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A bstract 

An algebraic setting fo r a natural generalization of q-Bessel {unctions is 
provided. Many properties and formulas involving these {unctions are 
obtained and discussed. 

1. INTRODUC TI O N 

\1 

Most special {unct ions of mathematical physics naturally arise in LIe algebra theo­
ry. Many of them have q-analogs and their interpretation in terms of Lie theory is now 
systematically investigated. In strict analogy with the standard approach,l these basic 
or q-special function s2 arise as matrix elements of certain algebra generators in specific 
representations of lower-djmensional universal enveloping Lie algebras, and also as basis 
vectors of the representation spaces. J - J I 

Basic analogs of the Bessel functIOns have been identified in realizations oC the two~ 

dimensional Euclidean algebra £(2) 10 the space of complex functions. G,lI In this way, 
various generating relations and addition formulas for these q-special functions have been 
derived. Here we shall consider an extension gr, . of the algebra £(2),1 and similarly study 
realizations of it on functions of one and two complex variables. Natural generalizations 
of q-Bessel functions will be identified and various properties for these functions will be 
obtained within this Lie algebraic setting. 

For convenience, we begin by listing some results and formulas of q-analysis.2 For a 
and Q arbit rary complex numbers, we denote by (ai q) .. the q-shifted factorial: 

(aiq) <x> 
(1.l)(ai q)" = (a'l e> j q)00 

where 

(a; q}oo -= Il (1 - aqk ) , Iql < 1 . (1.2) 
k=u 

Note that for Q a positive integer n, 

(aj q)" == (1 - a)(1 - a'll ." (1 - aq" -l) , (1.3) 

T hese products satisfy various identities and we shall recall them whenever they will be 
required. Note also that (q;q) .. / ( l - q)" -< n! as q ...... 1-, Of fundamental importance is 
Heine's q-binomial t heorem which slales that 

f (aj q)" z" = (az i q)oc , Izl < l, lq l<l . (1A) 
"=li ('I; q),. (z; q)oo 

Two q-exponential functions can be obtained from this formula: 



Note that eq(z) Ey( - z) = 1 and that 

lim 	 eq (z(1 - q» ) = lim Eq(z(l - q») = e Z 
• (1.6) 

q-I - q ~ l -

Let T~ be the q-dilatation operator acting as follows on functions of the complex 
variable z 

T, I(z) = I(qz) . 	 (1.7) 

Observe that, for n integer, (Tz)" J(z) == T;' I(z) = I(q"z)j for Cl an arbitrary complex 
number, we define: T:' I(z) = l(qQ z ). The q-di.fference operators D; is given by 

D~ = z- l(1 - Tz) , 	 (1.8) 

and 	(l ~ q) D~ -+ dldz as q -+ l. 
The basic hypergeometric series ,.t/J. is defined by 

..¢.(4} ,02, •. . ,0,.; bl , . _ . ,b.; q; z) 

_ ~ (al;q)n(a2iq)n ... (a,.;q)n [( "(" - ll] I+.-r (1.9) 
- L-	 - 1)"q-'--- z" 

n := (j 	 (q;q) .. (b 1 jq)n . . . (b.jq)n ' 

with q -:f 0 when r > 3 + 1. Since (q - '" j q)n = 0, for n = m + 1, m'+ 2, ..., the series r¢. 
terminates if one of the numerator parameters {ail is of the form q- m wit h m = 0,1 , 2 . .. , 
and q -:f O. UnJess explicitly stated, in the foUowing we shall a.lways assume 0 < q < 1. 

At least three different q-ana.logs of the Bessel functions of the first kind J ,,(z) have 
been studied in the literature. The first two has been introduced by Jackson, and further 
studied by Hahn (see [1 2,13] and references therein) 

1 z ) " ( ,,+1 z2 ) J~I)(z; q) = (q; q)" ( 2" 2¢1 0,0; q ; q, - 4" ' (1.10a) 

J (2)( I (Z)" ( 11 + 1 z2" z;q) = -- _ A.. q,,+I . __q_ ) (1. lOb)(q;q)" 2 O¥'l ,q, 4 . 

They are usually referred to the Jackson q-Bessel functions . The function J~2)(Z; q) is an 

entire analytic (unction of z and it is connected to J~1 
) (Zj q) through the formula: 

J~2)(Z ; q) = ( - z2/4;q)00 J~ I )(Z;q). 	 (1.11) 

The ihird generalization of J,,( z) was first introduced by Hahn, and then later studied by 
Exton (see [14,15] and references therein) , 

J.,(z;q) = .1 ) 	 (1.12)-( Z" I¢l (0,q"+I;q, qZ2) . 
q, q " 
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It is an entire analytic function of z. One can check that in the limit q -+ 1- all three 
functions (1.10), (1.12) reduce to the ordinary Bessel function J,,(z): 

lim 	 J! I:) (l - q)z;q) = J,,(z) , k = 1,2 , 
q~ l -

(1.13)
lfm 	 J" (( 1 - q)z/2; q) = J.,(z) . 

q - I -

The basic Bessel functions satisfy lhe following recursion relation: 

(1 -	 q") (k) . _ 1 (J(k ) ( . ) ., J(k)( • »)-z- J" (z,q) - 2 ,,- I z,q + q .. + 1 z,q , k = 1,2 , (1.14a) 

(1 - q" + z2)J,,(ZjQ) = z(J"' _I(z;q) + J.-+1(: ;q») . (1.14b) 

Moreover, acting with the difference operator (1.8) on J~J) (Zi q) one can check tha.t 

( D+ Z) J(1)( . ) _ 1 (J (J) ( . ) J(I) ( . »)
Z -	 4 II Z , q - "2 ,, -I z, q - ,, + 1 Z , q . (1.15) 

From this, using (1.11), one can get an ana.logous formula for J~2)(Ziq): 

[D~ - ~ - ~(1 + q(1+ ~))Tz l J~2 ) (z;q) = ~ (J~~l(Z ; q) - J~~l(Zjq») (1.16) 

Modified q-Bessel functions can also be defined,t3 

l~k)(Z ; q) = e- irrv j 2 J~k ) (e irr /2 Zj q) k = 1,2 , (1.17a) 

],,(z;q) = e - ;1fvj2 J,,(e l1r 
/ 
2 z;q } _ (1.17b) 

These definition are analogues Lo the case q = 1. All the properties given above for 

J~k)(z;q). Ie = 1,2 , and J,,(z ;q) can be relrased in terms of the functions (1.17). For 
instance, the recursion relations (1.14) become. 

") (~) I(k)( . ) - ] (Jr: ) ( . . ) "T'Ao) ( • )( l - q z " z,q - II _ I 1., q - q ",+1 z,q It -=: 1,2, (LISa) 

(1 - q" .- z2) lv(zjq) = Z(IV- l (Zjq} - 11I+I( z;q» , (1.1Sb) 

whjle (1.15) gives : 

(D: + ~) 1~1)(z;q) = ~ (I~~l(zjq) + I~~l(ziq») (1.19) 

Further properties of the q-Bessel funclions are discussed in Re£s. [9-19). 
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2. GENERALIZED q-BESSEL FUNCTIONS AND THE ALGEBRA Yr,. 

Given two positive integers (1', a), the three-dimensional algebra gr,. is defined by the 
following commutation relations of its three generators:! 

[J, P+J = 1'P+ , [J, P- l = -.,p- , [P+,P_I = O. (2.1) 

Clearly, gl ,1 is isomorphic to the t we-dimensional Euclidean algebra £(2). We shall further 
assume that the two numbers r and " satisfy the following three requirements: 1) ,. and ~ 
are relatively prime; 2) ,. is odd; 3) if !j is odd , then T > ". unless r = " = 1. Then, two 
Lie a.Igebras (ir .• and (ir' ,. ' , with 6ubscripts satisfying these properties, are isomorphic if 
and only if r = T/ and" = ,,/ , 

Each irreducible representation Qr,.(W, mu) of gr,. is characterized by two complex 
numbers wand mu, with w i- 0 and 0 :-:; Jle mu < 1.1 In this representation the spectrum 
of J is the set S = {mil + n: n E Z}, and the representation space has basis vectors 1m. 
m E S , such that 

P+ 1m = W/tn +r , (2 .2a) 

P- I", = wl ... _. I (2. 2b) 

JIm = ml", , (2.2c) 

(P+), (p- r 1m = ",r+. 1m (2.2d)I 

where Cr 
,. == (P +r (P-r is the Casimir operator. 

An explicit realization of the representation Qr,.(w,mo) can be easily constructed by 
taking l 

d 
J = mu + z;[; ) P+ = w z r 

, P_= wz - ' (2.3) 

These operators act on the space of all linear combinations of the functions zn, z E C, 
nEZ, with basis vectors I".(z) = z", where m = mil + n, n an integer. 

The connection of the realization (2 .3) with q-special functions is obtained by consid ­
ering various combinations of q-exponentia.ls of the algebra generators P-+ and P_ in the 
universal enveloping algebra of gr,•. We shall first examine the operator 

U(I )(a,{3 ) = eq . (aP+) eq. (/3P_} (2.4)I 

which in the realization (2.3) becomes 

U(!)(a,/3) = eqr(awz r 
) eq.({3w z-·) (2.5) 

Its matrix elements Uk:/(a,fj), defined through 

U(I) (a,f3) ,",,, +,, = L
00 

Uk~)(Q,{3) ImoH , (2.6) 
k=-oo 

5 

can be explicitly computed. By using the definition (1.5(1) of the q-eJtponent ial fuuction, 
one has 

00 ".+1 
U(l )(a,,B ) z" = '""' w a/{3m z,,+lr -ro16 . (2.7)

L.. (q" ;qr )/ (q.; qM).,. . 
rnJ= tI 

It is convenient to introduce two new sum mation indices Ie and j through the relations: 
It = n + Ir - m", 1= 11-. -" + aj and m = v. -n + rj. For a given integer n, the nonnegative 
integers /J-n and v" are uniquely determined by the following two properties:! n = /J-nT-Vn"j 

iC n :::; f'~ T - v:,'', where f'~ , v;, are nonnegative integers, then 11-:. + v~ ~ #An + Vn • Since 
l' and " are relativly prime, the integers I1-n and Vn exist Cor alJ n . For instance, in the 
particular case T = " = '1, one has jj ll = n, II" = 0 for n ~ 0, and p... = 0, v" = n for n < O. 
Also notice that jjn+", = jj " + jj", mod s, 11"+,,, = Vn +Vm mod T . 

One can then rewrite (2.7) as 

U(l )(a,{3) z" = L zlc w"·-n+">-" aI'O -" {3"'-" 

k=- oc 


(2.8) 
x t 1 . (w(r+' )a",Br) i 

j=u (qr; q" )"o_ .. + o; (q";q' )",, _"+rJ 

and extract from this expression the matrix elements Uk!/( a,{3). In terms oCthe definition 

""+"" O<J 1 ()I:(r+ 'l 
1(1) r, , (z ' q) = _ l_ L _ l _ (2.9)( )

n I 1' , .9 k=lI (qr; q't,.+,A,(q' ;q')".+ rk r +" , 

one explicitly has 

U(I)( {3 ) = (~) ~ 1(1 ) ' ,. ( ( + )( oa r)l / (r+. ), )
,=" Q, {3 k-" W r s a I-' ,q (2.10) 

For l' = S = 1 the functioll in (2 .9) cuincides with I!/ l(z;q), so that. 1~.J)r. 6(z;q) can 
be considered a group theoretical generalization of the first modified q-Bessel function in 
(18.a ), with integer index II, From the definition (2 .9) one can also check that 

q~~_ l!/ ) r,. ((1- qT / (/+') {l - q·r/ ("+·) z;q) = (; )+- I::" (z) (2.11) 

where l;,"(z) is the ordlDary generalized [lessel function introduced in ReLll ). It is def1neu 
by the series expansion 

l;""(z) = ( --z )""+"" L.=.. 
I 
I 

,
( 
--

z )k('+') 
, (2.12) 

T + S k=() ( jj " + :Jk ). (VII +1'k ). T + .9 

and arises in the representation theory of the group associated with gr , •. 
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The q-Bessel function I~l) r,,( z; q) satisfies the following recursion relation 

(1 - q") (r : ") [,(,l) r"(Xi q) :::: I~/~ ,r'·(X j q) - q" I~~;" (z ; q) , (2 .13) 

as can be proven again using (2.9) . For r :::: " = I, one recover:. (1.1 8a), while as q -+ l ­
one gets the recursion relation satisfied by the ordinary function [~" (z): 

r + s) 11',"( ) _ I r ,1 (z) _ " I r ,. (z) .n ( - - " z - r n - r n+. 	 (2.14) 
z 

Using the explicit representation (2 .12), one can also check that: 

(" ~ + ~) I;"'(x) :::: I~'~r(z) , (2. 15a) 

r -d _ .-n) [T,,(X } :::: I'." (z) (2. 15b)( az x n n+ . ' 

£rom which (2.14) can be deduced. Similar relations hold also for I~I)r'·(xiq): 

( r + ~) (1 Tf; Tff.) 1(1) r··(z· q) :::: [(I)r··(z· q) (2.16a)-- - q z ,. 1 f l - r " 
x 

( --r +") (1 _ ..!!.L T-";')I /(I)" '"(z'q)1 :::: 	 "'+ (2.1 6b)- q 	 I (J)r'"(_ z'q ) . r +. 11. t 
Z 

The recursion relation (2.13) clearly is a consequence of these . After a suitable rescaling of 
z (see (2.11)), one can check that (2.16) reduce to (2.15) as q -+ 1- . Applying in succession 

(r + s )-times the operators in (2.16) one sees that the function I~ ) r"(Zi q) is a solution of 
the following q-difference equation: 

( r + ~)( rl " t ') ;;.)(r+,,)( 	 , ("+1,.1 .".:.) (r+,,)( -,To)r(nt r~J- l- q---;-:r.-T, - l - q~Tz ... - l - q~T% 
X Z 	 X 

(r+")' ( ~ -!f;) (r +") (. -.(o t .. -h). --.!:f. )x - I - q , f. Tl - 1 - q ' f' Tz ... 
z z 

X C+.'l) ( l - q*'T;T.) I~l)r" (xjq) = lil)r"(Ziq). 
Z 	 (2 .17) 

Further, notice that J~I) r,·(z ; q} also satisfies the following four· terms relation: 

(r : ,,) (1 _qfl;T, T/+: ) J~/) " "(z ; q) + (r :,,) I~l~ ;:;.(x; q) 
(2.18) 

:::: I~ l~ ,~ , ·(z ; q) + I~~ :· ·(z; q) ; 

tills is 	the genralization of (1.19 ), Lo which it redu ces for T :::: S = 1. 
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A generating formula for I~l ) r •• ( X; q) can be easily derived . lnserting the result (2.10) 

for the matrix elements ul:,\o,.B ) in (2.6 ) and letting Q :::: {3 = 1, n = 0, and y :::: w{r + ~) 
one gets 

eqr (_Y_zr) y• (_y_z--) :::: "" zk 1(1 ) r,,( . ) (2.19)e 
T + S T + S ~ Ie y, q . 

.,=- 00 

Let us now replace z by eill in the previous formula . Recalling (1.5a), one can write 

00 

(2.20)~ irll r) ( . ) "" e I (l ) ""( )( r+. e iq Q(J ~e-i·(liq' 00 .,f::oo 
ilt9 

Ie Yiq· 

Multplying both sides of thjs relation by e - ; fI(J / 27r and integrating in d8 from 0 to 27r, one 
obtains the following integral representation (Iy I < T + .8) 

2 
- 'ra8 dO1 1,,- e 	 . (2.21 )

I(l) "'"(y; q) :::: - -(.- i,.9. ,. ) (~e-i.8iq') 
n 211' II ~e, q 00 r+. 00 

A generalization of the second modified q-Bessel function [~2 ) r" (Xj q), similar to that 

of Eq.(2.9) fo r I~I) ( z;q), can also be considered 

X )"" +v" 00 q!r(" ,, +d )'+a(v" +rle)' )/ 2 ( 	 z )k(r+.) 
1(2) r,,(x' q) :::: _ " _ . (2.22) 

.. , ( r + ~ 21 (q'·;qr)jl,,+.,dq'jql)vn+ rle T + .s 

It arises in the study of the matrix elements of the following operator in the universal 
enveloping algebra of gr,.) 

U(2) (0,P) = E",(a:P+) Eq. (P P_) 	 (2.23) 

Using (1.5b) and the explict realization (2.3) , steps similar to the ones involved in deriving 
(2.8) give 

U(2)(a:,!3)x" L z., q1rl'k _,, ("' _. ll+ .v.-,, (... -,,-I ))/ 2 w"· _"+"· - "a:I'O-.!3"o - n 

k~ - "". 
(2.24) 

q'·" "'111 ("+ .)/2 + P. -. +"t-") 
"" . ( r+. 	 ItJr -r.)'" X ~ W Q~ q . 
'11= \1 (q';q rL •• _"+ .,,, (q· ;q·).... _.+rm 

The matrix elements of U(2 )(0,/3) are s~ill defined as in (2.6); thus , from (2.24) one finds 

0 ) ~ ~ ~ ( ( 	 ) I/ ( r + .) )U~~)(Q,{3) :::: 
( 

7i q- ("- .) ( 2 Il~,~ " w(r +") o'{3r q- 1'O ; q (2.25) 
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The function Il2) r,o(z; q) is an entire analytic runction of z. When T .= 5 = 1, it 

reduces to the second q- BesseJ function in (1.17a); I~2)1 . I(Ziq) = qnJ/2 I~2)(z;q). while in 
the limit q -+ 1- one gets back the ordinary generalized Bessel function (2.12): 

lim 1~2)r. ' (1 - qr)"/("+.)(l _ q·r"r+.) Ziq) :;: (!.);i:; r ··(z) . (2.26)
q_l - r n 

Using the definition (2.21), one can chek the following recurliion relation 

(q - n/2 _q" /2) (r ~ 5) I!,"l) r"(Z j q) =: q(,,-r) /2 I~~;' ·(z; q)_q- (n+.)/2 I~~;"(z;q) , (2.27) 

which in the limit q ...... 1- gives back (2.14), and for 1" =!J = 1 reduces to (l.lSa). 

By inserting the explicit form (2.25) of the matrix elements U~!)(Q,.B) in (2.6), one gets 

a generating formuJa for 1~2 ) r,,(z; q). Setting Q = qr/2, f3 = q,/2, n = 0 and Y = w(r + .,), 
one obtains 

Eq • (-Y- (Zv'qr) Eq• (-Y- (z / J9) -') = L Zk 1l2)r"(Yjq) . (2.28) 
r+.9 r+.9 

k=-oo 

As shown before in the case of Iil)r" ( Zjq), from this formula an integral representation 

fo r I~2 ) ""(z ; q) can be derived : 

2rr
1~2 ) r"(Ziq) = 2.1 Z_ q,./2 e ir9 jq ,.) ( __Z_q-./2 e- i09;q') dB. (2.29)e- iu9 ( __ 

2", Ii r + IJ "'" r + .9 00 

A biorthogonal relation involving the two functions Iii) r,' (z j q) and [i2) r.' (Zi q) can 

be obtained by combining together the two generating relations (2 .19) and (2.28) . First let 
Z -4 q(,- r)/2( r+.) Z and y -+ -q-"'/("+. ) yin (2.28) and then multiply jt by {2.19}. Using 
eq(z) Eq ( - :I:) = l one gets 

2.: zHlq- H : ..:) Iii) r" (Yi q) 1}2) r,' (_y q-r./(,.+.): q) ; (2.30) 
.1: ,1= -0<; 

1/, ()I/r
this double sum is absolutely convergent for ( ~ ) < Izi < ~ . Equating the 

coefficients of equal powers of t on both sides of (2.30), one finally finds, 
for Iyl < (r + 3)"'/lr+.), 

'"' -~ ( r,,+ .. - 2k)(7r.)/(l) r . ( . }[(2)r. , (_ - r./(r+.).) - 6 
~ q It - 'a y, q ,. - k Y q ,q - ru. n . (2.31) 

10=-00 
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Natural generalizations of the Hahn-Exton modified q-Bessel function (l.17b) are ob· 
tained by considering operators that in volve bot h the q-exponential functions of (1.5). 
Consider first the following operator 

U(3)(0.,{3 ) = eq,(o.P+) Eq.(/1P-) (2.32) 

Its matrix elements in the representation (2.3), still defined as in (2.6)' can be written 8.6 

(3 ) ( 3 ) ' ( ( )1/(,.+.) (0.) ::;.: )Ulen (0.,,8) = q' /3 1,,_.:" w(r + S) o.',8r q- N i q , (2.33) 

where 
= q'(""+ " ")(~"+r.l: + 1) /2 Z"(r+.)(3 ) 

) I' .. +v" '"' (,,) .. (2.34)In r'" ( z;q = Z ~ (qr ;q r lt". +." q iq vn +r" 
J.:: U 

The function I~3) r,, (z ; q) is an en tire analytic function of z. It reduces to the Hahn-Exton 
q-Bessel function (l.17b ) in the particular case r = s = 1j also, one checks that 

limq_ l- li3l r
" ( 1 - q,. ), /(r+·)(l - q'),"/(r+ . ) Zjq) = (~).to l~' ·« ( r + .9)z) . It obeys the 

following four- terms rec ursion relation: 

" ) /(3 ) r,~ ( .) 2 I ll ) '". ' ( . ) _ (1(3) r,,( .} I(~) r,o( . »)(1 - q n z,q - Z n+.- ,· z, q - Z ro-r z,q - n+. z,q 1 (2.35) 

which coincides with (1.18b) for r = IJ = I, and red uces to (2.14) as q -+ 1- . 
The generating formula lhat fo llow from (2.6) takes now the form, for 0 < Iz i < Iyll/r I 

eq.( yzr) E", (y (z /qt') == L ZC IiJ
) r,,(y; q) ) (2.36 ) 

.1: = -00 

[rom which the following integral repersentation can be deduced (izi < 1) 

1rr U IJ1 1 . (zq·e- . q' )
1(3) ,.. " ( . ) == - -17.1i - 'DC dO (2.37).. z, q e ( " ) .27!' z e.r~ i qr 00II 

The matrix elements or the operator 

U(~)(Q,(3) = Eq.(o:P+} ey.(/1P_} (2 .36 ) I 

in the representation (2.3), can be expressed in terms of the following different generaliza­
tion of the q·Bessel fun ction (1 l7b) 

,"- ' ( "" td J( ,l n+.t+l l/2 k(r +,)
1',,"" "11 q_ _ • Z1( -l ) r'"(Z'q} = Z L (q" ' ql') +.k(q'jq lv..+rJr (2 .39) 

,,1 I JJ" 
1r = 1I 
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Explicitly, one gets 

.. -,. 

Vh 
(4) ( -r a) ;:-:r; ( oi )r,. ( ( a r _ re)I /(r+. l )(a,l3) = q fj IIt _n w{r +,,) a 13 q ;q (Z.40) 

T he function I~I"l r,a(z; q) is an entire analytic function oC z, which Cor r = /I 1 reduces 
to qn/2.I~.a{qn/2 z; q). It obeys the recursion relation: 

(1 - q- n)I~.. )r"(2;q) - z2I~,~;~r(z;q) = z (l~"-!;"(z;q) - I~~;" (z;q») (2.41 ) 

A generating formula is again easily obtained from (2.6), for Iyll/' < Izl, 

Eq,(y(qzY) eq• (yz - ·) = L
00 

zit I~4 ) r " (y;q) , (2.42) 
lr = -oo 

from which the following integral repersentation follows (1%/ < 1) 

2
in8 

1 1,. ( _ zq r eir8. qr )
I~li)r" (z;q) = _ e - .' 00 dB . (2.43) 

211" U (ze- 1dj q')oo 

To get a biorthogona.lity relation involving Iil)r"(z;q) and Iii)r" (z;q), replace y by 
- y and z by z/q in (2.42), and then multiply it by (2.36) . Using the properties of the 
q-exponential functions, one gets 

1- ~ k+l -1[(3)r,,(. )I(-t )r,,(_.) .- L.. z q lr y, q I y, q , (2.44) 
. =-00 

this double sum is absolutly convergent for qiyll/, < Izl < Iyr l/r. Equating the coefficients 
oC equal powers of z on both sides of (2.44), one finds, for iyl < q- .r/(r+.), 

oc., 

~ .. - (II+ml/2 Ill) ""( . ) 1(4) r,,( _ . )_L.. q q ",-It y,q lr-n y,q- 6,.,n! . (2.45) 
. =-00 

3. REALIZATIONS OF Qr,. IN TWO VARIABLES 

In the previous section we have seen that generalizations of q-Bessel functions arise in 
the study of realizations of gr, . on the space of functions of one complex variable. These 

q-special functions 1,(,") r" (Zi q), k = 1,2,3,4, were defined through a series expansion 
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only (or integer values of the index n. Following a standard procedure in the theory 
of complex functions 2U we shall use analytic continuation to define t hem also for n an 

arbitrary complex number. We shall carry out the detayls only in the case of I~1) r., (Z; q), 
but similar procedures can be adopted also {or the remaining three generali2ed q-Bes6cl 
(unctions. 

We st art by applying t he Cauchy residue theorem to the generating formula (2.19). 

For n integer, and (~) 1/. < Ix l < (W) 
-Tl-) 

1 ( 1) r.o(z· q) = 1 1 ( z r. r)x (~ x., q') dz , (3,1 )---: 
n , 211'1 C r+ • x ,q ex; r+ a ' (Xl 

where C is a simple closed contour encircling the origin in the x complex plane_ Without 
changing the integral, the contour C can be deformed into a loop which consists of the 
lower edge of the cut along the negative real z-axis from --00 to -f, a. circle of radius f 

and the upper edge of the cu\ from - - f to -00 . We shall use the standard notation J~O:: ) 
Lo· indicate the integral along this path . Since T is odd, the integrand in (3.1) is bounded 
along the path for 'R.e z > OJ moreover, it is single-valued even for n complex. We can thus 
use 

1 j(U+l z- n-l dz 
1 ( 1) r,,(z· q) = ---: ( z r_ r) ( .....!..... ;z: •. qo) , (3.2) 

" , 211'1 -00 r+ .x , q ac r + M ' 00 

to define IiI) r,, (z; q) for arbitrary n a nd 'R.e z > O. To obtain a series expansion, introduce 
. . . bie t ( Z ) 1/ ,a new mtegratlOn varia = -;;:-;; x: 

"/ 1" 1 (11+) t- n - 1 
I(I}r" (Z'q) = ~ _( z_ (3.3) 

n , 211"1 r + s ) _ 00 (tr j qr) ((~ ) ( r+ ' l / r _ dt ­00 r+. t ' j q') (Xl 

This expression, which is not singl\!-valued , can be used to define Iii) r,,(z; q) as an analytic 

function for all z "10. In particular, z- "Ir I~/)r ' ''(z ;q) is an entire Cunction of z(r+, )/r. 

Recalling th e definition (1.5a), one can now expand in series the second q-exponential 
appearing in the integra.nd of (3.3), and integrate term by term: 

,,/, ".. ),1-(,.+. )/,
I(I)r' ~(z'q) = (-'- ) L (_Z_ ~ 

n , r + J ,1-0:11 T + j q ,q It 

(3.4) 

j 
(u+) r n-d-l 

- -- dt _ 
x 2ri (trj q")oo-(Xl 

To proceed further, we use the following Ramanujan 's Cormula21 

(ql-:;q) o<o (ajY )",­ si nrr"if Z [OQ dtt' -l ( -at;q}[D (3.5)
(qj q)'X (wr I i 'I )..... JIi ( -- Ii qlex; 
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http:integra.nd


With the change of variable t __ t" and of base q _ qr, and the redefinition % ---+ z/r, one 
gets, for r an odd positive integer. 

(qr- ~; qr)oo (aiq")"", sin 1r(%/r) 00 
dt e-I ( - at

r
; q')"" - - r 	 (3 .6) 

(qrjqr)oo(aq-'jqr )ou - 1r ( - Vi qr)oo1
Consider now the following contour integral 

1 (atr . qr) /(U+)
I = 	 - dt t' -I I oc (3.7)

271'i (trj qr)oo-00 

It can be evaluated in the following manner: 

r
I == ~ t ( -dt)(te - ;")~ - I (-at ;qr)oo + ~ roo (-dt)(te;"'y-I (- atrj qr)ex> 


211'\ Joe (_t r; qr)oc 211"1 Jo (_tr; qr)oo 


(3.8) 
00 (tr. r)SID1r%. 1 d z - I - a ,q 00 = --- H . 

1r 0 (-trjqr)oo 

Comparing (3.6) with (3.8), one obtains 

1 1(0+> 1 (at'" ·qr) sin1l"Z (qr - :jqr)oo(aiqr)OCl _ dtt z - > ex> (3.9)
21ri -oc (tri qr )oo rsin1f(%/r ) (qrjqr)oc(aq-ziqr)oo I 

which for a = 0 simplifies to 

1 /( u+ ) t, -1 sin lTZ (qr- Z i qr)oc 
- dt --- = (3.10)
21fi (Vi qr)oo r sin 11'( z/r) (qrj qr)oo-00 

By analytic continuation , these formulas hold for any complex z. With the help of (3.10), 
for noninteger n , one can rewrite (3.4) as 

1 ( ) n/r It 	 _~)A:(r-l-.)/r00 	 .l~l ) T"(Zj q) = _ _ z_ , _(q" +' +T j qr)oc sin 1r(n + sk) 
r r+-, L 	 (r+.s 

1=0 
(3.11) 

Using this definilion, one can now cbeck that the relations (2.16) and the difference ~quation 
(2.17) remain valid for noninteger n. 

In the previous sect ion we nave studied realizations of the representation Qr,.(W I mo) of 
gr;. on the space of functions of one complex variable . We shall now discuss realizations of 
this representa.tion on spaces of functions of two complex variables, :z: and y. In particular, 
we shall look for a realization of P± and J in terms of generalized q-difJerence operalors 
acting on tbe space generated by basis vectors of the form Im(z,y) = ym Fm(:r}, m = 

mo + n, n E Z , such that (2.2) are satisfied. The constant W is nonessential, since it CaD 

be changed by rescaling the generators P+ and P_ j for simplicity, we shall henceforth set 
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w = 1. With the help of the relations (2.16), it is easy to check that such a realiza.tion in 
provided by the operators 

P+ =y" (r: ,g) (l- T~-.h T;r. ) , (3.1211) 

(r+ s) ( ._.2_ .LL )P_ = y -" -z- 1 - T~ ' t'T;+ ' , (3.12b) 

{) 
(3.12c)J =yliY ' 

and the basis functions 
I ... (:z:, y) = y'" l~l~r,. (:z:; q) , 	 (3.13) 

with m = mo + n, n E Z . Note that the equation (2.2d) in this rea.lizaiion becomes the 
difference equation (2 .17). Different two-variable realizations of Yr ,. can be obtained by 
taking other generalized q-Bessel functions as basis vectors . Here, however, we shall con­

centrate on the realization (3.12) and derive from it addition formulas involving Ii!) r'.(:r:; q) 
and 1!,;) r'·(Zj q). 

The basic ingredient is again Eq.(2.6), that we shall specialize for the operator (2.23); 
with m = mo + n, one obtains 

00 

U(2)(a,{:J) I".(:r: ,y) = .L U~2'~ _ III.,(a> .B) I moH(;I:,y) , (3.14) 
"= - oc 

where the model independent. matrix elements Uk~,)(a,{:J) are stili given by the formulas 
(2.25), with w = 1. To get addit ion formulas for q- Bessel functions , one now needs to 
evaluate explicitly the l.h.s . of (3. 10), i.e. to compute direct ly the action of U(2)(a,,8) 
on tbe basis functions (3.13 ), when P+ and P_ are realized as in (3.12). We shall not be 
able to give a dosed Corm for this action; however, suitable integral representations will be 
provided. 

We shall start by compu ting the action of Ey' (f3P_) on 1... (2:,1/), With the help of 
the definjtion (1.5b) of the q-exponential and of (2.2b), one easily gets 

00 l.ll 

E (ap) ttl I ( I ) r •• ( . ) == '" .1( I-l ) /2_jJ_ _ m - I. /(l)r,. ( . )


l' jJ - Y - m x , q L q ( •.• ) y - ... t l • z,q (3 .1511) 
/= 1/ q ,q I 

1 ( J: ) -Ill / ,. :x: q~ I(I - 11/2 (q,( A: +I) -",+.,. qr) 
_ "'"" (JI ,,, - I. 	 1 - - -- 1 . I.IY 	 (3.15b)

'( r T -' I~II (q.; q», (ql; q')" (qT ;qr)oo 

sin If((k + I).s - m) 1-+.\A:+ I) / r (x) 
x sin 71'[(k + 1)8 - m)/r] r + .• ' 

where in the last formula we have written for I~\~,'·' ·(x; q) its series expansion (3.11 ), 
~suming mu f O. It 1S now convenient to Introduce a new summation inde~ n) replacing 
Ie trough the relation I + Ie = n . After using 

I(a; "J" (_ - ~q) In qi ,,,(m-I )-onn , (31 6)(a;q)"_,,, = (ql-" / ll;q),,, 

H 



the sum over I in (3.156) can be explicitly computed thanks to the q-binomial theorem 
(1.4). One finds, 

E.(fJP_) ym l~l)r"(z:;q) = y'" (_z_ )-m/r
9 m r r + 3 

(- ,8y - " (~) i q')" (q-" - ,,,+r; q")oo sin 1r(n8 - m) _:z:_)O1(r+.)/r . 

x?; (q-jq'}01(qrjqr)oc sin7f«n8 - m)/r) (r + 8 

(3.17) 
One can give an integra.! representation of the r.b.s. of this formula by using again the 
result (3.10): 

Eq.(fJP- ) y'" I~'~""(OJ:jq) 

=ym (_z_)-m/r au - - (7) j~) .. ~ j (O+) dz zm .n-I (_z_ )n<r+")/r ( - ,8y ­

-00r + " ~ (q'j q')" 21ri (zrj qr)oo r + ! 
(3.18) 

By exchanging integral and sum, and using once more the q.binomial thorem, one obtains: 

E'l' (f3P_) ym 1~1~" " (2:; q) 

-mlr 1 /<0+) (-,8(yz) - ·(r~.)·/r;q·)oc (3.19)
Z d rn - l _~...:..=.....:-...:..:....:...=..:...,:--;-:\~~(- ) zz ~ .) 

00 
= ym -. « ) (r+.)lr 

r+!I 21rt - 00 (z";qr)oo z - ' r+. jq 

Rec.alling (3.15a) and introducing the new variable t = {3 /y', one fi nally gets 

-. ( :z: ). / r )t_Z. ) m/,. ~ j(lI+ )dz %- m - l ( - Z ;:+; jq' 00 

( r + 3 21r'_()Q (ZT; qr)oo {.z-. ( .....!.... )(r+ . )/r. q.) 

r+ . • 00 


(3.20) 

q./(1-1)/2 I (I) r,' 
= L 

oo 

-(--)- t Im+., (Zj q) . 
1= 0 q.j q. I 

Analogous results are obtained by considering 

00 I aE . (aP ) ym l{lj""(z 'q) := " qrl(/_I)/2 _ _ _ ym+rI I(I}r,. (z·q). (321)
II + - III 'L... ( r. r) - rn - rl , . 

1= 0 q ,q 1 

By writing for l~I~~:'rl(z; q) ils series expansion (assuming mo ::f. 0) and using again the 
q-binomial theorem one obtains 

m ( ) - ml r 
E'lr(aP+) ym I~1.!.r,.(z; q) = ~_ r: s 

f: (-ayr(-;:f;) iqT)oo(q"k+r-7II;qr)oo sin1l'(ks - m) ( z )Ie(r+.)/r 

x Ic= O (q-; q-h (qr; qr)oo (-a:y' q_k-m (T~.); qr )oo sin 1I'(ks - m)/r) r + a 

(3.22) 
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This time, an integral representa.tion for the r.h.s. of (3.22) can be obtained with the help 
of (3.9). Using also the summation formula (1.5a), one easily gets 

E'Ir(aP+} ym I~I~r"(:Cj q) 

r + s)-m/" 1 j«(J+) ( - a (y z),,( 2- )·qr) = y '" __ _ dz zm -1 r+.' 00 

( x 2".i (zrjqr)oo (z - '(r~,t+' ) /rjq')oo-00 

(3.23) 
From (3.21), with the redefinition a y" = t, the following generating relation is obtained 

+ )m/r 1 /(0+) ( _ tzr( _L-)'qr)
~ _ dz Z- II. -l r+. • . 00( 

z 21ri - 00 (z";qr)oo (Z-'(r~;) ( r+. ) / r;q')oo 

(3.24) 

00 rl(I - I ) /2 
= " . 9_ _ _ ,I / (1) r''' (:t. ).L (r. r) m- r l 1 q

1= 0 q.q I 

Finally. we shall assume a{3 # 0 and compute the action of the operator U(2}(a.,8) as 

given in the representation (3.12) on the basis vectors (3.13). The details of the calculation 
are very similar to the ones already described and only the fi nal formula will be given. One 
finds, 

E, ,(aP+) EqoUJP- ) y'" l~lL""(;t; q) 

- ml .. 1 /(11+) ( - a(yt)r(.-!...). qr) ( - (J(yt)-.(---!.....)· /r. q')= ym _ 2: _ _ di t", -l r+. 00 r+.' 00 

( ) 
1 

T + !I 2'11'i - 00 (tr;qr)()Q (t - . ( r~ .)(r+ . ) / rjq.)oo 

(3.25) 

Inserting this and the resuJt (2.7) Cor the matrix elements Uk!)(a,,8) in (3.14), with w == 1, 
one obtains 

m/r 1 j (O+) (_a(yt)r( ---=-- ).qr) (- {3(yt) - . (--.!....)./r. q.) 
_ OJ: _ _ dtt - IIt - 1 ,.+, 1 00 r+,' 00 

( )
T + a 211'1 _()() (tr'q") (t - .( ---!..... )(r+. )/ ... q.) 

~ 1 "" r+, , 00 

00 ( ) Ic / ( I'+') 
_ " ~ - (r-.)/2 Ie / (2),..• (( + )( '(3r _r,)I /(r+.) . ) /(I)r,,( . )- L f3 q Y Ie T!I 0 q ,q ",_~ z, q . 

Ir::= - 00 

(3.26) 
This summation formula can be further simplified by letting first !3 = q'o and then w = 
y.j9. (r + 3)0 = z: 

mlr 1 / (0+) (-(z/z )(tw Iij) "'qr) ( _ ( . ~ )(~).( ....£__ )./r . q.) 
_~_ _ dtt - II.-1 V" I r+. 11.. r+. ' 0000 

( 
r +" ) 211'i - (t";q")oo (t-.(T~ . t·+ ·)/r ; q_)oc"XJ 

, k](2)r,_(. )I(1)r,.(.)
L... W It z. q m-A: 2:. q . 

1: = - 00 

(3.27) 

l6 


