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Abstract 

We show how the representation lheory ofthe quantum algebraUq (.d(2) 

can be used to make advances in the study of the q-hypelgeometric series 

24>1(a,bjc jq,z ). 
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The well -established connection between quantum algebras and q-special function
12s provides a vantage stan point in the study of their properties. 1 - As in standard Lie 

t heory,13 these func tions arise as m atrix elements of certain generating operators of the 
quantum algebras in specific representations, and also as basis vectors of the correspond
ing representation spaces. T his algebraic setting naturally leads to generating reiatjonll, 
orthogonality properties and addition formulas involving t he q-special functions . 

In these letter we shall illus trate the power of this "group-theoretic" interpretation by 
examining the q-hypergeomet ric series 24>1 (a, bj Ci q, z ) and its relation to the repersentat.ion 
theory oC the quantum algebra Ug (JI(2) ). We shall give a few examples of generating 
functions and summation form ulas involving 2¢1, concentrating on the methodology, rather 
than exploiting all the possible form ulas that can be obtained in this way. Our aim is in 
fact to show the usefulness and sim plicity of t he present approach , wit hout claiming to be 
exaustive . 

In the quantum algebra interpretation of the hypergeometric function 2~1' an impor
tant role is played by the following two q-exponential functionsJ.i 

e~(z) = f: _1_ zit = _ 1_ , Izi < 1 , (la)
n=lJ(qjq )n (Z jq}oo 

q J ,,(n -l) 
(lbE~(z) = L

00 

-(-.-)- z" = (- Zjq )oo 
,, =(1 q, q " 

where, for a and a arbitrary complex num bers, (ajq)o stands for t he q-shifted {acloria.! 

(aj q)oo 
(2)(a; q)u = (aql.tj q}oo 

with 

(a ; q)oo = II (1 - aqk ) , Iql < 1 . (3) 
b ... lJ 

Note that eq( z )Eq(-z) = 1, and that IjmQ_ 1 - eQ(z( l - q)) = lim q _ 1 - Eq(z(l - q)) = eZ 
• 

We shall denote by Tz the q- d ilatation operator which acts as 

T, ~(z) = ~(qz ) , (4) 

on functions of the variab le Zi out of it , t he q-difference operators 

D: = z '" I (l - T1 ) , (5a ) 
D:· =: z - I(1 - T,- 1) , (5b ) 

(6) 
z ~ , 



with q 1= 0 when r > ! + 1. Since (q - "'; q) .. = 0, for n = m + 1, m + 2, .. . , the series ~tP. 
terminates if one of the numerator parameters {a;} is of the form q- m with m =: 0, 1,2 .. " 
and q 1= O. In the CoUowing, we shall concentrate on the case 

2tPl(a,b;c;q , z) = f (a:q)n(b;q)n z" , (1) 
n =U (q , q) .. {c ;q)n 

in terms of which various ma~rix elements will be expressed. Notice that as c -+ ql - m, 
with m a positive integer, this function satisfies the foUowing limit relation6 

1(q;q) - m 2CPI(a,b,qJ - m;Qjz) = Zm2CPI(aqm,bqm , qm+ljq,z) (a jq)m(biq)m (8)
(q;q )m 

Furthermore, in the following we shall always assume Iql < 1. 
The quantum universal enveloping algebra Uq (Jl(2)) is the Hopf algebra generated by 

the elements k, It - I, e and f satisfying the relationsl ~ , le 

k2 _ 4: - 2 
tek = qJ/2 e , k f k - 1 = q- ] /2 r, (9)- 1 

[e , / J = ql/2 =-q-l /2 ' 

and Ie Ie -I = k -1 k == 1. The coproduct A : Uq("(2)) -+ Uq("'(2)) ®Uq(,,1(2)), antipode 
S : Uq("'(2» --+ Uq(.s1(2» and counit f: : Uq(.s1(2» -+ C are defined by: 

~(k) = k®k , A(e) = el8>k + k- J 18>e, A(f) = I®k+k - J ®/ I 

S(k) = k - 1 
, Se e) = _ ql/2 e , S(I) = _q- I/2 f I (10) 

(k) = 1 , £(e) = 0 , £(1) = 0 . 

tfloWe now introduce a left Uq (,,1(2»-moduJe V P . ) = EBjEI C~j, where I = {il i = mo + 
n, n E Z}, and A, mu are complex numbers. 9 ,17 v (>.,mo) is infinite dimensional, unJells 
m o + ~ and mo - ~ are both integers. The corresponding representation is characterized 
by the following action of the generators on the basis vectors ej , j E I: 

k {j = q- j / 2 ej , 
e { j =.: q(1 - 2A) /~ 1 - q,X +j 
~{i-l) 

Hi =.(H'"' 1 _ q'-i (11 ) 
~ei+I' 

Given any a E Uq(8l(2)), its matrix elements aij in this representation are defined by 

a{j = L {iaij . (12) 
iEZ+", o 
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Analogy with ordinary Lie theory suggests to consider the following element ofUq (! I{2): 

U(o, (3) = E,Ao e) eq(fj 1) , (13) 

where 0, fj a.re complex parameters . Indeed , set k = q- II /2 and q = e- '1 . In the limit 
q -+ 1- , T/ -0 0+ , the defining relations (9) become those of .d(2): [h, e] = - e, [h,/l = I, 
[e,/l = - 2h, and U(l - q)o,{1 - q)fj) goes into the SL(2) group dement eoeefJJ . 

The matrix elements Uij (o , fj) of U(o,fj) on v('x ,mo) turn out to be expressible in 
terms of the function 2tPl (a, bj c; q, z ). 10 fact, with the help of (1), using (11) and identities 
involving q-shifted factorials, It is straightforward to show that 

. . _ ( q(1- 2A)/~)i - j (q'x - I+ l ;q)i _i 

U'J(o,fj) - f1 - -- ( . ) . . 
1 - q q,ql -] 

(14a) 
. . . . q( I - 2; ) /2 

x A. (qA+I+ l qt .- A. ql - )+ I. q - a f1 --- ) if i - ). > 0
2~ 1 " ,t (1 _ q)2. ' - , 

(1 -2A) / ,,)j -i (q>'+'+1. ) . 
Ui)(O, fj) = qU - iHi -i - l )/ 2 0 ~___ ' q]- i 

( 1 - q (qjq}j _. 
(14b)

. • . . q{1 - 2i) / 2 
X A. (qA+J+ l q]~'x ' q) - .+ l ' q -a/~ --- ) ifi -J' < 0

2~1 " " /J (1 - q)2 I -, 

with i,j E Z + m I) . This establishes most simply the connection between the basic hy
pergeomet ric series 2CP I and Uq(JI(2» . Not ice that by using the limiting formula (8), the 
above two e.xpressions for Uij(O,fj) are valid irrespective from the sign of i - j. 

Off course, other combinat ions of little and big exponentials can also be used, For 
instance, in the case of 

U(o ,fj ) = Eq (fi f) eq(o e) , (15) 

one similarly obtains (i, j E Z + mu) 

Ui'(O,f1) == q(. -j)(i- j - I )/2 (fi q(l - V,'!-l) '- i (qA - i+l ;q)'_ i 


1 - q (q ; q)i - j 

(16a)

l 
x 2tPl(q A-.j+l , q -j- >. . i - i+ l. q(J+2i /2)

, q ,q, - ofj(l - q)2 ' ifi - j ~ O, 

U;j(Ct,fi) = (0 q( 1 -2,\~) j- i (q _\+d l ;q2., _ i 


1 - q (q,. q)j - I 
 (160)
( 1+2;)/2 

X 2 41' ) (q,X - i+ l , q-' -\ qi - i+1 j q, - afj (1 _q)Z ), if i - j SO. 

The case of eq(o e) E,, (f1 1) has been disscussed in Ref. 19], while the matrix dements of 
operators in U'I(.d(2)) involving two little or two big q-exponentials can be expressed in 
terms of the q-hypergeometric se ries l¢1 and 2¢2, and wi ll nol be discussed here. 
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To get generating relations Cor the 2¢1 using the results (14) and (16). one first notices 
that it is possible to give a one-variable model for the representation (11), where the 
generators are expressed as q-ditrerence operators in the complex variable z acting on the 
space of a1J linear combinations of the functions z", n E Z. Indeed, by taking 

Ie = q - .mo/2 T.- 1/ 2 • 

(l-2>')/~ ( 1 D+ 1 - q>.+mo 1 T)
e = q -- • + - z

1 - q 1 - q z (17) 

2 1 A-mo )I :=; qO-2>')/" _z_ D- + - q Z T - 1 
( l-q' l- q • , 

and {j = tn, j = mo +n, n EZ, for the basis vectors , one can check that the relations (11) 
are satisfied. Let us now act directly wi th the operator U( a, P), with e and f expressed 
as in (17), on zi - mo. After using the defi nition (1) of the q-exponentials and suitable 
identities involving q-sbiCted factorials , one explicitly finds 

j ~ - ( qj -A. ) ( 
fJ 

-
__

i+ O+
_ 

2>.) /-l
_ 
) I- rno 1('-1)/2 ,q , -=- _U(a,/1) z] - mo = Z L.. q - --- - fJ Z 
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m,l€Z (q; q), 1 - q 


x (q -A-.j - l jq)m (_ ~ qi+ I+O +2A )/4)m 
(q ,q)m z l -q 

(18) 
The sum over m can be explicitly performed thanks to Heine's q-binomial theorem:14 

~ (q- O; q)" Ii _ (zq - O;q)= _ ( _Q . )
L. ---z - - zq ,q r1 , Izi < 1, Iq l < 1 . (19) 
n=O (qjq ).. (z;q)oc 

The remaining sum over I gives a 2tPO q-hypergeometric series, 80 that 

. (0: q ( I - )2>') /~
U( a ,{3) z j - m o = zl - m

., :- - ---; q 

z 1 - q >'+i 


(20) 
a q i+(l+ 2A) /'i ' - A. q-H(1+2>.) /4 ) 

2 <Pu ( - - 1 ' q1 , q, f3 z 1 - .:.: - q - q 

Recall now the definition (12) for the matrix elements of a =: V(a,{3), and insert (20) 
for the l.h .s., while in the r.h.s. subst itute for Ui j (a,/3 ) the result (14a). After using the 
following transformation rule for the 2¢1 series, J.I 

2¢I(qO,l; qC; q. z) = (qaH- cz ;q)c - a-b 2<Pd qc-a, qC- bj qCj q, qaH- cz) , (21) 

set j = mo , x = -0:/3 qTllo+1 / 2 /( 1 - q)' and y = - (1 - q)q(2A+S)/4 z/a to get the following 
generating formula for the q-hy pergeometric function 2<P l: 

(%q - 2mo j qhmo (q/Yi q )Tllo+'\ 2tPU (q". u+>.+1 /y ,q"'O - >. i q, zyq - 2mo- 1) 

_ L (q"'O-A; qh k A. ( A- rro ,,+1 - rno - A 1r+ 1 ) (22)- y 2¥'1 qq'q . q ;,t
kEZ (q2".o +1 /x; q),. (q; q)" ", , 
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Here again the summand in the r.h.s. is well defined for all integers k , thanie to the 
limiting relation (8). An equivalent gen~rating formula can be similarly obtained starting 
with the operator U(a,/3 ). 

An orthogonality relation involving two 2¢1 functions can be derived by combining 
the results (14) and (16) . By recalling that eq( z ) Eq( - z) = 1, one sees that 

U(a,/3)U(-a, - /3) = 1 i (23) 

acting on {j, one then finds (1, j E Z + m il ) 

b i--j,U = L U,I{a,{i)U'i( - a, - {i) . (24) 
IE Z+ l1I o 

Insert now for the matrix elements V" and il' j the expression (14b) and the one that it 
is obtained from (1 6a) with the use of t he transformation form ula (21). After some sim
plifications and the redefini tion z = - a /1 q1/2/(1 - q)2, one fin ally arrives at the foUowing 
relation 

q(i~+j~ )/2 (q/ z ; q)j ~ It l - I )/2( -i-i)' ( Zj q), (q>'+. 1i q)dq -A.; q),
6;_j,0 L. q - zq

(q>.+ 1i q);(q - A; q)] IE Z +mo (qj q)' _j (q; q), _, (25) 

x 2<Pl (q>. +I+l, q'- \ ql-i+ l ; q, zq-i) 2 4>1 (q>.+I+l , q' - A; q' - i+ l ; q, zq- J) . 

The matrix elements V,j(a ,{3) and Uij (a,{3 ) themselves define models of the module 
v( >., mo ) and directly prov ide a two-variable realization of Uq (J/(2» . To see this, for each 
element a E Uq(sl(2 » define the operator 7I" (a) acting on the variables a, P sucb that 
71'(a)U(a,{3) = U( a, {3 ) a. Upon operating on { j , one obtains: 

71'(a ) U'j (a, /3 2: Uil (a, (3 ) a'j (26) 
' EZ + fllu 

that is, the functions V ii (0:, P) t ransform like the vectors {j . One can easily construct the 
operators 1r for k , e and / , and t hus for any a E Uq(3l(2)) by composition . For instance, 
one finds that 

7T" (I )(k) = q - I/2 T(~ 1/2 T;! /2 , (27a) 

ti ) _ - ql / _ I - I - 1-1 
1r (e) - -qD" - (-- )2 {3 (q T<lTp - q To ) , (27b)

1 - q 

71"(1)(1 ) = D; , (27c) 

acting on the basis vectors 

~;I)(a,{3) = U'J (a ,{3) • j,l E Z + mu , (28) 
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obey the sa.me commutation relations as k, e and J. 
The operators 1r(l)(k) and 1f(l)(J) are obtained by using the first two relations in (9) 

and from the property: D; e,,({3f} = e y ({3f)f , respectively. To derive 1f{/l(e), one fir&t 

acts with -q D; on U(a,(3) using -q D;; E~(ae) = Eq(ae) e, and then shows that 

J / 2 
2Eq( - {3f}ee q ({3J) = e - (l 

q
- q)2 {3(1c - - (1 - q- l{3I) - 11c2 

) I (29) 

with the help of the following formula2 

en 
Eq«X) Y eq(- (X) = L00 (----:--) [X , Y ]" , (30) 

""'ll q,q n 

where 

[X,Yjo = Y, [X, Yl ..+1 = q" X [X, Y]" - [X, y ],. X , for n = 1, 2, ... . 

Similar reswts are obtained using Vij (a, {3). 
The observation that the matrix elements U;Aa,/3) are also basis vectors for represen

tations of U'l(.'II(2)) can be used to obtain further properties of the ba.&ic hypergeometric 
function 2<P1. First of all one can derive the q-difference equation obeyed by 2<Pl (a, h; Ci q, z). 
The Casimir element C, which belongs to the center of Uq(3I(2)), is given by 

ql / zlc2 + q- J/2k- 2 - 2 
(31)C = (ql/2 _ q- l/2)2 + Ie , 

and on V( >""'0 ) assumes the value 

CIA) = qA + I/2 + q- >.-1/2 - 2 
(32) 

Then, using e.g. (14a), from 

1r(I)(C) UIj(a,(3) = C IA) U/ j (a,{3) , (33) 

- >. . - (1 - 2'1/ 2 )one can work out the equation satisfied by 2¢1 (q .l.+ i+l ,q'- ; ql -J+ l j q, - a{3 ~ . With 

t he obvious identifications for a, h, c and z , one finds 

2
{z(c - abqz)(D-n T [(1 - c) + ( 1 - a)(1 - b) -- (1 - c»)z]D~. 

(34) 
-(1 - a)( l - b) }2¢I(a,h;c jq,z ) = 0 . 

Since we have a two-variable model of the modwe v(A,mu ), from the general definition 
of matrix elements (12) one can write, recalling (28), 

- (I ) '" U(a,(3 ) ~j (:t,y) = L... U,, (z,y)U,j(a,(3), (35) 
iEZ+",u 
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where the model independent matrix elements UiJ (a, (3 ) are still given by (16) . This allows 
deriving addition formulas for tiLe q-hypergeomelric series "4¢1: one just needs to evaluate 
explicitly the I.h.:;. of (35) , I.e. tu compute Jirectly the action of U(a,{3) on the ba.&is 

functions {Yl(:z:,y), when e anJ f are realized as in (27), a and (3 being replaced by z and 
y. 

We start by first taking a = 0, and compute the action of V(O, -{3) == Ev( - {31) 

on ~~' ) (z, y). Inserting the series expansion (7) for Z¢I in (16a) and using the following 
summation formula,2 

E~(-{3D;)y" = y"«(3 /Y;Q)n , (36) 

one easily finds (1 - j 2: 0) 

E'I( _{3J){~'l(z,y) = (y l:-~A)/J)'-j ((3/y;q)l _i.(qA - I+I;q)1 i 

q (q, q)'-j 


(37) 
X 3<P2(qA+I+1 q' -A l - i(3/' 1-j+I. q(1 - 2I

l
/2), ,q Y,q ,O,q,-zy--(1 - q)2 . 

Insert now this result and the explicit expressions (14a) and (16a) for the matrix elements 
UIi(z,y) and Ujj(O, - (3) in (35); setting z = - xyq(l - 2/)/'l / (1 - q)2, w = qA -. j/3/y, one 
finally obtains (j, I E Z +mil ) 

(wq.i - Aj q), _i (qA -I+ I ; q)'-j 3¢2 (qA+I + l , ql->., wq'-\ q' - j+ l ,0; q, z) 

(qj q)/ - i 


(38) 
= f: (qA -I+ I i q)/ - j Ie (qj-.\ qh w" 2<Pl (q.HH- I, ql->'j q' - j-Hl i q, z) . 

(q ; q)'- J- Ic (qjq}c 
1<='1 

This gives another generating relatiun for the 2<P1 q-hypergeometric series . 

In order to compute the action uf U(a,(3) on ~y\:c,y) for a: :f 0, one can now proceed 
in steps. One writes 

- (I) '" ( (I» ) U(a,(3 ) ~j (x,y) - . L E,,(f3fH. (z , y) Uij(a,O) , (39) 
.EZ+'"11 

and then uses the resu lt (37) logether with (16b ). Explicitly, (1- j ~ 0) 

_ ( 1 -2).) !-' /_ . ( I~ / . ) (A -I +l . )
U(a ,(3 Hj' )(x. y ) = (y _q _ _ _ ) J - ~ y, q 1- .1 q ,q 1--; 


1 - II (q,q )I- ) 

0<; ((I ~2J)/2 t ( .1.- ) + 1. ) ( - ),- j. ) ( I- ia/.)

x L q - I:(Ic - I ) / 2 - ayfJ.._- ) q 1 q I: q ,q" - q JJ y,q" (40) 
1c= 1I (1 - q)2 (qjqh (q' -;+ I ;q)" 

{l - 2/) /2 
x l ¢ 2 (qA+ I-i I ) ql- \ - q/ +Ic- j (3 /Yj q'+* - j+ I ,0; q, - zy (1 ~ q)2 ) 
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Insert now in (35) the expressiuns (1 4a) and (16a) Cor the matrix elements U,,(z, y) and 
Ui}(o,{3). After some ma.nipulations and the redefinitions z = _ ~yq( J -21)/2 /(1 - q)2, 
W = - o{3q(J+2 j )/2/(I- q)2 , t = oy q(1+ 2J )/2 /(1 - q)2 , one gets the following formula: 

) 00 (A - j+ 1 ) (-).-j ) ( I - j /t )(W / t ,q I-j L q - n(II -I) /2 ( - tt q ;q n q ; 9 n q to ,q n 


(q;q) l -j ,,=0 (q;q) .. (q' -;+1;q) .. 


1e(Ie - l ) !2 Ir (41) 
X l 4>2(q>.+I+I , q' - ).,ql+ II-Jw /t; q,tu- J +\Oi q,Z) :::: L q (- ~ ) 


. IeEZ (q; q)1e (q; q)/- j- k t 


x 24> I ( l +I+I , q' - \q' -J-hl jQ,.z) 2rP1 (qA - H l,q -j- ). ;qH l ;q, wl) . 

This relation sim plifies in the limit t ---> w/q . In this case the l.h.s . fa.ctorizes into the 
product of a 24>1 and a 2rPU q-hypergeom«:tric functions and one fi nally obtains tbe following 
addi tion formula: 

.. (_ 1)lcq lr (Ic+ I )/2 
24>1 (q )' +I+I ,q'-\O;q,z) 24>U(q). -J+I ,q->' - J;q,w/q) :=: L --'----'---=-

4 E Z (qi q)'-j -k (q; q) 1t {42} 

x 24>1 (l+H I , ql - \ q, -j - Ic+1 jq, z) 24>1 (q). - 1+ 1,q-j- ).; qH I ;q ,wqlc) 

T his result can also be checked starting directly with t he :-.h.s of (41) . Substitute for 
the two 24>1 functions their series expansion (7) . After Some manipulations of the various 
q-shifted factorials , the bilateral sum over k can be explicitly perform ed with the help of 
the following Ramanujan 's identityl~ 

L 	(a;_q) 1c zk = (q; q)"" (b/a; q)oo (az;q)oo (q/az; q) oo , Ib/al < Izi < 1 . (43)
IcEZ (bj q)t (b; q) O<.. (q / a;q) O<. (z; q)"" (b/az; q)oo 

T hen, using lhe definition (2), in the limit t -f w/q one recovers the l.h.s. of (42). 
The addit ion formula (42) simplifies when mu = 0 and A is a positive integer. In this 

case the module V(ru" ,A) is fi ni te-dimemional (see (Ill) an d the various q- hypergeometric 
series in (42) reduce to polynomials. Indeed, recalling the deftnition of the little q-J acobi 
polynomia1s, I-l 

p,,(z;a,b;q) = 2¢ dq - U,abq,,+l iaqjq,qz) , (44) 

and setting for simplicity I = j, m = A+ j and n = >. - j, from (42) one gets 

cn {qm+ l ; - qu / Ziq) p ". (wq - IIIjq"t l iq) 

" (111 +1 ) 	 (45) _ ~q.(.- ") [n] ,q j q k A: ( . qk II-I/o.) (to k. Ie ,, -m-A:.)- L k ( . )" z p" - II Z1 , q 1 q pm q, q ,q , q 
- m q,q 

The CII are q-CharUer polynomials, I~ 

c.. (;r;a;q) :=: 2¢dq-" , J:;O jq, _ qld1ja) , (46) 
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while the polynomia1s P" are defined by 

P II (Z jaj q) = t [ ~] (a;q)A, z" , 	 (47) 
Ic=U 

with 	

[n] (Qi9 ).. 
k = (q; qlic (qi q),,-k 

They satisfy t he follow ing t hree-term recursion relation 

PII+ l (ZjUjq) :=: [1 + 2(1 - aqU )j PII (Z ;a. j 1/ ) - z(l - q") Pn - l(z ;aiq ) , (48) 

21land reduce to the Rogers-Szego polynomials lS - in the limit a ---> o. 
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A different model for the algebra U9(9r.• ) can be obtained by choosing the matrix 

elements U""II' ,lIan(a,p,'1) as basis vectors. Explicitly, one finds 

Ri = -qD;;, , Sj = -'18.., - aj 8Qj + Wj , i = 1,,,.,", 

Lj = Dti ' Tj = -'1 8.., + fJi 8111 + trj , j=I,,,.,., (3.8) 

V=D~ , 

with 
I ... -n".n-tl' = Um'n'.mn(a,fJ,"Y) . (3.9) 

Identities {or the q-hypergeomdric series rf{J. limilar to the onea in (3.6) can now be derived 
Crom this model. Starting again Crom the relations (2.5), one get. 

I 

m. [qml, ... ,qm.]
(l-q'T.)rf{J. n, n.i9,Zq , ... ,q 

(3.10c)qm, qmi_. qmi+l qmi+, qm. ]
=(1_ qm,) rf{J. , ... , ~, '" , ... , iq,~,

[ q , ... ,q' 

(1- ni-1T) [qm., ...• qm•. z]
q • rf{J. qn" .. .. q... ,q, 

(3.10b)
qml , . . . , qm. .q ~]ni- l " ,

=(1-q )rf{J. [ qn', ... ,qni-',q"i-1 ,q"I+', ... ,q"' 

D+ [qlll., .... qm.. z]
• rf{J. qnl, ... ,qn. ,q, 

(3.10c)qml+I, .. . ,qm.+1 ]=iIiI(~) rf{J. [ ".+1 ".+1 iq,~ .
j=l j=l 1 - q"i q , ... ,q 

From (2.7) one now sees that rf{J. obeys the following q-diflerence equation: 

[(I-qm'T.) ... (1 - qlll·T.) - D: 
(3.11)

x(1_ qn.-IT.) . . . (1- qn.-IT.)] rf{J.[qml, .•. ,qm·iq,~] = O. 
q"', · ··,9"· 

Since we have modela for the representation (2.5), from the general definition of the 
matrix elements (2.9). one can write, e.g. using (3.9): 

U(a,J3,'1) 11lI-llI'.1l-1I'(z,y,z) = L Um'D'.iiiii(Z,y,Z) Uiiiii•mn (a,fJ,'1) , (3.12) 
iii,ii 

where the model independent matrix elements Uiiiii.IUD(a.fJ,"Y) are still given by (2.10). 
This allows deriving various identities involving the q-hypergeometric series rifJ. and rf{J•. 
To this end, one needs to evaluate explicitly the l.h.s. o{ (3.12), i.e. to compute directly the 

8 

action of U(a,p,'1) on the basis functions (3.9), when the algebra generators Ri, Lj and 
V are realized as in (3.8), with ai, Pj and '1 being replaced by Zi, Yj and z, respectively. 

We shall start by considering the simple case in which all parameters ai, Pj and '1 but 
one are set to zero. Take the following operator U(ad = e9 (a l Rd, whose matrix elements 
are easily seen to be given by 

m,-m, 
U. " ,mil (a)1 = a l 6, ···6mp,",p, 6 , .. ·6n.,R,•• (3.13)m n I.) I m2,m, nl ,",q,q ml-ml 

The action of U(ad == e9 ( -qal D;.) on the basis function Im-m' .n-n'(z,y, z) of (3.9) can 
be computed with the help of the following summation formula (ia/zi < 1) 

1 
e9 ( -qaD;) z" =zn (-qa/zi q)-a 

(3.14) 
= q-"(n-I)/2(_z/ajq),, an . 

One finds 

e9(-qa I D;.) 11lI-lIl'.1l-1l'(z,y,z) 

r m ni ni 

= 1 nn' (q(mi_m;)(mi _m;_l)/2-;-Z..!.;".,...i_-__;_ y - ) 


(-qaI!zliq)m,-m'. i=lj=l (qiq)mi-mi (q; ~)ni -nj 

qml-m'l . .. qlll.-I11~ ( )rYI" .y.z]
, , 'q -q --

x rf{J.+I [ "1-"'+1 q".-n~+l _qml-m'I+lal/zl' , ZI"'Zrq • , ... , • 

(3.15) 

Insert now this result and the explicit expressions (2.12) and (2.10) for the matrix elements 

Um'n'.iiiii(Z,y,Z) and Uiiiii.,tlll(ad in (3.12)i setting u = (-qtYl" · Y.Z/Zl "'Zr and 
w = -qaI!zl, one finally obtains, aCter suitable simplifications: 

---1 f{J [qm, .... ,q.m ] 
(Wiq)m, r .+1 q"., ... ,qn.,qm'wiq,u 

= fwir (qm'iq). f{J [qml+I:,qma, ... ,qm.] (3.16) 
1:=0 (qiq), r. q"I .... ,q". iq,u /wl < 1. 

This can be considered to be a generating relation {or the series rf{J. in terms of a suitable 
rf{J.+I (unction. 

Similar results are obtained by considering the operator U(J3d = E9(J31 Ld, with 
matrix elements 

(".-n~)(n,- .. '.-I)/2 J3~.-n. 
UIlI '1l'.111U(J3d=q (q'q) , 6ml.m,... ·6m•.m~6n>.n; .. ·6n .. "~. (3.11) 

I nl-n. 
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The action of Eq(P1D;, ) on the basis function flll-m',n-n'(z,y,z) can be computed by 
using in tbia cue the foUowing summation formula (IPlyl < 1) 

E,(lJDn y" =y" (-PIYi9)" . 	 (3.18) 

Tbe detaila of the calculation are aimilar to the oneil described before, we Ihall therefore 
only pve tbe final formula: 

,m', . ..• 9m.,W 9"· ]
(w; q)", r+l'P. [ q",+1 ". +1 i9.1& , .. ·,9 

_ ~ .. "" (9-"';q). [ qm,,. .. ,qm. .] Iwl < 1 • 
- ~ W q (9;9)' rIP. 9",-Hl,q"J+1, ... ,9".+1,9,1& 

.11.11 
(3.19) 

Tbe formulas (3.16) and (3.19) can alao be checked directJy by lubltituting for tbe functiOD8 
..'P, appe&ring in tbe tb.l. their .eries expa.naiODI and tben performing tbe lum over' 
with the help of the Heine'l q-binomial theorem:~ 

~ (q-Oj9)1 AI (:q-Oi9)00 ( ) 
~ ---: = =:9

_0 
; 9 0 , 1:1 < I, Iql < 1 . (3.20) 

.11=0 (qi9)' (: j 9)oc 

To get a lummation formulas from (3.12) one need. to conlider the general case where 
a.l1 parameters a., {Jj and.., are nonzero. Uling again the summation rules (3.14) &1ld (3.18) 
the action on the I.h.s. of (3.12) can be expressed in Lerma of a (r+.+l)'P(r+I) function. 
With this result &1ld reca.lling the explicit form of the matrix element. appearing in the 
r .h ... of (3.12), after lOme straightforward aimplificatioDJ one amves at the following 
formula 

qm l -""', ••• ,qm. - m~ ,q"l-n"CT1I" .,qn,-,,~CT.,'1 1 
(r+_+1 )'P(r+_) q"'l-m"Pl qrR.-m~p q"l - n'l+1 q".-,,'+1 ;q,w[ , •• • , ,., , ... . I 

r 	 • (=	L II II (q[(m l -"'i)(mi+m;-1)+("j-iij)("i-ii;-1)1/2 (Pi.i.q)mi - "'~ 
~~~l~l (~,~~-~ 

l 

[mi. - m.] [no - n.] ,x 	 _' , _' J (_Piq-m,)iiil-m, (_CT.)"J - iiJ ) 
mi - mi t nj - nj , J 

qm' -m~, ... ,qm.-rn~ 1 m,-iii, qm. -m. CTl'" CT. M-N]q , ... • . ---'1wq
x r'P. qn , - R;+I qn. - R'+1;q,w[ , ... , . ",p, [ 9",-iil+l,.· .• 9"·-n.+l'q. PI···P. . 

(3.21) 

where we have used the redefinitions w =l/I . . . !I.:lz 1 •• • : .. , Pi = -9ai/:i, CTj = -{3ill/j , 
TI = --y/z, M =E~=o(mi - mil and N = Ej=o(nj - nil. and 

[m] (qjq)m 
(3.22) 

n 9 = (qj q)m-n (qi q)n 
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is the q-binomial coefficient. 
Identities involving the q-hypergeometric series ,.q,. can be similarly obt&ined by using 

the model (3.1) for the algebra U.,(9r .• )' The basic formula to start with is again (3.12), 
with U and ii exchanged. For simplicity, we shall consider the case. for which only one of 
the parameters aj, Pj and -y is nonzero. Since the computations are analogous to the onet 
described before, only the final formulaa will be given. In the cue a1 1= 0, one obtaina 

1 [ qm" ... , qm. ] 
--- rtj,.+l '" R j9,qU/w(Wiq)m, q , ... ,q -,q/1» 

~ II (qrn'iq), [qm'+.II'9rn2 " ",9m• _.II]
= ~ VI -(- -)- rq" 	 ; q, uq I Iw l < 1 I 

.11=11 qi9" q"', . .. ,9'" 
(3.23) 

while for Pi :F 0, one gets 

qm" . .. ,qm·'9/w ]

(Wi9)", r+1~' [ R,+1 R,+I iq,UW/q
q , . . . ,q 

00 (q- R, . q)L [ qm, qm. ] _ wll i"l 'E , ... , .-.11 Iwl < 1 . -t; q (qiq)" r~. qR,-'+l,qRl+1, •. • ,q".+I,q,Uq 

(3.24) 
Again these formulas can be checked directly using (3.20). 

The relation. we have derived are just & few examples of the many identitie8 tbat can 
be obtained €rom the quantum algebra interpretation of tbe q-hypergeomdric fundioDi 
rtP. and r'Pl that we bave provided. Our a.im was to show the usefulness and simplicity 
of this approach, without pretending to be exhaustive. AI & final remark, notice that the 
two q-hypergeomeiric series 1 q, l and 2tj,1 &lao appear in the representation theory of the 
lower dimensional quantum algebras U9(£(2» and U,(,,'(2)), 11 - 18 £(2) being the Euclidean 
algebra in two dimensions. 
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