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Abstract

An algebraic setting for a natural generalization of ¢-Bessel functions is
provided. Many properties and formulas involving these functions are
obtained and discussed.
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1. INTRODUCTION

Most special functions of mathematical physics naturally arise in Lie algebra theo-
ry. Many of them have g-analogs and their interpretation in terms of Lie theory is now

‘systematically investigated. In strict analogy with the standard approach,' these basic

or g-special functions® arise as matrix elements of certain algebra generators in specific
representations of lower-dimensional universal enveloping Lie algebras, and also as basis
vectors of the representation spaces.®™!!

Basic analogs of the Bessel functions have been identified in realizations of the two-
dimensional Euclidean algebra £(2) in the space of complex functions.®!! In this way,
various generating relations and addition formulas for these g-special functions have been
derived. Here we shall consider an extension G, of the algebra £(2),! and similarly study
realizations of it on functions of one and two complex variables. Natural generalizations
of g-Bessel functions will be identified and various properties for these functions wﬂl be
obtained within this Lie algebraic setting.

For convenience, we begin by listing some results and formulas of g-analysis.? For a
and a arbitrary complex numbers, we denote by (a;g), the g-shifted factorial:

(21 9)o0
BT e 1.1
(%9 = fago; ) (1
where
(@i9) = [J(1-ag"), lol <1. (1-2)
k=0
Note that for a a positive integer n,
(ai@)n =(1-a)(1-ag)...(1 —ag""™"). (1.3)

These products satisly various identities and we shall recall them whenever they will be
required. Note also that {¢;¢)./(1 — ¢)" — n! as ¢ — 1~. Of fundamental importance is
Heine’s g-binomial theorem which states that

(@i @) . _ (a2q)os

Z" = 2l <1, lgj<1. 1.4

"Z“ (4; Q)u ("ﬂ‘”m « I8 Ay

Two g-exponential functions can be obtained from this formula:
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Note that eg(z) E,(—2) = 1 and that

lim e,(2(1-¢q) = lim E (z(1-q)) = €. (1.6)
g—1- g—1-

Let T. be the g-dilatation operator acting as follows on functions of the complex
variable z

T. f(z) = f(q2) . (1.7)

Observe that, for n integer, (T:)" f(z) = T? f(z) = f(q"z); for @ an arbitrary complex
number, we define: T f(z) = f(¢®z). The g-difference operators D} is given by

Df =z"'(1-T.), (1.8)

and 2 q)D*' — d/dz as g — 1.
The basic hypergeometric series ,.¢, is defined by
r¢l(“hah- T L e b,;q;z)

(th)n(ﬂ )Q)n (ar;q)n n nln-yite-r (1.9)
Z (9. "(blz'q)"' '(bn;Q)rA [(—l) q_LrJ] =

n=0

with ¢ # 0 when r > s + 1. Since (¢7™;q)n = 0,forn =m + 1,m+ 2,.. ., the series ¢,
terminates if one of the numerator parameters {a;} is of the form g™ with m = 0,1,2...,
and ¢ # 0. Unless explicitly stated, in the following we shall always assume 0 < ¢ < 1.

At least three different g-analogs of the Bessel functions of the first kind J,(z) have
been studied in the literature. The first two has been introduced by Jackson, and further
studied by Hahn (see (12,13] and references therein)

IJMV(z;q9) = (?%: (%)" 261 (0,0;q"“;q,—z;-) : (1.10a)
I (ziq) = (q;q) (3)" ven (50,2 ‘f‘m) . (1.108)

They are usually referred to the Jackson g-Bessel functions. The function J@ (z;9) is an
entire analytic function of z and it is connected to J.(,”(z; q) through the formula:

Iz 9) = (-2° /4 9)e0 IS (239) - (1.11)

The third generalization of J,(z) was first introduced by Hahn, and then later studied by
Exton (see [14,15] and references therein),

Ju(z;9) = z uﬁl( ‘;q,qz’)~ (1.12)

1q)"
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It is an entire analytic function of z. One can check that in the limit ¢ — 1~ all three
functions (1.10), (1.12) reduce to the ordinary Bessel function J,(z):

liT Ju(ub)((l = q)z;q) = J"(z) ) k=12,
g—1-

1.13
lim 1,(01 - 9e/26) = Ju(e): L

The basic Bessel functions satisfly the following recursion relation:

A=) j0er0) = § (105 (m50) + 0 TEh(m0) + k=12, (L14a)

(1= ¢ +2)(5:9) = 2(um1(2) + doa(59)) - (1.148)
Moreover, acting with the difference operator (1.8) on Js”(z;q) one can check that
(D2 -3) Hz0) = 5 (IS0 - I (ai0) - (1.15)
From this, using (1.11), one can get an analogous formula for J{*(z;q):

[Df - 2 = Z(l +q(1+ %)) ] ziq) = ( I (z9) - 5?1(159)) - (1.16)

Modified q—Besscl functions can also be defined,'*

I} (2;q) = e~ 'm/2 JUk)(ei"/2 2 q) k=12, (1.17a)
L(zq) = ™/ I, (" 53) . (1.178)

These definition are analogues to the case ¢ = 1. All the properties given above for

J‘(,”(z;q), k = 1,2, and J,(z;q) can be refrased in terms of the functions (1.17). For
instance, the recursion relations (1.14) become,

(1-01(3) 1960 = 0 - 1m0 k=12, (1)
(1 - ¢~ 2°) L(z9) = z(Lo-1(239) - Lz 9)) (1.188)
while (1.15) gives:

(01 +) W60 = 3 (K0 + 1m0 (119)

Further properties of the ¢-Bessel functions are discussed in Refs.[9-19].
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2. GENERALIZED g¢-BESSEL FUNCTIONS AND THE ALGEBRA G,,

Given two positive integers (7, 8), the three-dimensional algebra G, , is defined by the
following commutation relations of its three generators:!

[J,Ps] =Py, [LP.]=-sP., [Py,P]=0. (2.1)

Clearly, G, is isomorphic to the two-dimensional Euclidean algebra £(2). We shall further
assume that the two numbers r and s satisfy the following three requirements: 1) r and s
are relatively prime; 2) r is odd; 3) if s is odd, then r > s, unless r = 8 = 1. Then, two
Lie algebras G, , and G, ., with subscripts satisfying these properties, are isomorphic if
andonly if r =+ and s = 4.

Each irreducible representation Q. ,(w,my) of G, is characterized by iwo complex
numbers w and my, with w # 0 and 0 < Remy < 1." In this representation the spectrum
of J is the set § = {my +n: n € Z}, and the representation space has basis vectors f,,,
m € S, such that

Pi fm = whntr, (2.2a)
P_fin=wfu-s, ' (2.2b)
J fi=rfi i (2.2¢)
(Pe) (P)" fm =™ fm s (2.2d)

where C™* = (P+)r(P_)' is the Casimir operator.
An explicit realization of the representation @, ,(w,mg) can be easily constructed by
taking!
d
J:mu+zd—z-, Pieigrg” | P =wa™. (2.3)

These operators act on the space of all linear combinations of the functions z*, z € C,
n € Z, with basis vectors f,.(z) = z", where m = my + n, n an integer.

The connection of the realization (2.3) with g-special functions is obtained by consid-
ering various combinations of g-exponentials of the algebra generators P, and P_ in the
universal enveloping algebra of G, ,. We shall first examine the operator

UM (a,B) = e (aPy) eq(BP-) , (2.4)
which in the realization (2.3) becomes
UM a,B) = er(awz") ep(Bwz ") . (2.5)

Its matrix elements U}')(a, ), defined through

U“‘)(Q,[)) fm.m-n = Z U“)(a ﬁ} fmo+k y (26)

k=—o00
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can be explicitly computed. By using the definition (1.5a) of the g-exponential function,

one has

0
wm+l

U(”(a,ﬂ) 2o === — a‘ﬂ"' zn+|r‘~m, i (27)
m%, (759" )i (g% g )m :

It is convenient to introduce two new summation indices k and j through the relations:
k=n+lr—ms, | = pr_, +3j and m = vx_,, +7j. For a given integer n, the nonnegative
integers p,. and v, are uniquely determined by the following two properties:’ n = p,r—v,s;
if n = plr— v s, where p),, v, are nonnegative integers, then u, + v/, > pn + v,. Since
r and s are relativly prime, the integers p, and v, exist for all n. For instance, in the
particular case r =3 =1, one has p,, = n, v, =0forn >0, and p,, =0, v,, =n forn < 0.
Also notice that ppyw = pu + pm mod s, Yy 41a = vy + vy mod 7.
One can then rewrite (2.7) as

co

U‘(l)(a’ﬂ) P - z 2 Whr=ntVen Glhon gYa-n
il (2.8)

X Z 1 ( ("+l)anﬂr)1

=0 (@759 ) uetos (419" wuntri

and extract from this expression the matrix elements Uﬁ:‘)(a,ﬂ). In terms of the definition

1) z Yot 2= 1 2\ ket
L% (z5q) = —— . 2.9
&) (' + 3) f;, (479 D40k (9%59" Jup rk (,. 4 5) B

one explicitly has

.-—n

U8y = (5) 77 2 (utr + ) (a8 i) (210)

For r = s = 1 the function in (2.9) coincides with 1(2;q9), so that I8 ™(2;¢) can
be considered a group theoretical generalization of the first modified g-Bessel function in
(18.2), with integer index v. From the definition (2.9) one can also check that

lim I{V"e ((1 = g R = gty z;q) = (r) ¥2)., (2.11)

g—1

where []*(z) is the ordinary generalized Bessel function introduced in Ref.[1]. It is defined
by the series expansion

Bty L 1 » k(r+a)
¥ it = _ W b A
wiE) = (r +a> szn(““ + 8k) (v + TR)! (r+s) ’ (13

and arises in the representation theory of the group associated with G, ,.
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The g-Bessel function e *(z; q) satisfies the following recursion relation
= ( ) i) = B2 w0 - B, (219

as can be proven again using (2.9).- For r = s = 1, one recovers (1.18a), while as ¢ — 1~
one gets the recursion relation satisfied by the ordinary function I7"(z):

(r+a
n

Using the explicit representation (2.12), one can also check that:

) I5(2) = £ 150 (2) — s 0L 2) . (2.14)

( di ") Io(z) = I (2) , (2.15a)
r 2.5 L(z) =32 (2) (2.15b)
dz  z T ’
from which (2.14) can be deduced. Similar relations hold also for I,‘.”"'(z;q):
(r 5 ) (1-g?6 7% ) 1072(a10) = £ (519) (2.16a)
z
(r . ") (1- =% T77°) 1 ™(z19) = I8 *(339) - (2.165)
z

The recursion relation (2.13) clearly is a consequence of these. After a suitable rescaling of
z (see (2.11)), one can check that (2.16) reduce to (2.15) as ¢ — 1~. Applying in succession
(r + s)-times the operators in {2.16) one sees that the function I,(,.”r"(z;q) is a solution of
the following g¢-difference equation:

(r+6) (1 - g T,r’T'-) (r—l—'—") (1 - T;"%') B (r+s) (1 _ gt T'*‘)

r4
% (L’L’) (1- 7%= T;_“') ('+’) (1 e I',T)
z z

. ( £2) (1- g7 1) 1074 (550) = [0 (339)
Z
(2.17)

)

Further, notice that ¢ (z;¢) also satisfies the following four-ierms relation:

T+ ( nipt :"A. u (1) r» .
1—g"+ T/F )1,'.” : (2;9)+( )1,. rd(zig
( z ) r+s +lzig) (2.18)
= 1072 q) + I (539 5

this is the genralization of (1.19), to which it reduces for r = 5 = 1.
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A generating formula for Fme (z;g) can be easily derived. Inserting the result (2.10)

for the matrix elements U,ﬁ:.)(a,ﬂ) in (2.6) and lettinga=f=1,n=0,and y = w(r+3)

one gets
oo
de Y Y= kp()rag
e”'(rﬂz) e"'(rﬂ’ )‘ > LR (ye) - (2.19)

k=—o0c

Let us now replace z by e in the previous formula. Recalling (1.5a), one can write

o0

1 i re
= o e (2.20)

ird. s 8.
(:—%;e" vqr)m(1+.e " g )oo k=-o0

Multplying both sides of this relation by e~"¢/2x and integrating in d@ from 0 to 2, one
obtains the following integral representation (|y| < r + s)

IV (yiq) = i./m' : e do . (2.21)
2x 1] (;helrﬂ;qr) ('+l.e—ud q)
o o

A generalization of the second modified g-Bessel function I *(z;q), similar to that
of Eq.(2.9) for I,(.”(z,q), can also be considered

Bnton o ak) +s(va+rk)¥]/2 k(r+s)
If,z)"'(z;q) - ( 4 ) Z L (——z ) . (222)
T+s (0719 )un+ ok (449" Jvmtrk \7 43

It arises in the study of the matrix elements of the following operator in the universal
enveloping algebra of G, ,,

U (a,B) = Ep(aPy) Ep(BP-) . (2.23)

Using (1.5b) and the explict realization (2.3), steps similar to the ones involved in deriving
(2.8) give

o0
U‘”(a,ﬂ)z": Z z*q‘r“k-n(“l<n 1)+w.-n(w-u-l)]/1wun—n+vu-nam-nﬂv.-n
k=-—oc

(2.24)

Hm('"(r+~)/2+m ntve-n)

Z (q 9 )n. atam (q ' )v. ntrm

m=t

(wr+.a-ﬂr q-r.)"' .

The matrix elements of U'?)(a,3) are still defined as in (2.6); thus, from (2.24) one finds

U{:)(a 8) = (5 —(r- -)/2) ok IL:_)':,. (w(r+‘)(aaﬂrq~r-)l/(r+n);q) . (2.25)
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The function I.?)"*(z;q) is an entire analytic function of z. When r = s = 1, it
reduces to the second g-Bessel function in (1.17a): i “l(z;q) = q“‘/z I,‘.”(z; q), while in
the limit ¢ — 1~ one gets back the ordinary generalized Bessel function (2.12):

. (2) r8 — gt (rHe) iy _ ey (r+e) . - 4 7+ v
Jim 107 (1= g1 - gy sg) = ()T @) (226)
Using the definition (2.21), one can chek the following recursion relation
] T+ n-r 8 —(n+a ]
(a7 ~q"%) (—) I (ziq) = ¢ L (59)~ g~ LR (539) , (227)
which in the limit ¢ — 1~ gives back (2.14), and for r = 5 = 1 reduces to (1.18a).
By inserting the explicit form (2.25) of the matrix elements Us.)(a,ﬂ) in (2.6), one gets

a generating formula for I "*(2;¢). Setting a = ¢/%, 8 =q¢*/?, n =0 and y = w(r + ),
one obtains

Yy r y -0\ _ - k p(2)re, .
Ey (r —(2v4) ) E, (r 5 (#/Va) ) = :L_:m 2 I (yq) (2:28)
As shown before in the case of If,”"'(z;q), from this formula an integral representation

for I™*(2;q) can be derived:

1 gr . z : z X .
I(Z)r,u - - —ind [ _ r/2_ir8, r _ —4/2 _—is8, _a de . f
w(29) 27 J £ ( raad = 8 )1.( rhay - 9 )co (228}

A biorthogonal relation involving the two functions I8V ™*(z;¢) and Is.z)r"(z;q) can
be obtained by combining together the two generating relations (2.19) and (2.28). First let
z — qle="/2(r+4) 2 and y — —g~"*/("+4) y in (2.28) and then multiply it by (2.19). Using
eo(z) E{(—z) = 1 one gets

g HER) [y ) I (y gm0 g) (2.30)

M

1 =
k.l

-

. 1/e 1/r
this double sum is absolutely convergent for (%) < z] < (fﬁf) . Equating the
coefficients of equal powers of z on both sides of (2.30), one finally finds,

for |y| < (r + g)r*/(rte)

s ¢}
—i(m+n- L ) TR 4 8 ~ro/(r+a
Yo qritmn=2b(EE) [V ) I (—y g ) = b - (2.31)

k=-oo

9

Natural generalizations of the Hahn-Exton modified g-Bessel function (1.17b) are ob-
tained by considering operators that involve both the g-exponential functions of (1.5).
Consider first the following operator

U®a,B) = ey (aPy) Ep(BP-) . (2.32)

[ts matrix elements in the representation (2.3), still defined as in (2.6), can be written as

k-n
e 1/(r+)
s = (¢5) " 12 (s a(esra) T e) L e
where - ( o )
> alvn+rk)(vnrrk+1)/2
R B D e (2:34)

(@ )t ok (9750% ) bk

The function 15.:) "*(z;q) is an entire analytic function of z. It reduces to the Hahn-Exton
g-Bessel function (1.17b) in the particular case r = s = 1; also, one checks that

limg_.;- e (1 = qn)"/tr+9(1 = g*)/r+8) 2,q) = (f)ﬁ—' I*({r + 3)z). It obeys the
following four-terms recursion relation:

(1= g D" (z0) = 213 (1) = 2 (100" (@30) - M (z9) . (235)
which coincides with (1.18b) for r = s = 1, and reduces to (2.14) as ¢ —> 17,
The generating formula that follow from (2.6) takes now the form, for 0 < |z| < |y|*/",
er(vz") Bp(u(z/a) ") = 3 L), (236)
k=—-00

from which the -following integral repersentation can be deduced (|z| < 1)

‘ 1 n (‘que—-uﬂ;ql) ‘
J (G T ___/ —in# ¥ X 49 . 2.37
wt(z9) = o | (e ) (2.37)
The matrix elements of the operator

UM (a,8) = E,(aPy) en(BP-) , (2.36)

in the representation (2.3), can be expressed in terms of the following different generaliza-
tion of the g-Bessel function (1.175)

” i q'”‘“ takj(pntaktl)/2 " i
I (2 q) = g0t , ghleda) (2.39)
" (010 D+ ok (9°59 otk

10



Explicitly, one gets "

a

U = (7 5) o (vt +or(a7a7)

1/(r+3)

,q) . (2.40)

The function 15" "*(z;q) is an entire analytic function of z, which for r = s = 1 reduces

to ¢"/2I7*(¢"/?z;q). It obeys the recursion relation:
(1= g™ 0™ (510) - 2100 (55) = 2 (B2 (530) - I "(59) - (241)

A generating formula is again easily obtained from (2.6), for |y|'/* < |z,

Ep(y(gz)) e (yz™) = Y 1" (wiq), (2.42)

k=-~00

from which the following integral repersentation follows (|z] < 1)

2x — r‘irﬂ; r
I}:)r.l(z;q) == %‘/U P (Tzci'—"‘—,q—'q)—);.g df . (2.43)

To get a biorthogonality relation involving I.(.”"'(z;q) and I,(.”r"(z; q), replace y by
—~y and z by z/q in (2.42), and then multiply it by (2.36). Using the properties of the
g-exponential functions, one gets

1= Y & I (4 [0 (~uig) 5 (2.44)

k=-o00

this double sum is absolutly convergent for g|y|*/* < |z| < |y|~!/". Equating the coefficients
of equal powers of z on both sides of (2.44), one finds, for |y| < g~ *7/(7+®),

2

N gl T~ ag) = B« (2.45)

k=-00

3. REALIZATIONS OF G, IN TWO VARIABLES

In the previous section we have seen that generalizations of g-Bessel functions arise in

the study of realizations of G,, on the space of functions of one complex variable. These

(k) ro
n

g-special functions [, (z;9), £ = 1,2,3,4, were defined through a series expansion

11

only for integer values of the index n. Following a standard procedure in the theory
of complex functions?” we shall use analytic continuation to define them also for n an
arbitrary complex number. We shall carry out the detayls only in the case of Is.l)r"(z;q),
but similar procedures can be adopted also for the remaining three generalized g-Bessel
functions.

We start by applying the Cauchy residue theorem to the generating formula (2.19).

For n integer, and (;L:-l;)]/' <zl < (rﬁ!)

g~ n-1

1
(13 v gt oo :
In (Z,Q) 27‘1/6' (r_il:r;qr)oc (r—:——;z—.;q')m

dz , (3.1)

where C is a simple closed contour encircling the origin in the z complex plane. Without
changing the integral, the contour C can be deformed into a loop which consists of the
lower edge of the cut along the negative real z-axis from —oo to —¢, a circle of radius ¢
and the upper edge of the cul from —¢ to —o0o. We shall use the standard notation fio;)
to. indicate the integral along this path. Since 7 is odd, the integrand in (3.1) is bounded
along the path for Re z > 0; moreover, it is single-valued even for n complex. We can thus
use

i 1 (0+) znl
R me) = ﬁ,/_m i) e ), e

to define I3, "*(2;q) for arbitrary n and Rez > 0. To obtain a series expansion, introduce

. ; . 1
a new integration variable ¢ = (.%‘) e

t afr a(u+) —n-1 .
e =5 () [ : @, @3

27t \r+s i (tr;qr)w ((i)('*“)/'t—a;q.)m

I'(Il)r.c

This expression, which is not single-valued, can be used to define (2;9) as an analytic

function for all z # 0. In particular, z™"/" I,(.“r"(z;q) is an entire function of z("+)/7,
Recalling the definition (1.5a), one can now expand in series the second g-exponential
appearing in the integrand of (3.3), and integrate term by term:

i % njr x 3 k(r+a)/r 1
In (Z;Q) = (::) g (;‘;;) (ql;ql)k (3 4)

8 1 (0+) y~n—sk-1
X —— / — di .
2mi J_ o (t";q")m
To proceed further, we use the following Ramanujan’s formula?!

1

T*i9)ow (@i¢) _ sinmz /"’ gri-t C9ide (3.5)

(g _
(95 0)oc (ag™% ) ™ (-t 9o

12
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With the change of variable ¢ — t" and of base ¢ — ¢", and the redefinition z — z/r, one
gets, for r an odd positive integer,

(419w (810" ) _ sinm(z/7) /w -1 (a9 )
=r dtit : 3.6
(471970 (897%3¢")ou ™ o (=179 )oo el
Consider now the following contour integral
1 (u+) g (“‘r;qr)mI

It can be evaluated in the following manner:

=L/ f= d!](te"")‘ l(——ML;-&+——1—-,/O (- dt)(te")' l( —at"1q" oo

2mi (-t 2mi (=739 e
(3.8)
smrz / A 1( —at";9" )
( ‘rlq )rx:
Comparing (3.6) with (3.8), one obtains
(0+4) s r—z,r el
1O @) 1 sinr: ()e (@) g
2mi J o (t"iq7)ee  rsinm(z/7) (¢719 e (397759 )0
which for a = 0 simplifies to
1l £ 1 sinmz  (§" %9 )
E/_ - ("¢ reinn(z/7) (¢ ,q’)m (340

By analytic continuation, these formulas hold for any complex z. With the help of (3.10),
for noninteger n, one can rewrite (3.4) as

10mas )—1 ( z )n/r 2 (") sin w(n + sk) (_z_)k(r-u)/r
- B T & (9%59")k (4710 )0 sinw((n + sk)/r) \r+s .

(3.11)

Using this definition, one can now check that the relations (2.16) and the difference equation
(2.17) remain valid for noninteger n.

In the previous section we have studied realizations of the representation Q. .(w,m) of

Gr.a on the space of functions of one complex variable. We shall now discuss realizations of

this representation on spaces of functions of two complex variables, z and y. In particular,

we shall look for a realization of Py and J in terms of generalized g-difference operators

acting on the space generated by basis vectors of the form fn(z,y) = y™ Fu(z), m =

mo + n, n € Z, such that (2.2) are satisfied. The constant w is nonessential, since it can

be changed by rescaling the generators P, and P_; for simplicity, we shall henceforth set

13

w = 1. With the help of the relations (2.16), it is easy to check that such a realization is
provided by the operators

P=y (T +’) (r~mg= ¥y, (3.12a)
F4
e (TR (o i
P_=y ( : )(1 Ty TS ) (3.128)
¢}
J=y—, (3.12¢
Yoy )
and the basis functions i
fulz,y) = y™ IV (239) (3.13)

with m = mgy + n, n € Z. Note that the equation (2.2d) in this realization becomes the
difference equation (2.17). Different two-variable realizations of G, , can be obtained by
taking other generalized ¢-Bessel functions as basis vectors. Here, however, we shall con-
centrate on the realization (3.12) and derive from it addition formulas involving 453 "*(z;q)
and If.,’”"(z; q).

The basic ingredient is again Eq.(2.6), that we shall specialize for the operator (2.23);
with m = my + n, one obtains

U (a,B) fulz,y) = Z UG (@ B) fmasu(2,9) (3.14)

k=~oo

where the model independent matrix elements U,"l (@,B) are still given by the formulas
(2.25), with w = 1. To get addition formulas for g-Bessel functions, one now needs to
evaluate explicitly the Lh.s. of (3.10), i.e. to compute directly the action of U®)(a,B)
on the basis functions (3.13), when P, and P_ are realized as in (3.12). We shall not be
able to give a closed form for this action; however, suitable integral representations will be
provided.

We shall start by computing the action of E,(6P-) on fiu(z,y). With the help of
the definition (1.5b) of the g-exponential and of (2.2b), one easily gets

" re d - ’
En(BP) y™ 1V)"(2:9) Z g"l= ”” e y™= [ (2:4) (3.15a)
I=u
=t % sl(1=1)/2 ( pa(k+1)—m+r,
] o~
_ _( P ) T glygm-ied (q‘ . iq") (3.155)
f \FES — (g*39*)1(g*19*)k (97197 )

1 k=u

wsinllaliend {54
sinr[(k + s —m)/r] \r+s :

I(U' ]

~m

where in the last formula we have written for (z;q) its series expansion (3.11),
assuming my # 0. It is now convenient to introduce a new summation index n, replacing
k trough the relation [ + k = n. After using

(a;9)u Q\™  La(m—1)-mn
 TET— . | R 1
(aigq) e ( u) q' ) (3.16)
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the sum over [ in (3.15b) can be explicitly computed thanks to the g-binomial theorem
(1.4). One finds,

m -m/r
Ep(BP-) y™ 1Y) (259 =y_( 2 )

r \r+s
2 (=By~* (24)9), (¢ ") _sinm(ns—m) (= \"H”
) ;Z:o (9*:9*)n (9719 ) sinr((na —m)/,-) (r+.) .
' (3.17)

One can give an integral representation of the r.h.s. of this formula by using again the
result (3.10):

Ep(BP-) y™ 1Y) (219)
w2\ (B () ig), 1 O amomnt g el
i (r—+o) R (g*:9")n 2m/ ‘G )w( -') '

n=u
(3.18)
By exchanging integral and sum, and using once more the g-binomial thorem, one obtains:

E@(BP-) y™ 1U)*(:q)
2\ pen (At (25) ) (3.19)
:ym —— dllm i L perop .
(’“) 2’"/ (2730 )eo (2= (:25) " "00)

Recalling (3.15a) and introducing the new variable ¢t = 8/y*, one finally gets

() [ s ),

' (r+a)/r
r+s 2xs (271900 (z (TI;) )/ ;q-)w
(3.20)
2, gHi-1)/2
l (1) r,s
Z I m+ l(:»q)
—~ (g"iq" ) ‘
Analogous results are obtained by considering
By (aPy) y™ 100" (miq) = 3 W0 & ymar (0 ) (3m)
q m (q iq )‘ m—rl
1=0

. By writing for m St (21 q) its series expansion (assuming mg # 0) and using again the
g-binomial theorem one obtains

m -m/r
EelaPy) v 100 (zia) = L (112
z

= (e (:5)i9) (q'**' 4" Yoo sinw(ks —m) ([ 2\
gu(q';q‘)s(q';q') (-ay'q*=™(;%);47) , sinn((ks —m)/r) ( ) :

(3.22)

15

This time, an integral representation for the r.h.s. of (3.22) can be obtained with the help
of (3.9). Using also the summation formula (1.5a), one easily gets

Ey(aPy) y™ IU)"(21q)

—=y™ ('H)""/' 1/“’” e (—elv2) (55)19) o

= dzz
z 278 J - (2734 )oo (z .( +.)( +a)/ ;q‘)

el

(3.23)
From (3.21), with the redefinition ay" = t, the following generating relation is obtained

(r+a)""¢ O e (i),
T

2mi J_o (279" )oo (z-.(i)(w‘)/rﬂf)

oo

(3.24)

P© qu(l—l)/z l (l)rl

& @) fn=n
Finally, we shall assume af # 0 and compute the action of the operator U(*)(a, () as

given in the representation (3.12) on the basis vectors (3.13). The details of the calculation
are very similar to the ones already described and only the final formula will be given. One

(ziq) -

finds,

2\ e (el (5)i9) (B0 (55R) )
;b = di g™ 1 r+a r+a %
¥ (r + .1) 2m J_ o e (19 )eo (t .(r+.)(r+‘)/r d )m

Eg(aPy) Ep(BP-) y™ 1V)(2;q)

(3.25)
Inserting this and the result (2.7) for the matrix elements Uﬁ)(a,ﬂ) in (3.14), withw =1,
one obtains

() o [ e O e 055 i),

r+s i (171470 (‘_ (r:.)(rwi/f q )m |

2m
- a 2 k/(’;+') (2)r, 1/(r+s) (l)ra
= Z (E q-(r—A)/ ) y l ((T+J)(a‘ﬂrq_") ;q) 3 (3: q)

k=-00
(3.26)
This summation formula can be further simplified by letting first § = ¢"a and then w =

Y/q, (r + 3)a = z:

) (:5) ).

2\ pn (=) )i (- (5
o dee=m! ES
(r+a) 26 £ (t";q")m(t"‘(f (r+-)/r _)
= 3 Wt e B e0)
e (3.27)
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