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Abstract

Two interpretations of g-special functions based on quantum groups and
algebras have been presented in the literature. The connection between
these approaches is explained using as example the case where 2, (s((2))
is the basic structure.
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Quantum groups and algebras' % have been shown recently to provide an algebraic
setting for g-special functions. In fact, two approaches to this program have been presented.
In one case,’1* one proceeds in close analogy with Lie theory'® and considers the elements
of the quantum algebra U, (G) that are obtained upon replacing the exponential map
from the algebra @ into the group G by g-exponential mapping. Their matrix elements
in irreducible representations are found to be expressible in terms of g-hypergeometric
functions. (This interpretation has its origin in Refs.[16,17].)

In the other case,'®~?% one considers rather the Hopf algebra A(G,) associated to the
quantum group G,. This is a subalgebra of the dual of U (G), generated by the coordinates
of G4. In this approach, the matrix elements of corepresentations of G, are seen to involve
basic hypergeometric functions of these coordinates.

The purpose of this note is to discuss the relations between these two points of
view. This will be done by comparing the interpretations of the g-hypergeometric series
2¢1(a, b;¢; ¢, 2) based on the quantum algebra 2 (sl(2)) and the quantum group SLy(2).
After recalling standard definitions in g-analysis,?® we shall first describe the method of
Refs.[9,11], stressing how it straightforwardly leads to a connection between the 3¢, series
and U,(sl(2)). We ehall then show how one can from this approach recover the results of
Ref.[23].

The two g-exponential functions
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els) = X_: @ * -~ mos ML (1a)
qin(n 1) N )
v(‘) - ,;, (q, q) = (_‘vq)ac v' (lb)

will play a centrnl role in our analysis. Note that eo(z) Eq(—2z) =1, and that lim__,,-
e(2(1 - q) = ,_., E,(2(1 - q)) = ¢*. For a and a arbitrary complex numbers, the
g-shifted factorial is given by

" _ (“;Q)Q
(€ig)e = o) * @)
where -
(a59)0 = H(l -ag"), lgl<1. (3)
k=0

We shall denote by T, the g-dilatation operator which acts as

T. 9(2) = g(g2) , (4)

on functions of the variable z; out of it, the g-difference operators

D} =z7'(1-1T.), (5a)
D; =27"(1-1%) , (5b)
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are constructed. Observe that h—l—'ny — d/dz and ——ryD; — d/dz as ¢ — 1, and
that the g-exponentials obey

T eg(2) = (1 —q712) tey(2) , (6a)
T Ey(z) = (14+2) 1 Ey(2) , (68)
D} eg(Az) = Aeg(Az) , (6¢)
D7 Ey(Az) = =g ' AE,(Az) , (6d)

with A a complex parameter. We also record the definition of the basic hypergeometric
function 1¢3(a, b; ¢; g, 2):

(e bicig,s) = g%{}—f’—’f}— -~ )

in terms of which various matrix elements will be expressed. In the following we shall
assume [g| < 1.

The quantum universal enveloping algebra &, (sl(2)) is the Hopf algebra generated by
the elements k, k=2, ¢ and f satisfying the relations

- o - k- k2
kek™ = g%, kfk'=gq'3f, [g.n=ql_ﬂ—:q__17, (8)

and kk™! = k~'k = 1. The coproduct A : U (al(2)) — Uy(sl(2)) ® Uy(2l(2)), antipode
S : Uy(sl(2)) — Uy(1(2)) and counit € : Uy(sl(2)) — C are defined by:
AR)=k®k, Al)=c®k+k®c, A(f)=fok+Ekaf,
S(k) = e ’ S(e) = "qlﬂ €, 5(f) = _q—l/z I (9)
e(k)=1, ee)=0, «f)=0.
The algebra U, (sl(2)) has a Poincaré-Birkhoff-Witt basis given by
Ll i PEZ, pveN. (10)
We now introduce an infinite-dimensional left #,(s/(2))-module V(*mo) = ®D;er €&,

where I = {i| i = mg+n, n € Z}, and A, mg are complex numbers.?*! This representation
is characterized by the following action of the generators on the basis vectors ¢;, j € I':

h{i = Q—j/’ 6}' )
1 —g*ti
L= g1-2n /e 2 4 .
ef; q T=§ c)—l 1 (11)
—ayal-g*d
Ry

Given any a € U,(sl(2)), its matrix elements W;;(a) in this representation are defined by
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a; = Z & Wij(a) . (12)
i€Z+mo
It clearly follows that
Wisab)= Y Wi(a) Wi;(b) , (13)
kEZ+mo

and, for instance, one has

g2 e\ #HY ’ ,
Wii(e"k?f*) = ( - ) q-p(-+i)/2(qx—1—u+x;q)v (q'\+"+'_“+l;q)‘5i,j+.-,. i
(14)
In analogy with ordinary Lie theory,!” it is natural to define the following elements of
U, (sl(2)):
U(a,B,7) = eq(ae) E((B f) k7, (15)

where @, A and 7 are complex parameters. Indeed, set k = g~*/2 and ¢ = e™". In the limit
g — 17, 7 — 0%, the defining relations (8) become those of s(2): [h,e] = —e, [k, f] = f,
[, f] = —2h, and U ((1—g)a, (1—q)B,27/n) goes into the SL(2) group element e®*e” /e,
(Other combinations of little and big g-exponentials could also be used. See, for instance
Refs.[13,14].)

Remarkably, the matrix elements of U(a, 3,v) on V{*™0) turn out to be expressible in
terms of the function 2¢1(a, b;c; ¢, z). In fact, using (14) and identities involving g-shifted
factorials,?® it is straightforward to show that®!?

. (U(a,ﬂ,v)) =g~ (a qu_m/‘)j_i ("H‘“iq)j—.'

1-g¢ (9:9)i-i (16a)
%o ( A+itl gi=A. gi=itl 0 _og q(l_m/') fi<i
2?1\ 9 1 ) 4 (1-gq7 ’ 2
e (-22/4\ (A g),
Wij (U(a,ﬂn)) Sy ST (ﬁ 3 T-¢ ) 7o 4 -

o ia e (1-2))/2 25
x 261 (q,\+-+x'q.-l;qt-1+l;q,—aﬁ h,—) , 127,

with 4,7 € Z + m,. This establishes most simply the connection between the basic hy-
pergeometric series 3¢, and U (sl(2)) which can now be exploited to obtain properties of
these special functions (see Refs.[9,11]).

Notice that it is possible to give a one-variable model for the representation (11), where’
the generators are expressed as g-difference operators in the complex variable z acting on
the space of all linear combinations of the functions z”, n € Z. Indeed, by taking

k= q—mgll T'-lll .

1 1—ghtme 1
e= 9(1—“)/‘ (1__617:’ % s T;) ’

1-¢ =z (17)
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and §; = 2z, j = mg + n, n € Z, for the basis vectors, one can check that the relations
(11) are satisfied. This has been used in Ref.[9] to obtain from (12) and (16) generating
relations for the function 2¢(a, b; ¢; g, 2).

The matrix elements W;; (U(a,3,7)) themselves define models of the module V'(mo)
and directly provide a three-variable realization of U, (sl(2)). For each element a €
U, (s!(2)) define the operator #(a) acting on the variables a, A and 7 such that #(a) U(a, 8,7)
= U(a,3,7)a. Upon operating with §;, one obtains:

#a) Wi (U(a,8,m) = 3 Wi (Ule,8,7) Wasa) , (18)

kEZ+mo

that is, the functions W;; (U(a,,v)) transform like the vectors £;. From the properties
of the g-exponentials, it is easy to construct the operators # for k, e and f, and thus for
any a € Uy(al(2)) by composition. One finds

k)= £&, (19)
#e)= ¢ (Dt + L (63— Ty 196
'( ) q o + (1 _q)z ﬂ( - { B8 ¥ 4 ) L) ( )
#f)=-¢'""*Dj, (19¢)

where £, is the shift operator defined by £, g(v) = g(v + 1) on any function of 4. That
#(k) and #(f) are the required operators is readily verified. To derive #(e), one first acts
with D} on U(a,f,v) using (6c), and then shows that

/2
e —Bf) e Eg(Bf) = e - (—1"{? B —(1+B0) k) , (20)
with the help of the following formula!”
e ¢
eg((X) Y Eg(~(X) = 2:1, aas Y, (21)

where
[X,Y]h =Y, [X,Y]a41 =X [X,Y]n - q"[X,Y]n X, forn=1,2,....

Recalling (6b) and (19a), one arrives at (19).

It is a simple exercise to verify that #(k), #(e) and #(f) obey the same commutation
relations as &, ¢ and f. The observation that the matrix elements W;; (U(a,3,7)) are also
basis vectors for representatins of 2 (#(2)) can be used to obtain addition formulas for
the basic hypergeometric functions.

The realization # can also be used to obtain the g-difference equation obeyed by
2¢1(a, b;¢; ¢, z). The Casimir element C, which belongs to the center of U, (s!(2)), is given
b

. @R g -2
- (qllz - q-xlz)z

+ fe, (22)
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and on V(™) gggumes the value

A+1/2+ -A-1/2 _ 2
c) = g(ql/’—jq—llz—)z— (23)
Then, using e.g. (16a), from
#(C) Wi (U(a,8,7)) = €Y Wy (U(a,8,7)) , (24)

’ y . (1-3j)/3 :
one can work out the equation satisfied by 2¢; (¢**7/+*,¢77*; ¢+, g, —af ’“(ﬁ,y‘l‘) With

the obvious identifications for a, b, ¢ and z, one finds?®

{#(c - abga)(D})* + [(1 = )+ ((1 - a)1 - 3) = (1 = e)) 2] D

(25)
~(1 - a)(1 - 8) }au(a,bici0,2) = 0.
We shall now make contact with the quantum group approach and indicate in par-
ticular how the results described so far enable one to recover the matrix elements of the
SLy(2) corepresentation given in Ref.[23].
Let A be the space dual to 2, (sl(2)). The coordinate ring A(SLg(2)) of the quan-
tum group SLg(2) is introduced as follows. Consider the fundamental representation
X : Uy(sl(2)) — End C? which is defined by

xw=(% ). xa=(33). x0=(}7) @

Since X is a representation, we have
X(ab) = X(a) X () , a,b € Uy(sl(2)) . (27)

The matrix elements of X, that we shall denote as

X= (: :) ” (28)

define mappings U (sl(2)) — C, via the evaluation map a — X (a); hence z, u, v and y are
elements of .A. We shall call 4(SL,(2)) the subalgebra of A generated by these coordinate
elements. This algebra is seen to inherit from Uy(21(2)) & Hopf structure. The coproduct
Ag: A— A® A, antipode S4 : A — A and counit £4 : A — C are defined by

AAX) (@)= X(ah),  abely(al(2), (29)
and v —q'/% 10
s =(_2n, ). wm=(5 1) (30)
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In terms of matrix elements, the definition (29) is equivalent to

BaXn)= Y XuXu, ra=12, (31)

=12

with the understanding that (® ® ¥)(a ® b) = ®(a)W(d) for B, ¥ € A, a,b € Uy(al(2)).
The product p4 : A® A — Ais determined by

#a(2 @ ¥)(a) = 2¥(a) = ® ¥(A(a)) . (32)

With these definitions one finds that
zL‘M'N(e;y!v) - '—h(nﬂ—l'-)—il-(u+v)—i(n(#-l)-i-v(-—l))-hl(#-M)(U—N)

(g:9)L (659)u (9:9)»
(9i9)n-ne (G Qr—ptre (1 —g)ot* (33a)
foruy—-M=v—-N, M<u<M+L,
=il , otherwise ,

and
Moyl (erk? ) = g~ {p(rtr+ L) =1Lt~ (w(p-D)4o(v-1)

5 (69)u (g 9)s (336)
(T‘Lq'):;‘r 5‘;, wIN

with M, N, and L nonnegative integers. Given these evaluations on the Poincaré-Birkhoff-
Witt basis elements of U,(sl(2)), it is immediate to see that the coordinate elements obey
the following commutation relations

¢Pru=uz ¢lev=vz ¢luy=pu ¢Poy=yr ww=vu, (34)

and
det, X =2y —q Vuv=yz — ¢ Puv=14. (35)

The matrix elements W;; defined in (12) can also be viewed as elements of A; they
indeed provide linear mappings from U,(sl(2)) into C, @ — W;j(a), a € Uy(sl(2)). In-
troducing an infinite matrix W, with elements W;;, the composition relation (13) can be
rewritten in the form

AW=WeWw, _ (36)

and we conclude that W defines a corepresentation of S'L,(2)

We would like now to derive the analytic expressions for the elements W;; of W
in terms of the coordinates z, u, v and y of A, starting from the formulas (16), the
evaluation of W;; on U(a,,v). This is certainly possible since the element U(a,3,7) =
eq(ce) E;(8f) k7 generates the complete basis of 2 (l(2)):

(1@ (D) (D5) Vi@ Bin) | _,_ ="k f . (D)

7

An arbitrary element of A is therefore completely specified once its evaluation on U(a, ﬁ,-y)
is given. With the help of the following formulas,

huMyN (U(a,ﬂn)) = g~ 1M=L}~ L(M+N) -} (M(M=1)-N(N-1))

x (_ af  y(N-M-L41), ) aMgN (38a)
-2’ )L TN
uMyNyL (U(a,ﬁ,-y)) = q—{-y(M—N-i-L)-{L(M+N‘)—Q(M(M—l)-N(N-l))
aMgy (38b)

-

M, N and L nonnegative integers, and knowing (see (33)) that zEuMv" and uMoNyL
span A(SL,(2)), the expressions for W;; can be easily abstracted from the matrix elements
Wi;(U(a,B,7)) given before. One obtains®*

(¢*+*%4) i
Wi (--j)(.\-j)___l_—‘ ML oi=A gi=itl. g o 1/2yg) yi=iyiti
=q T a1 (94, @A g, — g ) Wy

fi<j,i+j20,

(39a)
: (q »1)
Wi = (i-j)(&q-.)___:_—l —(i+j) i-- .\—u+x —-—A --+1 _al/2 b
9 q (r q).l" ¢1( qi q ) )
ifi<j,i+5<0,
(39b)
(%9, -
W"_ (F=i)(A=i) i~§ A+l+l i—o\_ i-j+y, o 1/2‘"’ i-j l+)
9 (rq)i_, =2 ( g L Pt | ) y

ifi2j,i+520,
(39¢)
Wi; = qU—(+3) %)"’_)-A ~(i+i)yi=i 1, (,x-m',-i-x; ¢ ithg _qn/z,,,,) y
19)i—
fi>j,i+7<0.
(394)

These four cases need to be distinguished in order for the elements W;; to be analytic in
z, 4, v and y.

Let us briefly explain how these formulas are derived from (16). We shall use as
example the case i < j. First, notice from (38) that a is paired with u, and 3 with v under
the evaluation on U(a,d,7). A glance at (16a) then tells us that W;; has to involve ui~*
and a function of uv o as to yield a’~* times a function of o when evaluated on U(a, 8, 7).
Since zLuMu” and uMvNyL form a basis for A(SL,(2)), W;; must be either of the form
@(uv) u/~iyL or of the form =& "wi~ ¢ (uv), with @ and ¢ two analytic functions. To obtain

8
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these functions, and the indices L and L', consider the following formuias, derived with
the help of (38):

pluv)ui~yF (U(a,B,7)) = g~ rl=+0-3G-0G=i+L-n) (1- )H

oL ten) . on

P il ¢(uv)(U(a,ﬂ,7)) = q'*T(J-'—L‘) J(G--i+L' 1) (1 _q)i—i
x (_(l ‘:ﬂq)’fl(:--ﬂ- —1)'q)u¢(

and compare them respectively with (16a) and with
(1-22)/a\ I=% ¢ _A4i+1, (1+42i)/2
7 = ot g9 (@™ ig)j—i ¢ o4
Wi; (U(a’ﬁt 7)) q ( 1=a ) (o =i ( af T-q) H q) —+3)

= ¥ (1+2i)/2
X adhy (q“““,q"";c'"“;q,- —%1 o7 ) ;

ToeP —i(:—s+L’))‘ (408)

i<j,
(41)
which is obtained from (16a) by using Heine’s g-analog of Euler’s transformation fromula:?*

2101(¢°,¢%4%19,2) = (0" ** 55 0)c—a-b 21 (0" 0" iS50, 0" P %2) . (42)

Observe now that L and L' are immediately determined from the fact that the dependence
of W;j (U(a,B,7)) on 7 is all contained in the factor ¢~73/2. Thus, from (40a) one gets
L = i+j, while from (40b), L' = —i—j. Since we want W;; to be analytic in the coordinates
of SLy(2), we must take W;; = p(uv)uw/~'y*+i when i+j > 0 and W;; = 2=+ ui=i y(uv)
when 1 + j < 0. It is then straightforward to see by comparing (40a) with (16a) and (405)
with (41) that the functions p(uv) and $(uv) must be those recorded in (39a) and (395).
The expressions for W;; when i > j are obtained in a similar way.

The matrix elements (39) are computed in a different way in Ref.[23]. First, the
general form of W;; is specified. For each of the four index subsets characterized by the
signs of 1 + j and i — j, this leaves in W;; an analytic function @(uv) to be determined.
In order to obtain these functions one introduces a U,(al(2))-action x on A, such that
(x(a) ®)(3) = @(ba), with # € A, and a,b € Uy(sl(2)). On the corepresentation W of
SLg(2) one has

et+b—c

x(a)W =W -W(a), (43)

implying that the entries in each column of W realize & basis for the module V(*:m0),
Recalling that the Casimir operator of Uy(sl(2)) assumes the value C(*) on V{*™0) (gee
(23)), one can write: x(C) W;; = C'*) W;;. This equation implies a second-order difference
equation for the functions p(uv), that, using (25), can be now expressed in terms of the
hypergeometric series 1¢;.

To establish the connection between basic hypergeometric functions and SL,(2) in this
fashion, one needs to know explicitly how =(k), 7(e) and x(f) act e.g. on z¥uMov™ and
MyNyL, This can be accomplished inductively. From the definition of the representation
=, one sees that #(a) ¥ = Y _x(a.)® - n(a")¥, for ,¥ € A, and Aa) = ¥ .ar @ a”,
a € Uy(sl(2)). With the twisted derivation rules that this entails, one can proceed by
induction starting from (43) with W replaced by X. The results are given in Ref.[23].
The derivation of these actions can be simplified by using instead the three-variable
realization of Uy(#1(2)) given in (19). From the definition of x and # it is clear that

x(a)2(U(a,8,7) = #(a)(2(U(a'B,7))) s  ®E€A, acllol(2).  (44)

The following strategy can now be adopted to determine the action of n(a) on @. It suffices
of course to consider the cases a = k, e, f. First, evaluate @ on U(a,3,7) and then operate
with #(a) on the result; these steps are readily performed using (38) and (19). In view of
(44), this gives the evaluation of x(a)® on U(a,B,7), which, as we already pointed out,
completely determines this functional. Comparing with the various evaluation formulas,
it is immediate to read off the expression for #(a)®.

Let us show for example how w(e)u™ and x(f)p(uv) are obtained in this way. From
(38) one has v*(U(a,B,7)) = g~ ™/4(n-1)/4q% /(1 — q)*. We now act on this function
of a and v with the g-difference operator #(e) given in (19} to find

*(epu" (U(a,ﬁ,'y)) = #(e)(v"U(a,8,7)

g trn--inn-pl=g" o> ( af —(u—n/z) ; e
T—q T-gr U7 {T-g7*

From this, using again (38), one immediately obiains

x(e)u” = q““"’”ll__qq zu™t, (46)

1t is also instructive to examine x(f)p(uv), with ¢ an analytic function. From (40) and ‘
(17¢), one has

A (oo 0ep) =65 0-75) ()

q—"r/! (47)
T1-4 T_ (D+¢(')) s=g-1ap/(1-g)* '
and then using (40a) one arrives at
' 1/4
w(fe(uw) = {— (D& w(ue) vy - (48)
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In conclusion, we see that the quantum algebra approach to g-special functions, de-

velopped in analogy with the standard Lie algebraic interpretation of special functions, is
simple and fruitful. It allows one to recover the results obtained in the quantum group
approach to g-special functions and often offers computational simplicity.
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