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Abstract

We show how the representation theory of the quantum algebra 2/, (s1(2))
can be used to make advances in the study of the g-hypeigeometric series
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The well-established connection hetween quantum algebras and g-special function-
s provides a vantage stanpoint in the study of their properties.!~'? As in standard Lie
theory,'® these functions arise as matrix elements of certain generating operators of the
quantum algebras in specific representations, and also as basis vectors of the correspond-
ing representation spaces. This algebraic setting naturally leads to generating relations,
orthogonality properties and addition formulas involving the g-special functions.

In these letter we shall illustrate the power of this “group-theoretic” interpretation by
examining the g-hypergeometric series 2¢,(a, b; ¢; ¢, z) and its relation to the reperseniation
theory of the quantum algebra U, (s!(2)). We shall give a few examples of generating
functions and summation formulas involving ;¢,, concentrating on the methodology, rather
than exploiting all the possible formulas that can be obtained in this way. Our aim is in

fact to show the usefulness and simplicity of the present approach, without claiming to be
exaustive.

In the quantum algebra interpretation of the hypergeometric function ,¢,, an impor-
tant role is played by the following two g-exponential functions'?

1
) = "ZU(q,q) TEew b e
B =3 0 o g, (1)
= (g59)n

where, for a and a arbitrary complex numbers, (a; ), stands for the g-shifted factorial

) = (a;¢) oo
(a;9)a e , 2)
with -
(ai9) = JJ(1 - aq"), lgl <1. (3)
k=0

Note that e,(z) Eq(—2) = 1, and that lim,_;- e,(2(1 - q)) =lim,_,- E,(z(1 - q)) = ¢’
We shall denote by T, the g-dilatation operator which acts as

T.p(2) = wl(42) (4)
on functions of the variable z; out of it, the g-difference operators
DF=z"M1-T) ; (5a)
Dy =:'1-T7"), ' (58)
——Tre constructed. Observe that ~—5D+ — d/dz and | )D" — d/dz as ¢ — 1. The
b

asic hypergeometric series . ¢, is defined by'?
r@a(a1,82,. . ariby,. .. by g 2)

(a‘,q),,(ﬂz‘ "'(a";q)" n VFEST n (6)
Z (g39)u(by; )u---(b.;q),. [ e ] =

=




with g # 0 when r > s + 1. Since (¢7™;q)u = 0, forn =m +1,m +2,.. ., the series ¢,
terminates if one of the numerator parameters {a;} is of the form ¢™™ with m = 0,1,2...,
and g # 0. In the following, we shall concentrate on the case

shiekann= 3 G g

in terms of which various matrix elements will be expressed. Notice that as ¢ — ¢*™™,
with mn a positive integer, this function satisfies the following limit relation®

(9 @)m(big)m ()

aé1(a,6,¢' "™ g;2) = 2™ 2¢h1 (g™, bg™, ¢, 2) (9:9)m

(¢:9)-m

Furthermore, in the following we shall always assume |g| < 1.
The quantum universal enveloping algebra 2, (s(2)) is the Hopf algebra generated by
the elements k, k!, e and f satisfying the relations!®:1®

k? — k™2

=i _ A2 -1 _, o=1/2 v
kek™ = ¢'/%, kfk=*=q7%f le. f] = ey ey (9)

and k k™! = k7'k = 1. The coproduct A : Uy(sl(2)) — U,(sl(2)) ® Uy(sl(2)), antipode
S : Uy (sl(2)) — Uy(sl(2)) and counit € : Uy(sl(2)) — C are defined by:

Alk)=k®k, Ale)=e®k+k™'Qe, Af)=f@k+k™'®f,
S(k)= k7", S(e) = -¢'%e S(H=-qf, (10)
e(k) =1, ()— ; e(f)=0.

We now introduce a left ,(sl(2))-module V(*mo) = @Der C&jy where I = {i| i = mp +
n, n € Z}, and A, m, are complex numbers.>!7 V(}mo) ig infinite dimensional, unless
my + A and my — A are both integers. The corresponding representation is characterized
by the following action of the generators on the basis vectors §;, j € I:

k{] == q—j/z €J )
1-¢q
23 _‘I(1 WA f: 15 . (11)

) T
ff '1“ A4 'l—f‘—‘f)-ﬂ =

Given any a € U,(sl(2)), its matrix elements a;; in this representation are defined by

Y. Giaiie (12)

i€Z+mg
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Analogy with ordinary Lie theory suggests to consider the following element of 2, (s1(2)):
U(e,B) = Ey(ae)e(Bf), (13)

where a, @ are complex parameters. Indeed, set k = ¢~*/2 and ¢ = €7, In the Iimit
g — 17, 7 — 0%, the defining relations (9) become those of si(2): [h,e] = o [h J] =2
le, f] = —2h, and U((1 — g)a, (1 — ¢)8) goes into the SL(2) group element e*

The matrix elements U;;(a,8) of U(a,B8) on V(*™0) turn out to be expreas:ble in
terms of the function 2¢1(a,b;¢;q,z). In fact, with the help of (1), using (11) and identities
involving g-shifted factorials, it is straightforward to show that

“'Z*)/*)""" (%),

1-¢ (95 9)i-; (14a)
(1-2i)/2

Uij(a,8) = (»3 1

X 201 (0A+i+l»qrd§q'_j+‘iq. -afl ‘21—_‘1)-,—) , fi—-532>0,
=X Jj-i Atai+l,
Uij(a,B) =qi="ti=i-1/2 (a ¢! m) (s "’)1—-
\ - s qu 2i)/2 )
x 2¢l (ll +I+l‘ql ql .+l _aﬁ (1 q)z ) ] ‘f 1 _j S 0 )

with 1,7 € Z + my. This establishes most simply the connection between the basic hy-
pergeometric series 3¢, and Uy(sl(2)). Notice that by using the limiting formula (8), the
above two expressions for U;j(a,3) are valid irrespective from the sign of i — j.

Off course, other combinations of little and big exponentials can also be used. For
instance, in the case of

U(a,8) = E,(8 f) e (ae) (15)

one similarly obtains (1,7 € Z + my)

("’*)/*)“" @ "*"9),
1-¢ (qi )- j (160)
q\1+2l)/2

), ifi-jzo,

Uij(a,B) = gli=ii=i=1)/2 (5 9

x2¢l(qA—-j+)'q~j-A q' o _afd

(1-4q)?
. j—1 At+i+1,
Li= (q;q))‘x (166)
e x, q(1+2-)/z
e e e T e D RELLREELE

The case of e,(xe) E (S f) has been disscussed in Ref.[9], while the matrix elements of
operators in U, (sl(2)) involving two little or two big g-exponentials can be expressed in
terms of the g-hypergeometric series 3¢, and ;¢, and will not be discussed here.
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To get generating relations for the ¢, using the results (14) and (16), one first notices
that it is possible to give a one-variable model for the representation (11), where the
generators are expressed as g-difference operators in the complex variable z acting on the
space of all linear combinations of the functions z*, n € Z. Indeed, by taking

k= q-m.,/: T‘-IIZ ,

1 1.5 A+mal
= 1-2V/A (——D* __L__-T)
e=4q z + z )
l1-¢ l-q =z (17)
2 A— '
f:q“'“”' (TE—QD; +l—1—q_;:zT,—‘) ,

and §; = z", j =my +n,n € Z, for the basis vectors, one can check that the relations (11)
are satisfied. Let us now act directly with the operator U(a,f), with e and f expressed
as in (17), on zi~™¢. After using the definition (1) of the g-exponentials and suitable
identitiee involving g-shifted factorials, one explicitly finds

i—A. —j+(142x) /4y !
U(a,B) 2™ = zi-mo Z g l-nr2 (9 5 q) (_qu 4 )

e (g59) 1-¢
—A—j~tl, ; m
y (q J ,q)m (“E q,,+l+(1+u)/1)
(9:9)m z  1-g
(18)
The sum over m can be explicitly performed thanks to Heine’s g-binomial theorem:**
o~ (97%39)n o _ (207 _
Z (g;9) -1 fz-q)q)“’ =(2¢7%q)a .  l2l<1, gl<1. (19)
-~ n 3 oc
The remaining sum over [ gives a 2o g-hypergeometric series, so that
) (1-2A)/4
U(a,B) 2™ = 2~ (-2 L——q)
z l-g¢ A+j 20)
& q’+ 1+20)/4 N q—j+(1+2A)/* (
. o). SRR = % S
x2¢('( = l—q »q anaz ]_q

Recall now the definition (12) for the matrix elements of a = U(a,A), and insert (20)
for the Lh.s., while in the r.h.s. substitute for U;;j(a,) the resuit (14a). After using the
following transformation rule for the ,¢, series,!*

201(0%,4% 050, 2) = (8" 725 q)emas 201(0° 7% 0 % 055 4,00 02) (21)

set j =my, z = —af g™t /2/(1-q)? and y = —(1 — g)g'***>/4 2z /a to get the following
generating formula for the ¢-hypergeometric function 2¢,:

g+ A+1 ,Jy qmu A, —2mu—])

(2g72™; @)amo (9/¥3 @)mo+2 20u(g $9,7yq

g —A

(22)

™ (g .q) A—mg+l _—mg—A, k+1
= v* 20 LT e g, 2)
24 [qzm..n/,_. q) (q: 9)& ( s )

kEZ

Here again the summand in the r.h.s. is well defined for all integers k, thanks to the
limiting relation (8). An equivaleni generating formula can be similarly obtained starting
with the operator ﬁ(a,ﬂ).

An orthogonality relation involving two 3¢, functions can be derived by combining
the results (14) and (16). By recalling that e,(z) E,(—z) = 1, one sees that

U(a,8)U(~a,-f) = 1; (23)

acting on §;, one then finds (i,j € Z + m,)

6.‘-j‘u = Z U:l(aaﬁ)[}lj(_av’ﬁ)' (24)

1€Z+my

Insert now for the matrix elements U,; and l71j the expression (14b) and the one that it

is obtained from (16a) with the use of the transformation formula (21). After some sim-

plifications and the redefinition z = -af q'/%/(1 - g)?, one finally arrives at the following
relation

P
g )/’(4/2'9) wi-1yyzs_, —iiyd (2@ (@5 a)i (g7 a)
61 30 TN+, Z q ( 2q )
(@59 (a7%9)i i, (95 )i~ (g 9)i-i (25)

x 261 (2, ¢89! T g, 277) 2a (@211, ¢RI g, 207)

The matrix elements U;j(a,/7) and ﬁ;,-(a,ﬂ) themselves define models of the module
V(Xmo) and directly provide a two-variable realization of 2, (sl(2)). To see this, for each
element a € Uy(sl(2)) define the operator 7(a) acting on the variables «, A such that
m(a)U(a,B) = U(a,B)a. Upon operating on §;, one obtains:

n(a)Uij(a,B) = Z Uila,B)aij , (26)

l€Z4my,

that is, the functions U;;(a,3) transform like the vectors §;. One can easily construct the
operators 7 for k, e and f, and thus for any a € U (sl(2)) by composition. For instance,
one finds that

k) =g~ TR TR | (27a)
12 .

wl(e) = —¢D - q —? (¢ T.T;' - g7'TSY), (27b)

0(f) =D} , (27¢)

"acting on the basis vectors

¢a,8) = Uy(a,8), jleZ+my, (28)
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obey the same commutation relations as k, e and f.

The operators 7/)(k) and 7'")(f) are obtained by using the first two relations in (9)
and from the property: D} e,(8f) = e,(8f)f, respectively. To derive #()(e), one first
acts with —~¢ D on U(a,B) using —¢ D Ey(ae) = E,(ae)e, and then shows that

g2 .
= q),ﬂ(k” -(1-q¢7 ')k, (29)

with the help of the following formula?

Ei(-Bf)ee,(Bf) =

E((X) Y e(~¢X) =} uT:T,,[X’”" , (30)

where
[X,Y] =Y, (X, Y]ur1 = ¢" X [X,Y]a = (X, Y] X, forn=1,2,....

Similar results are obtained using ﬁi,(a,ﬂ).

The observation that the matrix elements U;;(a, ) are also basis vectors for represen-
tations of ,(sl(2)) can be used to obtain further properties of the basic hypergeometric
function 2¢,. First of all one can derive the g-difference equation obeyed by 2¢1(a, b; ¢; ¢, 2).
The Casimir element C, which belongs to the center of U, (si(2)), is given by

x/zkz +q—!/2k 2 _

c=1 (77 —q-'72)2 +f° ) (31)

and on V{*™9) assumes the value
q»\+1/2 + q~a—1/2 -2

WA) _
¢ = (ql/Z _q—x/Z)z

(32)

Then, using e.g. (14a), from
©(C) Uij(a,8) = C™V Uij(a, ) , (33)

one can work out the equation satisfied by 2¢; (¢*+¥*!,¢""*;¢'"i+}; 9, —af ’%—’qj);i) With
the obvious identifications for a, b, ¢ and z, one finds

{z(c - aqu)(Df)z + [(l —e)+((1-a)1-b)-(1- c))z]Dj"

(34)
1 —a){l - b)}gm(a,b; c;g,2) = 0.

Since we have a two-variable model of the module V(*™) | from the general definition
of matrix elements (12) one can write, recalling (28),

U(e,8) £"@v) = Y. Uilz,9)Uii(a,B) , (35)

1€Z+ oy

7

where the model independent matrix elements lj,,(a B) are still given by (16). This allows
deriving addition formulas for the ¢-hypergeometric series 2¢1: one just needs to evaluate
explicitly the Lh.s. of (35), i.e. to compute directly the action of U(tx f) on the basis
functions f;')(a:,y), when e and [ are realized as in (27), @ and 3 being replaced by z and

v o
We start by first taking @ = 0, and compute the action of U(0,-8) = E,(-5f)

on E“)(x y). Inserting the series expansion (7) for 2¢; in (16a) and using the followmg

summation formula,?

E(-BD})y" =y" (B/via)n , (36)
one easily finds ({ — 7 > 0)

¢ “”‘)’ i (Blyii-i (e ig)i~;

E(-ANE ) = (v =, (@:0)i-;

(1-21)/2 (37)

x 32 (411,47, ¢' B /i g 05 g, ~2y a- q)’) :

Insert now this result and the explicit expressions (14a) and (16a) for the matrix elements
Ui(z,y) and U;;(0,~-f8) in (35); setting 2 = —zyq'~?"/2/(1 - q)?, w = ¢*~98/y, one
finally obtains (j,! € Z + mi,)

wgl ™) qA—l+l.q ey ¥ - x
( ' )(q.lq()' : i9) J ;¢2(q'\+'+‘,q' A,wa A;q‘ ’“,O;q,z)
[ 2]

00 A-l41, ) i=A.
39)1- 39)k w i
_ (g 9)i-j-« (g q) wt z¢](q/\+l+1,ql ;\;ql j k+l.'q'z)_

(‘l;q)l—,‘—k (‘J;‘I)k

(38)

k=i

This gives another generating relation for the ;¢, ¢-hypergeometric series.
In order to compute the action of U(a, ) on {;”(z,y) for a # 0, one can now proceed
in steps. One writes

Tah)E' e - Y (BBNE @) Tsa0, (39)

1€EZ+my

and then uses the result (37) together with (166). Explicitly, (I — 7 > 0)

20BN =i (B )y )= (@5 9)i-;

U(a,8)¢" (z,y) = (yq o )

(g9)-,
oo N (1+27)/2\ k '\‘J+‘; f*f); = “jﬂ/ 1 q)k
x 3 gk n/z(‘ay‘;l_ F) (g Q)(k.(q) (:-?:1(. ;1 ¥iq) (40)
k=i q 9;:9)k\9 197k

_ i (1-21)/2
x wﬁz(q“'“yq"*, -q"t* By 4"t "*',ﬂ;q,—z‘y(l )z) -

8



Insert now in (35) the expressions (14a) and (16a) for the matrix elements Uj;(z,y) and

.,(a B). After some manipulations and the redefinitions z = —zyq(*~ Wiz - q)?,
w=—afq 22 )(1 = ¢)?, t = ayq'*?)/2/(1 - q)?, one gets the following formula:

(w/tig)i-j Z “n(u=1)/2 (_gyn (@59 (a7 i q)n (¢ w/t5 9)n

(9.0)! = N (q;q)u (q““’;q)..
k(k 1)/2 wyk (41)
X 36 ( AFIRL l=A b=y, g, gltn=a+1 O;q,z) (__»)
S il . ,,Z:Z(Q:q (5 @)i-j-x \ 1

x 261 (g* 1, 9" A1 g M g, 2) 20 (@0 07T g g wat)

This relation simplifies in the limit ¢ — w/q. In this case the l.h.s. factorizes into the
product of a 3¢, and a 2¢, g-hypergeometric functions and one finally obtains the following
addition formula:

( 1)k k(k+1)/2

Atl+1 _I1=-A 0. A=j+1 _—-A-j,
2¢1(g W9 30i9,2) 20u(g ,q ipw/g) = 2 o s ot
( Yol & (@ a)i-i-k (459)e (42)

x 261 (g1, Mg R g,2) g (0T 0T R g wet)

This result can also be checked starting directly with the r.h.s of (41). Substitute for
the two 2¢; functions their series expansion (7). After some manipulations of the various
g-shifted factorials, the bilateral sum over k can be explicitly performed with the help of
the following Ramanujan’s identity'?

Z (ai9)x & _ (49)e (b/39)o (32;9)cn (9/8239)=

(b q (brq)m (q/a,q oo (21Q)00 (b/QZ;V)w ’

|b/a] < |z| < 1. (43)
keZ

Then, using the definition (2), in the limit { — w/g one recovers the Lh.s. of (42).

The addition formula (42) simplifies when m, = 0 and A is a positive integer. In this
case the module V(™2 is finite-dimensional (see (11)) and the various g-hypergeometric
series in (42) reduce to polynomials. Indeed, recalling the definition of the little g-Jacobi
polynomials,'*

ntl

pu(zia,6;9) = 21(g7",abg" "5 ag; g, 92) (44)

and setting for simplicity [ = j, m = A + j and n = A — j, from (42) one gets

C“(qm+l;_qv|/z;q) fpm(wq—m;qn+l.q)

n { 7A+l (45)
_ k(k-n) [T] A9 IQ)* ok e, n—m-—k,
= q [ ] T pn k(z:9 .9 Pm wq q g q) -
_Zm k (‘LQ) ( ) 2 ( * )
The c,, are g-Charlier polynomials,'*
cu(z;aiq) = 21(g 7", 20,9, ~¢" " /a) , (46)

while the polynomials P, are defined by

Pulziaia) = 3 [] (waheat, (47)
k=0
with
["] = (‘Ii Q)M )
L (g59)k (g59)n—x

They satisfy the following three-term recursion relation

Pusi(ziasg) = [1+2(1 — ag")] Pu(ziaiq) — 2(1 — ¢*) Pu_i(25a59) , (48)

18-20

and reduce to the Rogers-Szego polynomials in the limit a — 0.

REFERENCES

1. Miller, W., Lie theory and g¢-difference equations, SIAM J. Math. Anal. 1, 171-188
(1970)

2. Agarwal, A.K., Kalnins, E.G. and Miller, W., Canonical equations and symmetry
techniques for g-series, SIAM J. Math. Anal. 18, 1519-1538 (1987)

3. Floreanini, R. and Vinet, L., g-Orthogonal polynomials and the oscillator quantum
group, Lett. Math. Phys. 22, 45-54 (1991)

4. Floreanini, R. and Vinet, L., The metapleciic representation of su,(1,1) and the g-
Gegenbauer polynomials, J. Math. Phys. 33, 1358-1363 (1992)

5. Floreanini, R. and Vinet, L., ¢-Conformal quantum mechanics and g-special functions,
Phys. Lett. B 277, 442-446 (1992)

6. Floreanini, R. and Vinet, L., Quantum algebras and g¢-special functions, University of
Montreal-preprini, UdeM-LPN-TH54, 1991

7. Floreanini, R. and Vinet, L., Addition formulas for ¢-Bessel functions, University of
Montreal-preprint, J. Math. Phys., to appear

8. Floreanini, R. and Vinet, L., Representations of quantum algebras and g-special func-
tions, Proceedings of the {f International Wigner Symposium, Dobrev, V. and Scherer,
W., eds., (Springer- Verlag, Berlin, 1992), to appear

9. Floreanini, K. and Vinet, L., On the quantum group and quantum algebra approach
to g-special functions, University of Montreal-preprint, UdeM-LPN-THS86, 1992

10. Floreanini, R. and Vinet, L., Generalized y-Bessel functions, University of Montreal-
preprint, UdeM-LPN-TH87, 1992

11. Kalnins, E.G., Manocha, H.L. and Miller, W., Models of g-algebra representations: 1.
Tensor products of special unitary and oscillator algebras, J. Math, Phys., to appear

10



13.
14.

15.

16.

17.

18.

19.

20.

. Kalnins, E.G, Miller, W., and Mukherjee, S., Models of g-algebra representations: the

group of plane motions, University of Minnesota preprint, 1992

Miller, W., Lie Theory and Special Functions, (Academic Press, New York, 1968)
Gasper, G. and Rahman, M., Basic Hypergeometric Series, (Cambridge University
Press, Cambridge, 1990)

Drinfel’d, V.G., Quantum groups, in: Proceedings of the Internalional Congress of
Mathematicians, Berkeley (1986), vol. 1, pp. 798-820, (The American Mathematical
Society, Providence, 1987)

Jimbo, M., A g-difference analogue of U(g) and the Yang-Baxter equation, Lett.
Math. Phys. 10, 63-69 (1985); A g-analogue of U(gl(N + 1)), Hecke algebra and the
Yang-Baxter equation, ibid. 11, 247-252 (1986)

Masuda, T., Mimachi, K., Nakagami, Y., Noumi, M., Saburi, Y. and Ueno, K., U-
nitary representations of the quantum group SU;(1,1): structure of the dual space
of Uy(sl(2)), Lett. Math. Phys. 18, 187-194 (1990); Unitary representations of the
quantum group SU,(1,1): II-matrix elements of unitary representations and the basic
hypergeometric functions, ibid. 19, 195-204 (1990)

Carlitz, L., Some polynomials related to theta functions, Annali di Matematica Pura
ed Applicata (4) 41, 359-373 (1955) )

Carlitz, L., Some polynomials related to theta functions, Duke Math. J. 24, 521-527
(1957) »

Carlitz, L., Note on orthogonal polynomials related to theta functions, Publicationes
Mathematicae §, 222-228 (1958)

11



A different model for the algebra ¢,;(G,,) can be obtained by choosing the matrix
elements L—I,,,,,,,,u,,.(a,ﬂ,ﬂ as basis vectors. Explicitly, one finds

R.'=—q.D;I., Si=—787_aion(+”l'r i=1,...,7,
L,'=D;'_, Tj="7av+ﬁjoﬂ,'+”j) i=1,...,8, (3.8)
V= D:
with _
fm»m‘,n—ll’ = Um’n'.mn(arﬁv7) . (39)

Identities for the g-hypergeometric series ., similar to the ones in (3.6) can now be derived
from this model. Starting again from the relations (2.5), one gets
1

@) o [ e

,q
™ mi_y qm.-+l gmitt PRl (3'10¢)
=(1_qm.)r¢‘[ ,"'lq ’ ¢ ¢ L ) ;q, ] ,
qn.""lq”.
m, m,
(1-¢"7'T3) vp, [':,.[, ‘:,,‘ ;9-3]
1ty
-1 g™ n g™ R
= (1 =g ) rfs [q"l’,,_,q"i-l’q"i"l,q"l*l,...,q"' Gq,l] )
g™ @™
Dy w-[qm:“_::", ;qﬂ]
3.10c
HH l—q"" qm|+l'”.'qmr+l. s ( )
P P qn|+l’__‘1qn.+1 i *
From (2.7) one now sees that ., obeys the following g-difference equation:
(1-¢™Ty)---(1-q™T:) - Dy
(3.11)

x(1—¢™7IT,) -+ (1 -q""‘T.)] rPs [Z,,,""’q,,. ;q,z] =0.
yeres

Since we have models for the representation (2.5), from the general definition of the
matrix elements (2.9), one can write, e.g. using (3.9):

U(alﬂ,7) flll—ul',ll—ll'(z)sz) = Z ﬁww,ﬁﬁ(%ﬂﬁ) Uﬁﬁ,mn(alﬂa '7) ) (3'12)

i

where the model independent matrix elements Ugiiiua (@, 8,7) ate still given by (2.10).
This allows deriving various identities involving the ¢g-hypergeometric series ¢, and ,p,.
To this end, one needs to evaluate explicitly the Lh.s. of (3.12), i.e. to compute directly the
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action of U(a,B,v) on the basis functions (3.9), when the algebra generators R;, L; and
V are realized as in (3.8), with a;, §; and v being replaced by z;, y; and z, respectively.

We shall start by considering the simple case in which all parameters a;, 8; and v but
one are set to zero. Take the following operator U(a;) = e4(a; R, ), whose matrix elements
are easily seen to be given by

a’"x”"l
Um’n’,mll(al) = W 6m,.m’, T 6m,,m’, Enl,n'l T 6n,,n‘, . (3.13)
19)mi-m,

The action of U(a1) = eq(—ga1 Dy, ) on the basis function fiu—m',n-n'(2,¥,2) of (3.9) can
be computed with the help of the following summation formula (|a/z| < 1)

-y .n_ _n _1
e(—gqaD7)z" =z (~ga/zid)—m (3.14)
=¢ ™M=V (_z/a;9), a"

One finds

cq( —qay D;l) fm—m' .n—n’(z, Y, z)

mi—m; nj—n
HH gmimmitmi=mi-1)/2_%i Yj
( qal/zl»Q)m.—ml i=1j=1 (Q;Q)m‘i—m. (q;q)ni—n;

'
m m,—-m
Yyeenq "

™ PV Y2
X ’ ' , H = —_—
o ['I"""'“,---,q"""-“,—q"‘"""‘“ax/zn’q'( 9 PR

(3.15)
Insert now this result and the explicit expressions (2.12) and (2.10) for the matrix elements

ﬁm:n:ﬁﬁ(z,y,z) and Usama(ai) in (3.12); setting u = (—q)"y1 - - yoz/z1 -z, and
w = —qa, /z;, one finally obtains, after suitable simplifications:

g™, ... s,
rwm[ ik ;q,u]

] PO a16)
Z MCIET ) i L PP Lo Wl<l.
(91q)h res q"l,._.,qn. YU, w .

This can be considered to be a generating relation for the series .y, in terms of a suitable
r@s+1 function.
Similar results are obtained by considering the operator U(8) = Ey(f1L;), with
matrix elements
, , n —nj
Um’n’,nm(ﬁl) = 9('“_"')("'_"'_”/2(9_—;)—' Jmlymll T Emn"". 6"1."', o '5,,“,.:. . (317)
19)n,~n}
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The action of E,(ﬁ,D*) on the basis function fi—w'n-n'(Z,¥,2) can be computed by
using in this case the followmg summation formula (|8/y| < 1)

E(BDy) y" =y" (-B/vig)n - (3.18)

The details of the calculation are similar to the ones described before, we shall therefore
only give the final formula:

q-n.,.__‘qm. wqm ]

(wig)n, r-HVl[ qn|+l vl ghet iy

¢ kn (7" 0)k g g™ .
= Zw ny \3 ' IJR rPa [q"l"'“,q”’*l,...,q"'*"q'u 5 |W| & Yea

= (9:9)e
(3.19)
The formulas (3.16) and (3.19) can also be checked directly by substituting for the functions
rs appearing in the Lh.s. their series expansions and then performing the sum over k
with the help of the Heine's ¢g-binomial theorem:®

o (0% 4 _ (307%0) _ (o,
Z (@ T (50 =(2¢"%g)a, lsl<1, lgl<1. (3.20)

To get a summation formulas from (3.12) one needs to consider the general case where
all parameters a;, §; and v are nonzero. Using again the summation rules (3.14) and (3.18)
the action on the Lh.s. of (3.12) can be expressed in terms of a (r+o+1)P(r+2) function.
With this result and recalling the explicit form of the matrix elements appearing in the
r.h.s. of (3.12), after some straightforward simplifications one arrives at the following
formula

S PP Lt N
(rte+1)P(r+s) q"'"""lm,-.-.q"‘"""-p.- q""“‘l"“ L q"-""*"q'

r s
= Z H H ( q[("h’m-)(m-+m-—1)+(ﬂ;'n,)(llj—l, -1))/2 (p"q)"'""‘i

®mai=lj=1 753 Q)n, -n}

[z ] cnemremern)

qﬁ‘-m"y"'lqﬁ’-m' . qml—miv'--vqm'_m' Ty -0y M-N
s [qiu—u"ﬂ'_“‘qﬁ.—n’.n'q"" e qn.-ﬁ.ﬂ’._,'qn.—i.ﬂ;q'm"w.q

(3.21)
where we have used the redefinitions w=y - “Yoz/Z1 2r, pi = —qaifzi, 0 = —Pj/yi,
n=—7/z,M=Y_o(Mi—m;)and N = 3i_,(7; - n;), and

_ (gg)m
3.22
W =3
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is the g-binomial coefficient.

Identities involving the g-hypergeometric series ¢, can be similarly obtained by using
the model (3.1) for the algebra i4(G:,). The basic formula to start with is again (3.12),
with U and U exchanged. For simplicity, we shall consider the cases for which only one of
the parameters a;, 8; and v is nonzero. Since the computations are analogous to the ones
described before, only the final formulas will be given. In the case a, # 0, one obtains

qmn, ”‘qm- . ]
(w;q)m: r¢|+l [qﬂl . n. q/waq'Qu/w
e (@™ [q""“.q"".-.-.q"". -n]
2 R 7 ek M L R L
(3.23)
while for §8; # 0, one gets
(w; g)n, r+l¢u[ n.:i-x q'q/l ,q,uw/q]
_zwh kn (q iq)l é g™y g™ R —k ' |<1
= T Ut S L B I
(3.24)

Again these formulas can be checked directly using (3.20).

The relations we have derived are just a few examples of the many identities that can
be obtained from the quantum algebra interpretation of the g-hypergeometric functions
+¢. and ,p, that we have provided. Our aim was to show the usefulness and simplicity
of this approach, without pretending to be exhaustive. As a final remark, notice that the
two g-hypergeometric series ;¢; and 2¢, also appear in the representation theory of the
lower dimensional quantum algebras ¢/, (£(2)) and Uy(1(2)),* ~!® £(2) being the Euclidean
algebra in two dimensions.
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