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Abstract 

An effective classification of the hadronic decays of the ZO boson 
according to their native flavour can be obtained by using feed-forward 
neural networks. This possibility has been exploited by using the data 
collected by the DELPHI detector at LEP during 1991. 
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An effective classification of the hadronic decays of the ZO boson according to their native 
flavour can be obtained by using feed-foIVIard neural networks. This possibility has been 
exploited by using the data collected by the DELPHI detector at LEP during 1991. 

The possibility of using a Neural Network (NN) for the classification of the hadronlc decays 
of the ZiJ was explored in Ref. [lJ, in which the problem of separating ZiJ decays into 1;6 pairs 
was considered. The result of this study was that, in the case of a perfect detector, a separation 
could be achieved with a higher efficiency than with respect to traditional separation variables. 
Further studies [2J demonstrated that, also in the presence of detector effects, NNs could be a 
useful tool for the classification of 66 events, and preliminary results on data have been presented 
in 1991 [3J. 

The DELPID collaboration has recently submitted a paper on this subject [4 J. A reasonable 
stability in the classification with respect to the models used in the simulations, needed for 
training and testing the NN, has been achieved. It has been possible to measure the rates of the 
hadronic decays of the ZU into 06 and cc: 

C'Z'/ [J, 0.1:")1 ± O.OO,) (.~ t ({ t) ± O.O~l (.~y .s) (1) 

ruh/ r lt 0.:2:3:2 == O,OO :") (.~ t u f) ± O.Oll (·'y,s) , (2 ) 

In this paper, we will illustrate some technical points related to the network optimization, 
and show that the use of NN allows substantial improvements in the purity of the tagged samples 
of events with respect to traditional variables. 

The Neural Network used as an input 19 variables, mainly coming from the shape of the 
event. Variables related to impact parameters and to the presence of leptons were also used, to 
reinforce the stability of the separation with respect to systematic effects . 

One node in the input layer was associated with each of the input variables .1 ' ,. The input 
variables define the pattern space P. There were 25 nodes in the hidden layer. The outputs of the 
three output nodes, forming the vector <3, belong to the feature space F. The components of the 
output vector were assigned to the three quark classes llTi+d71+.-:.~ (unresolved), cc and 66. 

In principle, a single hidden layer is enough to perform any mapping of a continuous 
function between pattern space P and feature space F. It was checked that by adcling a second 
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hidden layer the performance of the network did not improve, but the time needed to train the 
network increased substantially. 

When the number of hidden nodes was reduced from 25 to 18 and further to 15 , it 
was observed that the three output nodes of the NN gave increasingly similar output values, 
degrading the separation of the classes. It was also checked that by going much beyond 25 
hidden nodes one begins to introduce useless nodes to the hidden layer. Therefore, the network 
with 25 hidden nodes was chosen. A single network with three output nodes was used instead 
of three single output networks to account automatically for correlations between classes. 

In the structure chosen, each node performs a weighted sum of the output values from all 
the nodes of the previous layer. The node output is computed via a sigmoid function 

1 
9T(,t) = 1 -)'-jTI 

T e -~ 

at a "temperature" T. The output 0; of the i-th node of a layer (star:ting from the second) is then 

where the sum is made over the nodes of the previous layer. 

The network training procedure fixes the values of the weights I,k'ij associated with the 
node interconnections. The weights can be both positive and negative. If the value of the weight 
I,k'ij is zero, then there is no connection between nodes i and j. The aim is to find a mapping of 
the input pattern space (.1' i t: P) to the feature space (8 t F), such that a good separation of events 
belonging to a class:-\. from events belonging to the complementary class ;-1 is obtained. Each 
class is associated with one output node. Two symmetric target values (1 for class .-!. and °for 
class A) were used for each of the three output nodes. 

In the back propagation learning algorithm the output feature values for the training input 
events are computed and compared with the desired target values. A squared error function E 
is computed to quantify the difference between the obtained output 8 and the desired target r: 

This function is minimized by changing ("updating") the weights by an amount computed from 
the error function by the gradient descent method [5J. Tne process is controlled by the "learning 
strength parameter" '7 and the "momenrum" 0 [5]. Each updating step in the space of weights , 
computed by gradient descent, is multiplied by '/ and added to the previous step, multiplied by 
Ct. To smooth out fluctuations, weights are updated using the cumulative error from a number 
of input training events. 

For the training of the system, a set of30,000 simulated events, generated with the JETSET 
Parton Shower Monte Carlo model (JETSET PS), was used. The number of independent events 
in each class was thus an order of magnitude larger than the number of weights in the network 
(550 in our case). The weights were updated every 10 events, chosen at random from the three 
classes uTi+dJ+.-:.~ (unresolved), cc and 66, in such a way that, on the average, there was an equal 
number of events from each of the three classes t. In the following. this sequence of 10 events 
will be referred to as "update". 

l It has been verified that equ:ll sJ.IT1ple sizes improve the perfonno.nce of the network [2], and reduce biases. 



Changing the parameters '7 and Q during the training is convenient in order to allow for a 
fast movement in the space of weights in the early stage of training, and to obtain a controlled 
approach to the minimum at the later stage. For this reason, the learning and momentum 
parameters were decreased and increased respectively after every 3,000 updates (an "epoch") 
according to a rule: 

'7t = '/t-1 x ('lmin / '71-1 )k'7 


Ot = 01-1 X (Omrll'/ Ot-1 )k~. 


where 'lin in and CYnll.Ll.· are the minimum (maximum) allowed values for the parameters, and 

subscript t (t - 1) refers to the epoch number. Exponents k1) and k<-y were set to 0.05 and 0.14, 

respectively. Given the finite value of the weight change, the gradient descent method might 

lead to an occasional increase of the error value. In this case, the parameters were reset to their 

initial values. 

The architecture of the network is summarized in Table 1, together with the parameters 
used in the training phase. 

Nodes in the hidden layer 25 
T 2.0 
0: (training) 0.4 - 0.9 
'7 (training) 0.05 - 0.0001 

Table 1: Characteristics of the NN. 

At each step of the learning procedure, an indication of the network performance can be 
inferred from the error function. A more reliable evaluation is obtained by testing the response 
of the network on a set of illput events independent of the training set. The behaviour of the 
error function with this new test set shows the error the netvlork makes in generalizing to new 
data. When the generalization error starts to increase, the NN has 'overlearned' the training 
sample and its ability to generalize is degraded. 

The test sample consisted of about 100,000 simulated events, generated by using JETSET 
PS. The number of events generated in each class corresponded to the ZO hadronic branching 
fractions in the Standard Model. By monitoring the behaviour of the generalization error, the 
training was stopped after 300,000 updates. 

After the network has been trained, its performance can be judged ill terms of signal 
efficiency.: s (number of events correctly classified as belonging to class q over the total number 
of events in class q), and purity p (number of correctly classified events in class q over all the 
events classified as belonging to class q). For example, if the event is classified simply according 
to the highest output node, one obtains an efficiency for 6 identification of about 55%, and a 
purity of about 43%. The efficiency and purity for a single quark class can be improved with 
a dedicated single output network, but we have chosen to estimate the three quark categories 
simultaneously. As far as inclusive analyses using single variables are concerned, a better 
b quark event purity can be obtained by using prompt leptons with a strict cut on the lepton 
transverse momentum with respect to the jet axis, but the efficiency is limited by the semileptonic 
branching fraction. 

The curve giving purity of the selected sample versus efficiency for the selection of IJ 

quark pairs is gi ven in Fig.l, and compared with the result obtained by using impact parameters 
only. The improvement is evident, and we want to stress, as a concluding remark, that results 
will be improved substantially by releasing the condition of a strict control of the systematics 
from detector and physics modelling. 
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Figure 1: Purity versus efficiency, from the Neural Network (closed points) and from the input 
variable related to impact parameters (open points). 
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