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The use of Artificial Neural Networks in physics analysis by the DELPHI experiment at LEP is 
reviewed. DELPHI has used Neural Networks to tag the primary flavour of hadronic ZO decays, 
to enhance the sensitivity of the searches for new particles, to measure properties of quark and 
gluon jets, and to identify final state particles. 

1. Introduction 

The interest on Artificial Neural Networks (NN) is steadily increasing in High Energy Physics 
(HEP)l. Some 250 articles have been published in the last three years, mostly on possible 

applications of NN to our field. 

The term "neural" is somehow misleading for the use that physicists do of NN. In general, 

Neural N et"\vorks in HEP do not pretend to be a paradigm of the way of operating of the 

brain, but simply a function characterized by a large number of inputs and a high degree 

of interconnection between them. In other words, we use NN to draw effectively nonlinear 

hypersurfaces to separate events according to their different features, and thus allow their 

classification. 

Ten years ago, most REP experiments \vere using bubble charnbers as detectors. Physicists 
were analyzing events having in front many different inputs, and no general recipe for classifying 

an even t. l\Iany at temp ts of wri ting software for au tomatic classification of even ts failed, due to 

t he high variety of inf')rmation (quali ta ti ve and quanti tati ",-e) to be processed . Neural Networks 

were a break-through for the task of autoITlatic event classification, allowing in many cases a 

robust separation. Nonlinearity allows the access to extra degrees of freedonl v...-ith respect to 
the standard linear multidinlensional analyses. 

Among the different archi tect ures of NN, Feed-Forvlard had a great success due to its sim­
plicity and its adaptivity. The DELPHI experiment at the LEP e+e- coUider started since 
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6 Neural Networb for Physics A nalysis in DELPHI 

intervals of rapidity the distributions of multiplicity are usually analyzed in terms of normalized 
factorial moments. Given an experimental distribution of particles in the rapidity interval from 
- Y/2 to Y/2, the interval Y is divided into fvI equal subintervals, each of size 5y = })tvI. If LV 
is the number of particles in the whole rapidity interval and nm the number of particles in the 
m-th bin (m = l ... .LVI) , the factorial moment of (integer) rank j of the distribution is defined 
by 

Mj-l 1.\I[ 

Pj ( 6y) == N . < L nm (nm - 1) ... (n m - j + 1) > (4)
< >J m=l 

where the averages are taken over many events. The factorial moment of rank j for a rapidity 
interval 5y selects events with j particles or more in at least one bin and is sensitive to events 
with density fluctuations in rapidity12. 

It was suggested 13 that bb events have higher values of factorial moments than events coming 
from the hadronization of a lighter quark. The difference we observe on the second factorial 
moment is lower than what predicted by JETSET PS (Fig. 2). 
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Fig. 2. Second factorial moment of the rapidity distribution, in the rapidity range betweell -2 and +:?, 
for events with probability of coming from a bb pair larger thc1.ll 0.5 (triangles) and Slll().ller thc1.ll 0.1 (circles) 

versus the number !vI of divisions of the rapidity interval. Comparison with JETSET PS (solid lines). 

2.2.3. Bose-Einstein Interference 

An enhancement in the prod uction of pairs of pions of the same charge and similar momenta 
produced in high energy collisions is attributed to Bose-Einstein statistics appropriate to iden­

tical pion pairs. 
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The enhanced probability for emission of two identical bosons is studied in general through 
the two-particle correlation function , R, as a function of the 4-rnomentum difference Q. The 
correlation function is often parametrized by the function: 

(5) 

where the parameter r gives the source size and A measures the strength of the correlation 
between the pions, being 0 for a completely coherent source and 1 for a completely incoherent 
one. 
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Fig. 3. Left: Radius r and coherence parameter A, versus the probability of belonging to the class of bb events. 

Right: r and A, for different multiplicities. 

An expression slightly different from (5) is often used in the literature to analyze the exper­
imental data: 

(6) 

where the factor (1 + 5 . Q) is introduced to take into account possible long-range momentum 
correlations in the form of a slow rise, and N is a normalization factor. 

In the present study, pairs of oppositely charged particles have been taken as a reference 
sample. 

The bias due to residual correlations in the reference sample has been removed by dividing 
the ratio obtained from the data by the equivalent ratio from the simulation. This normalized 
ratio for the unlike charged reference sample has been fitted to form (6) for each bin of b purity. 
The results of the fit to rand), are displayed in Fig. 3 (left), where the averages (consistent 
with14) are marked as dashed lines. 
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the beginning of its data-taking to explore the potentialities of such networks In the event 
classification task. 

In particular, DELPHI explored four topics: 

• 	 The classification of the hadronic decays of the ZO according to their native flavour. 

• 	 The separation of jets coming from the hadronization of a quark from those corning from 
the hadronization of a gluon. 

• 	 The searches for new particles. 

• 	 The identification of secondary particles in the final states. 

In 	this paper, we will shortly review the activity of D ELP HI on these topics. 

2 . Neural Networks for Flavour Classification 

The difficulties in the classification of hadronic events according to their parent quark flavour 

can be overcome by utilizing multi-dimensional vari2.bles for the separation2 . Among the multi ­

dimensional classifiers, Feed-Forward Neural N etv·;orks appear to be a good candidate for com­

plicated problems such as this. V1Y"e use them to map a set of variables calculated from the event 
onto a feature space in which the different species are weil separated. 

The possibility to use a NN for hadronic event classification was explored in Ref. 3, in v:hich 
the problem of separating ZO decays into bb pairs \V2.S considered. The result of this study was 

that, in the case of a perfect detector, a separation could be achieved with a higher efficiency 

than \vith respect to traditional separation variables 2
. Further studies 4 demonstrated that, also 

in the presence of detector effects, NNs could be a useful tool for the classification of bb events, 
and preliminary results on real data have been recently presented5 ,6. 

The physics motivation of a careful analysis of the hadronic branching fractions of the ZO 
was in the beginning to measure very accurately the branching ratio into bb p2.irs. The decay 

of the ZO into bb can in fact happen via a loop involving the production of a virtual tt pair. 

Thus, the relative amplitude fbb/fh (where fh is the total hadronic width of the ZO) decreases 

as the mass of the top quark increases. If one could identify perfectly 300,000 hadronic decays 
of the ZO, the mass of the top quark would be known 2.t ±2.s CeV. 

DELPHI has recently shown7 that a NN can be used to classify effectively decays of the 

ZO into bb and ec pairs. The robustness of the separation against a \vide range of systematics 

related to modd- dependence of t he classification h2.S been inves tiga ted. As a res ul t, it has been 

possible to illeasure, from the data coUected by the DELPHI detector at tEP during 1991, the 

rates of the hadronic decays into b6 and ec . 

2.1. Hadronic Branching Fractions of the P 

The first measurement by DELPHI5 was performed by coupling four single-output feed-forward 
neural net\l(orks, specialized respectively in the classification of bb, ee, ss, and (uu+dd) unre­
solved, and then by using the rate of final-state radiation to estimate the relative production 

of quarks of charge 2;:3 to quarks of charge 1/38 
. 

Eighteen variables, mainly related to the shape of the event, \vere used as 2.n input for the 
separation. All variables were rebinned in such a way that they were ranging from 0 to 1. 

Four independent feed-forw3.rd neural networks were used (one for each cbss that ",·(as sepa­

rated from the others) \vith 18 nodes in the input layer, associated with the input vari(tbles Xi, 

http:feed-forw3.rd
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defining the pattern space P; a variable number of nodes in the hidden layer; and one output 
node, associated with the output value 8, belonging to the feature space F. We refer t o5 for 

details on the t raining of the networks, based on back-propagation, and on their architecture. 

In the training phase, the four networks were specialized in such a way that network "1" 
was designed to be more effective for separating ZO decays into uu or dd, network "211 for 

separating decays into S3 pairs, network "3" for separating decays into cc pairs, and network 
"4" for separating decays into bb pairs . 

From each of the four networks (i == 1.. .4), the fraction of events f3Y) of each class j (j == 
1.. .4) ,<vas determined by means ofax2fit to the form 

~(i)(t) == Lf3y)ay)(t) , (1) 
j 

where !R(i)(t) is the map of the data through the nebvork i into the feature space, and a)i )(t)'s 
are the distributions for each class j in the feature space, both determined in a set of simulated 

events independent from the sample used for the training (test sample). All distributions were 
normalized to unity. 

The four networks were constructed in such a way that each nebvork provided a fit with 
small correlation coefficients bebveen the class that the nebvork itself was teached to distinguish 
and the other classes. 

Finally, the X2 = I:i < $(i) - ff- IC(i)-ll$(i) - ff- >, where C(i) is the covariance matrix in 

the fit from the i-th net\vork, was minimized with respect to the unknown branching fractions 
ff-, under the constraint that the sum of the branching fractions is equal to 1. This led to the 
central determinations and to the statistical errors. 

The study of systematics kept into account the uncertainties in the best tuning of parameters 
in JETSET PS as parametrized in9 

. In addition, a detailed study of the effect of fragmentation 
parameters was done, to obtain the systematic errors. 

The final results were 

r tJ.jj~id. / r h 0.417 ± O.Ol.j (stat) ± 0.058(sys) 

r JjIf h 0.233 ± O.016(stat) ± 0.051(sys) 

r cc / fh 0.139 ± O.010(stat) ± O.0.58(sys) 

rbb/fh 0.211 ± 0,006(stat) ± 0.020(sys). 

Fou;: problems were left to be solved: 

(i) 	 Correlations bebv-een the four networks . The branching fractions were extracted by con­
structing an overall x2 from the four networks , keeping into account the covariances only 
at the first order. 

(ii) 	 Correct estimate of systematics, affecting the determination of the a / s in ( 1). rvlain source 

of systematics is related to model-dependence of the classification. The sinlulated events 
used for the classification of the real ones depend on some physical pararneters known 
with errors. Of course a conlplete treatment of systematics should include the effect of 
variation of such parameters, inside the limits in which they are bounded when comparing 
shape variables to rvlonte Carlo predictions, without any hypothesis or assumption on the 
branching fractions . 



8 Neuml Networks for Physics Analysis in DELPHI 

The radius r of the source of the hadronization and the coherence parameter A do not· display 
a clear dependence on the percentage of b events present in the sample, although the results 

are compatible with a slight dilution of the effect for b events. 

The average number of particles produced via strong interaction in bb events should be 

smaller than for light quarks. One could thus expect a smaller radius of the hadronization 

region. This is not observed, although, when one studies the dependence of the radius on the 

multiplicity, a trend consistent with being proportional to < n >1/3 (Fig. 3, right) is seen. 

2.3. Conclusions and Possible Improvements 

In conclusion, the fiayour classification problem received effective solutions from Neural Net­

works, although the systematic error from the method seems of the order of 5% in the case 
of the estimate of the branching fraction into bb pairs, in the order of 15% for cc pairs. The 

precision achieved is thus not such that one can constrain the mass of the top quark. 

Other analyses from the same collaboration15,16, based on simulated data, do not improve 

the efficiency for the separation. 

Possible improvements can be obtained form a better choice of the input variables, and from 

modifications of the training. A detailed analysis of these two topics was done in1T. 

2.3.l. .4 new kind of input variables 

A common difficult:v- that one faces in choosing input variables for the nebvork is ho\v to uSe 

single particle information. In fact the number of input variables for the nebvork is usually 

held fixed and retaining only the information from the nlost energetic particles could be neither 

sufficient nor appropriate. 

An alternative strategy for including single particle information has been explored, based on 

a probabilistic characterization of the events. Each event undergoes a hypothesis test for the 
distribution in the event of a single particle variable against reference distributions of the same 
variable for the different classes to be discriminated, yielding probabilities for the considered 

event to belong the each one of the classes. 

There are physical reasons to believe that the irnpact parameter contains relevant information 

to tag the b quark but the available measurements are such that its distributions for the band 

non b classes are largely overlapped. So we decided to apply the hypothesis test strategy to 

the impact parameter, trying in this way to exploit also shape differences between each of the 

reference distributions typical of each class and the single event ones. vVe selected a subset 

of the :\Ionte Carlo sample (11.54 events) to build the reference distributions of the impact 

pararneter for the b class, c class and light qU2.[ks class. Then for each event the impact 

parameter distribution is compared with the reference ones and the three probabilities P'J, P,; 
and p! are calculated by using the Kolmogorov-S mirnov tes t 18. This variable de mons t ra tes to 

be the most effective for classification of b quarks, 

2.3.2. A[odified Trainzng Algorithms 

Possible ways to modify the algorithm have been explored, to influence the way the network 
learns from the examples, trying to obtain sornewhat controUed output patterns and perfor­
Inarrces , The guiding concept of aU the considered modifications is the definition of a "quality" 

criterion for the events in the training data set and the corresponding definition of the "excep­
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tional" cases. vVe consider two different ways to define this criterion: 

• the training data set is sorted in descending order according to the values of E2. for the b 
p~ 

events and ~ for the non bones. The lower the position of the event in the sorted file the 
p~ , 

better its "quality"; 

• the "goodness" of each event is defined dynamically by the network as the events whose 
outputs satisfy a preselected requirement defined by the problem at hand. 

vVhatever criterion one chooses, it allows to define alternative algorithms, amounting essen­
tially to a redefinition of the error function. The first criterion is applied to two cases: 

• the input data set is enlarged during the training, including more and more "exceptional" 
events ("pedagogical training") 

• the input data set is modified, changing to 0 the desired output of the last 500 "exceptional" 
b events in the training set ("simplified training"). Such a drastic change is suggested by the 

observation that "exceptional" events of each class, which are responsible for the difficulty of the 

problem, resemble the" good" events of the other class so much that, letting the "exceptional" 

b to be badly learned results in a simplification of the problem, possibly leading to a better 
understanding of the unchanged events. 

The second criterion makes the network itself decide which events are privileged. One can 
then influence the learning by defining a modified error function 

E == 1 (a L (0 - 0)2 + L (0 - 0)2)N 
~xampleJ privileged othe;"J 

Acting on the coefficient a, it is possible to force learning some patterns better than others. 
This modification has been applied to a network already trained with the simplified learning 
algorithm, defining as privileged events those yielding an output greater than 0.9 and choosing 
a = 5. 

No unambiguous improvements come from this kind of modified algorithms, although a \vise 
use of them can allow to increase efficiency or purity in a controlled way. 

3. Classification of Jets coming from Quarks and Gluons 

Nlany interesting experimental tests of QeD require at least a fair kno\vledge of the parton 
ori.gin of a hadronic jet. In some cases, e.g . measurement of the string effect in 3-jet events or 

the giuon-gluon coupling in multijet events, it is sufficient to distinguish gluon from quark jets. 

Normally, quark jets are tagged by means of the presence of a lepton radiated from a sernilep­

tonic decay (in the case of heavy flavours), or by the fact that jets originated from quarks have 
in average a larger energy. 

Neural Networks allovi a classificatio n insensi ti ve to the jet energy, i. e., exploi ting only the 

fragmentation differences between quarks and gluons 19. 

In detector simulated i\Ionte Carlo data, the identification of the two jets originated from the 

primary partons in 4-jet events is about 10% bet ter than \vi t h the jet energy classification. By 
making use of this approach, DELPHI has improved significantly the evidence for triple-gluon 

vertices in hadronic decays of the ZO. 

4. Searches for N e\v Particles 

NN can enhance the sensitivity in the searches for nev; particles. 
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A search for the lVIinimal Standard lVIodel Higgs boson, through the reaction e+e--Ho~v, 
using the data collected in 1990 by the DELPHI detector at LEP, has been made by means of 
Neural Networks 20

. 

The basic idea is to teach a NN to separate the Higgs signal from the background, using 

simulated data, and then to use the NN output variables for the definition of the selection 

criteria. "Standard" selection variables have been coupled to the NN output for the task of the 
separation. 

The analysis based on NN is much better than the standard one 21 for masses around 50 
GeV, being the efficiency for Higgs detection almost doubled. 

The technique used allows to reach good detection efficiencies and better limits than those 
reached by means of standard analysis techniques, thanks to the ad vantages given by the 
possibility to use information which would be, otherwise, very difficult to use. The price to pay 
is the fact that the classification method is not completely transparent. 

5. 	Identification of Final-State Particles 

Finally, DELPHI has used NN for improving the efficiency of the capability of the detector to 
identify final state particles. 

Often the particle identification is the result of the combination of different inputs from dif­

ferent subdetectors. The use of NN is under st udy, to improve the efficiency in the identification 
of electrons 22 

, muons 23 and hadrons from the Barrel Ring Imaging Cherenkov24 
• 

6. 	Conclusions 

After three years of exploration of the potentialities of Neural Nebvorks for physics analysis, the 
DELPHI experiment is publishing the first results. Significant results were obtained, expecially 
in the task of automatic event classification, and significant developments are foreseen. 
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