacity,S = -(*)y and Cy == T (~)y, we find that the usual heat 

capacity is proportional to the variance of the energy: 

Cy = kB(32 C)2~~~Z))y = kB(32 ((H _ (H))2) (lb) 
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This is a manifestly positive quantity, so the assumption of thermal equilibrium must be 

erroneous whenever Cy is negative. 

In view of the preceding arguments it is usually assumed that systems with negative 

heat capacity can be treated statistically only in the microcanonical ensemble. We have 

just seen the problem when it is the usual heat capacity, Cy, which is negative, but one 

might ask how the matter stands for a more general heat capacity, Cx =T (~)x, where 

~y is not restricted to be the extensive parameter(s) of the canonical ensemble. The answer 

is that quantities X can always be defined such that Cx is less than zero, even when Cy 

is positive and the canonical ensemble is completely stable [5], pp. 42, 45. Examples 

of functions X will be given below. The physical picture is of a system coupled to a 

reversible work source that adds or withdraws energy so as to keep some quantity X fixed. 

The system will have C X < 0 if the constraint ..Y == const. is .'chosen so that any heat flow 

from the reservoir is overbalanced by the work drawn off by the reversible work source. 

We will prove the existence of such constraints generally in the context of normal 

thermodynamics where the natural extensive parameters are internal energy and volume. 

This context entirely avoids systems based upon the sort of long range and universal forces 

that would mediate strong interactions with the reservoir. We first give the general solution 

under the assumption that the isothermal compressibility (K,T =-i (~)T) is nonsingular, 

then we give a detailed mechanical realization of such a constraint for the simple ideal 

gas. To illustrate that singular I'\,T need not pose a problem we show how negative heat 

capacities can be defined also for black body radiation. 

Although our parameters ~Y can be extensive, for canonically stable systems they 

necessarily exhibit the following properties in contrast to the usual parameter Y = V: 

ex = T(~~) x # (~~) x (2a) 

T = (au) i= (au) = T' (2b)as v as .\ ­
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The firial inequality means that the statistical ensemble at constant T and X is not weighted 

by the Boltzmann factor of (la), as is the ensemble at constant Y. In fact the ensemble 

at constant X fails even to exist; the instability of any such system can be seen from 

the previously cited physical argument. Our results are nonetheless derived using the 

fundamental relation obtained from the canonical ensemble at fixed T and V. This suggests 

that by choosing different extensive parameters one might be able to explore the statistical 

mechanics of a system with negative Cv - in which case it would be the noncanonical 

ensemble at fixed T' and X which would exist rather than the canonical ensemble at fixed 

T and V - without recourse to the micro canonical ensemble. 

Let X(p, V) be some function of pressure and volume. Then one can write for the 

incremental heat input into the system [5], pp. 11, 22: 

TdS=CvdT+RvdV= [Cv+Rv(~~LldT+Rv(;~)TdX (3a) 

= CpdT + Rpdp = [Cp+ Rp(;~) xl dT + Rp(:~ )TdX (3b) 

= Cx dT + 1!x dX (3c) 

where 1!X is the appropriate "latent heat". The two expressions which result for eX are: 

(4a)Rx = RV(;;)T = T(;~)v (;~)T 


Rx = Rp(:i)T = -T(~~)p(:i)T (4b) 


Their consistency is a simple consequence of the reciprocity theorem: 

(ap) (aT) (aF) (5)
DT v oV p op T = -1 

Note that 1!xd)( is not generally the work done on the system, although eVdV = pdV for 

the special case of the simple, ideal gas. From (3) we can infer two expressions for Cx: 

avCx = Cv + ev (aT) X (6a) 

=cp+ ep(;~)x (6b) 
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Subtracting Cv from (6a) and taking the ratio with (6b) - (6a) gives: 

Cx -Cv 1 Cx r- O 
- , I.e. --- (7)

Cp-Cv 1-0 Cv 0-1 

where: 

0=~(8p) =(8V) (8
p 

) (8)- tv 8V X 8p T 8V X 

Note that 0 depends only upon the definition of X and an equation of state relating V, p 

and T. 

The generalized heat capacity C X was introduced long ago [5], pp. 42, 45. It has also 

been studied recently in the context of enforced adiabats, i.e. processes in which differential 

heat flow can occur along a path provided the initial and final entropies are equal [6]. If 

X is a function of p alone then 0 = 0 and Cx = rCv = Cpo Also one sees from (8) that if 

X is a function of V only then 0 ~ 00, and Fig. 1 confirms CX ~ Cv. Thus CX covers a 

range of heat capacities which include Cv (at 0 ~ 00) and Cp (at 0 = 0). 

To show that negative values are possible note that Cx < 0 if and only if 1 < 0 < r' 

N ow let 00 be a constant in this range and consider the relation 0 = 00 . Identification of 

the isothermal compressibility f\,T and simple applications of the reciprocity and inverse 

theorems give: 

"T(P , V) V (~~) p = 110 (~~) V (9) 

This is a linear partial differential equation with possibly nonconstant but certainly nonzero 

coefficients. We can of course freely specify "\.'"(PO, V) for some fixed pressure Po and the 

general solution follows by exponentiation: 

(lOa) 

The symbol "P" stands for "path-ordering." It means that the various noncommuting 

factors of f\,rt z, V) V -Iv- are to be ordered according to the :: integration with those nearer 
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z = p to the left of those nearer z = PO. Generally if O( z) is an operator or matrix-valued 

function of z then one makes the following definition: 

To make the preceding discussion more concrete suppose that the entropy has the form 

appropriate to a simple ideal gas: 

(11) 

where JV is the number of particles and a is related to the chemical constant i. In fact, if 
5 

r = ~ then a = ~(kB)-3 exp(~i). A simple exercise reveals that "'T = ~. Substituting 

this into expression (10) gives: 

1 

X(p, V) = X (po , V [:0100) (12) 

In other words, X(p, V) can be any function of Vpl/Bo. Since keeping X fixed is the same 

as keeping Vpl/Bo fixed we can make X extensive by taking ~Y(p , V) = Vpl/Bo. In fact, 

the negative nature of ex can be obtained directly and very simply from this expression 

for X(p, V). 

A primitive apparatus is depicted in Fig. 2. A thermal reservoir of temperature Tres 

surrounds a large, diathermal cylinder of cross-sectional area A. The cylinder contains a 

movable piston which is attached to a spring whose force constant k can be stiffened or 

loosened by winding or unwinding the coils of the spring. The piston seals a fixed quantity 

of the gas into one end of the cylinder while the other end is vacuum. Transducers measure 

the length L of the gas-filled section and the pressure, p = kL / A.. These transducers control 

the winding mechanism which adjusts the spring's force constant according to the rule: 

ko 
k(L) = If+l (13)

L 0 
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where ko is a constant. It is easy to see that this serves to maintain the constraint V pl/{}o = 

constant. 

To determine the state of the system we allow energy to flow so as to maximize the 

total entropy of the three components: the gas, the spring and the reservoir. The energy 

of the spring is simple to compute from Hooke's Law: 

L 
Uspring == r dx k(x) x == canst. - (J 1 P V (14)JLo 0 - 1 

Since U gas = r~1 pV it follows that Uspring = const. - (to-=-\) U gas . Now suppose that 

the internal energy of the gas increases by an amount ~Ugas. The preceding relation and 

energy conservation imply that the corresponding increases in the spring and reservoir 

energIes are: 

LlUspring = - (, -1) a 
O 

_ 1 ~Ugas (15a) 

LlUres = (, - aO)a 
O 

_ 1 ~Ugas (15b) 

To compute the change in entropy note that with X = V pl/{}o we can express the volume 

in terms of X and U: 

(16a) 

Substitution into (11) gives the entropy of the gas as: 

kBN (' - aO)Sgas = --- a In(Ugas ) + f(X, N) (16b)
,-1 0-1 

where f(X, N) is a simple function whose precise form is irrelevant to our discussion. 

If Tgas is the gas temperature before the addition of the increment ~Ugas then the gas 

entropy increases by: 

~Sgas = __1_ (; -_(0 ) Ugas In (1 + ~~gas) (17a)
Tgas 0 1 [gas 

The reservoir is a reversible heat source at constant temperature so its entropy increases 

by: 

1 (' - aO) -r~Sres = -;:y:;-- a ~[;gas (17b)
-Ires 0 - 1 
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The spring and its winding mechanism are assumed to constitute a reversible work source 

so their entropies are unchanged. For 1 < Bo < , we see that the total entropy can be made 

to increase without bound by having ~Ugas approach -Ugas . Hence heat flows from the 

reservoir even as the gas expands and cools down; the excess energy goes into unwinding 

the spring. This is precisely the sort of instability that one expects from a system with 

negative heat capacity. 

So much for our mechanical contraption. Provided that the isothermal compressibility, 

""T, is nonsingular expression (10) gives the general solution for a constraint X(p, V) such 

that CX = - (h;!~) Cv · In fact negative heat capacities can be defined even for systems 

where both "'T and Cp = ,CV are singular. To illustrate this fact we consider black body 

radiation. A fundamental relation for this system is: 

1 1 3 
S(U, V) = ja 4 V4 U4 (18) 

where a is the Stefan-Boltzmann constant. Some differentiations and rearrangements suf­

fice to give the standard results: 

(19a) 

1 T4P = 3"a (19b) 

The latter implies that "'T and Cp are infinite for this system. 

To obtain a negative heat capacity let us again consider extensive constraints of the 

form: 

1 
~}((p, V) = V p7f (20) 

By using (19b) to solve for T(V, X) and then substituting into (19a) we obtain the following 

expressions for V: 
_1_ _{} _1 

V = CiU) 1-{} )(I=e = (JT4 ) (})( (21 ) 
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These relations allow us to write the entropy in terms of either U and X or T and X: 

-5+4B 1 -0 4-30 0-1 30-4is = 3(4-48) a4 X(4-40) U(4-40) = (~) 0- X T(fj) (22) 

To see that 8 can be chosen to make the system at fixed U and X unstable we merely 

differentiate the first of these expressions twice: 

82 5 
CJU2) X = 

48 ­ 382 5 
(4 ­ 40)2 U2 (23) 

Concavity obviously fails for 0 < 8 < j. That this range of values also corresponds to a 

negative heat capacity follows from differentiation of the second incarnation of the entropy 

in (22): 

(24) 


Of course the limit 8 ~ 00 just recovers Cv . 

We stress that all of the preceding analysis was carried out using conventional thermo­

dynamics and fundamental relations - (11) and (18) - which follow from the canonical 

ensemble. We are therefore led to suggest that the whole process might be profitably 

inverted when it is desired to study a system for which the conventional heat capacity, 

Cy, is negative. That is, it might be possible define a parameter )((U, Y) such that a 

noncanonical ensemble is "stable," whose partition function is: 

Z'(T', X) = Tr [exp ( - /"TI)] (25) 
B X 

where T' is given by equation (2b). By "stable" we mean that the function p' (T', X) == 

-kBT' In [Z(T', X)] is con~ex with respect to T' and concave with respect to X. One 

would then eliminate T' by inverting the relation: 

5 = ­ (aF')
aT' X 

(26) 

Substituting T' (5, X) into the internal energy: 

U = _ k T'2 (a In ( z' ) ) 
B aT' x 

(27) 
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and inverting to solve for S == S (U, X(U, Y)) would give the desired fundamental relation 

in the entropic representation. It might be very much simpler to infer the statistical 

mechanics of an unstable system in this way than by going through the microcanonical 

ensemble. 
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FIGURE CAPTIONS 

1. 	Plot of the generalized heat capacity Cx (in units of Cv ) versus the quantity () defined 

in equation (8). Note that each value of () corresponds to a different choice of the 

quantity X(p, V) which is held fixed. 

2. 	 Sketch of a system which realizes negative heat capacity using a simple ideal gas. 
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