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\V 
Quantum groups and algebrul - have been shown recently to provide an algebraic 

seUing for q-special funciions. In fact, two approaches to thi8 program have been presented. 
In one cue,a-H one proceed. in cl08e analogy with Lie theory16 and considers the elements 
of the quantum algebra Uq(a) that are obtained upon replacing the exponential map 
from the algebra g into the group G by q-exponentiai mapping. Their matrix elements 
in irreducible representations are found to be expressible in terms of q-hypergeometric 
functions. (This interpretation haa ita origin in Ret's.[16,17J.) 

In the other caae,1I-21 one coOOden rather the Hopf algebra A(G,) associated to the 
quantum group G,. This is a lubalgebra of the dual of Uq(a) , generated by the coordinates 
of G,. In thil approach, the matrix element I of corepreaentationl of G9 are seen to involve 
buic hypergeometrlc fundionl of thae coordinates. 

The purpose of this note is to disCUI8 the relations between these two poinb of 
view. This will be done by comparing the interpretations of the q-hypergeometric lenes 
2tPl(o,bje;q,z) bued on the quantum algebra Uq(.'(2» and the quantum group SL9 (2). 
After recalling standard definitions in q-analysis,28 we shall first deticribe the method of 
Re£s.[9,llj, &treBling how it straightforwardly leads to a connection between the 24J l series 
and Uq (.d(2}). We shall then show how olle can from this approach recover the reaulb of 
Ref.[23]. 

The two q-exponcntial functions 

1 1 
e,(z) =L00 -( . ) z" = ( -)- , (10) - . Izi < 1 , 

,,=0 q, q" z,q oc 

oc i"("-I) 

E,(z) = ( . ) z" = (- ziq)oc , (l b) L ~
n =O q, q n . 

will playa central role in our analY8i8. Note that eq(z ) Eq(-z ) = 1, and that lim'l_I
e,(z(l - q») = limq_l - Ell (z(l - q)) = e'. For II and Q arbit rary complex numberl , the 
q-lhifted factorial il given by 

(ajq)oc 
(2)(Gj9)Q = (aqQjq}oc ' 

where 

(OJ q)oc = II
00 

(1- aqlr) , Iql < 1. (3) 
.1: =0 

We shall denote by T, the q-dilatation op«:rator which acta as 

T.. g(z} = g(qz) , (4) 

on functions of the variable Zj out of it, the q-ditrerence operators 

Dt = z- I(1 - T,) , (Sa) 
D; = z-I (1 - T,-l) , (5b) 
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are coutn.ded. ObRrve that U:,)Dj - ilia and (1_~_i)D; - dldz as 9 -+ 1, and 
that the q-uponentialt obey 

TM-
1e,(z) = (1- q-l z )-l e,(z) , (6a) 

T. E,(z) = (1 +Z)-1 E,(z) , (66)
D:- e,(.h) = le,(l.z} , (6c) 
D-; E,(lz} =-q-llE,(lz} , (6d) 

with l a complez parameter. We abo record the definition of Ole basic hypergeometric 
function I~(CI,6;c;q,z): 

J.l(CI,r,Cj9,Z) = LCID 

(4;9),,(6;9)" " (7)
".0 (9t q),,(Cj q),. Z , 

in term. of which variOUI matrix element. will be expre.Rd. In the following we shall 
auume Iql < 1. 

The quantum universal enveloping alsebra U'I(Al(2» i. the Hop! algebra generated by 
the element. AI, 1:-1 , e and laatiafyiq the rcl.atioDi 

-1 1/2 -1 -1/2 ,2 - k-2 

kels =9 e, kill = f I , [e,fl= q1/2 -q-1/2 ' (8) 

and kle-1 = 1:-11: = 1. The coproduct ~: U,(.tl(2)) -+ U,(.1(2» ®U,(.1(2)), antipode 
S: U,(,1(2}) - 14(.1(2)) and counit t : U,(AI(2)) -+ C are defined by: 

~(I:) = I: @I: t ~(e) =e@.I:+,,-I@e I ~(f) = I @ Ie + Ie-I ® f , 
S{Ie) = 1:-1 , See) = _q1/2 e , S(f) = _q-1 / 2 f , (9) 

£(Ie) = 1 , tee) = 0, t(f) = o. 

The aJsebra U,(,1(2» hu a Poincari-Birkhoff-WiU buil given by 

ePI:P r, P E Z, p, II EN . (lO) 

We now introduce an infinite-dimenaionalleft U9(.1(2))-module v{.\·mo) = Cejle jE1 
where I = {il i = fRo +n, n E Z}, and A, fRo are complex numbers.II,n This repres.entation 
~ characterised by Ole following action of the generators on the basis vectors (j, j E I: 

I:ej = q-j/2 (j , 

e(j = q(I-U)/4 1 - qA+j
~(j-lt (11) 

f (i = q(I - U)/. 1 - q.\-j
~(j+l' 

Given any a E U,(.1(2», its matrix elementl Wij(a) in this representation are defined by 
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4€i = L €. Wij(4) . (12) 
iEZ+mo 

It clearly follows that 

WiJ(CIb) = E W.Ir(a) WIIJ(6) , (13) 
Jrez+mo 

and, for instance, one haa 

(1-2~)/.)"+'"
Wij(eJlA:Pr) = ~ q-P(II+J)/2(q.\-i- II+1;q) .. (q.\+j+ ..-,.+1;q),,6',J+.._,, ' ( 

(14) 
In analogy with ordinary Lie theory,17 it ia natural to define the following elements of 

U,(.,z(2»: 
U(a,{J,..,) =e,(a e) E'I(fJ J) A:"' (15)I 

where a , fJ and; are complex parameters. Indeed, .et Ie = q-./2 and q = e- fJ • In the limit 
q _ 1-, '7 - 0+, the defining relationa (8) become those of .1(2): [h, e] = - e, [h, II = I, 
[e,/] = -2h, and U«1-q)a,(1-q),8,2..,/,,) goes into the SL(2) group element eQcelffe"Io. 
(Other combinations of little and big q-exponent.iala could al.ao be used. See, for instance 
R.eU. [13,14J.) 

Remarkably, the matrix elanents of U(CI,fJ,;) on v<~,mo) turn out to be expressible in 
terms of the function 24>t(a,6; c; q, z}. In £act, using (14) and identities involving q-shifted 
fadorials,20 it i. atraightforward to .how thatl),l1 

(1 -U)I.. );-i (q~+i+l ' q) ..R}) -.,i/2 q J-'IW.ii (U(CI,~,; =q CI--- ()( 1 -q qiq j-i (16a)
(1-2i>/2)

A.. (qJ.+J+l ...i->' . ...i - i+l. q -CIR q___X ifi$j,2'1"1 ,'1,'1" ~(l-q)2 ' 

WiJ(U(a,fJ,;») =q-..,i/2 (i-i)(i-i- 1)/2 (.8 q(1-~>')/4)i-j (qA-i+liq)i_iq
1 q (qiq)i-j (166) 

. . .. (1-2j)/2 
X A. (,,~+'+1 q'-.1. q'-J+l. q -0,8 -q---) if i > J' 

2¥'1 11 , , , , (1 _ q)2' 

with i" E Z +mo. Thi. eatabli.hea moat .imply tbe connection between the basic hy
pergeometric seriea 2411 and U,(.1(2» which can now be exploited to obtain properties of 
these special function8 (aee Refa.19,1lJ). 

Notice that it is poasible to give a one-variable model for the representation (11), where
J 

the generators are expressed as q-difference operators in the complex variable z acting on 
the space of all linear combinations of the functions ZR I n E Z. Indeed, by taking 

AI = q-mo/2 T ,- 1/ 2 
z 

e = q{l-U)/. (_l_D~ + 1 - q A+mo ! T~)
1-q l-q z (17) 

2 1 A-mo )1= q (1- U)/4 _.t_ D; + - q ZT;l ,
( l - q l-q 
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and ~; = z", j = mo + n, nEZ, for the baais vectors, one can check that the relations 
(11) are saiisfied. Thi. hu been u.sed in Ref.[9] to obtain !rom (12) and (16) generating 
relaiioDJI for the function 24>1 (G, bj Cj q, %). 

The matrix dement. Wi; (U(a,p,.,.» themldvetl define model. of the module v().,mo) 

and directly provide a three-variable realization of U.(,1(2». For each dement a E 
U.(./(2» define the operator i(G) adins on the variabletl a, p and.,. IUch that w(a) U(a,fJ,1) 
=U(a,p•..,)a. Upon operatin, with (jl ODe obtaina: 

i'(G)Wii(U(a,.8,1») = 1: Wi,(U(a,.8,'Y») Wij(a) I (18) 
'ez+mo 

that is, the fund iolll Wi; (U(a,p,..,)) transform like the vectors ej. From th e properties 
of the /I-exponentialt, it is eu, to COllltruct the operatotl i for k, e and I, and thus for 
any a E U'l(.1(2 )) by compoeition. One find. 

i(') = £"1 , (19G) 

- _ "1/2 (+ ~ 2 _ -2 )i(e) - q Do + (1-9)2 P(£" Tp£"1 ) , (19b) 

i(J) = _ ql -"I/2 Di ' (1ge) 

where £., it the .hift operator defined by £"1 gb) = gh + 1) on any function of ,.. That 
w(') and i(J) are the required operators it readily verified. To derive i(e), one first acts 
with D! on U(a,p,..,) tuing (6c), and then .how. that 

e,(-PI) e E.(PJ) = e - (1' -
1/2 

,)2 P (1:2 - (1 + .81)-1,-2) , (20) 

with the help of the following form.ulalT 

QO en 
e,('X) Y Er(-'X) = L -( -. -) [X, Y]" , (21) 

n=O f ,fn 

where 

!X ,Y]O =Y, [X, Y]n+l = X [X, Y]n - qn[x, Y]n X , for n =1,2, .... 

Recalling (66) and (19a), one arrive. at (19b). 
It is a simple exercise to verify that i('), iCe) and i(J) obey the same commutation 

relation a &B k, e and f. The observation that the matrix elements Wi; (U(a,{3,;» are also 
basil vectors for representatins of U'l(.1(2)) can be uBed to obtain addition formulas for 
the basic hypergeometric functions. 

The lewation i can also be used to obtain the q-difference equation obeyed by 
2~1(G,biciq,.t). The Caaimir element C, which belong. to the center of Uq ("'(2», is given 
by 

c = ql/'lp + q-l/2k-2 - 2 
(22)(ql /2 _ q-1/2)2 + Ie , 
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and OD v().,mo) ...umes the value 

C().) = q,\+1/2 +q-.l.-l/2 - 2 
(23)(q1/2 _ q-l/2)2 

Then, using e.g. (16G), from 

iCC) Wij(U(a,.8,'Y)) =C(.I.) Wii(U(a,fJ ,'Y») , (24) 

.1.+'+1 '.I. " +1 (1 - JJJ/3)one can work out the equation satisued by 2~1 (q 1 , qJ- i qJ-' j /I, -a{3 ~ . With 

the obvious identmcatioDJI for G, b, c and z, one finds2s 

{z(e - abqz)(D~)2 + [(1 - c) + (1 - a)(1 - b) - (1 - e») z] D~ 
(25) 

-(1 - a)(1 - b) }24>1(G,bjcj9,Z) = 0 . 

We shall now make contad with the quantum group approach and indicate in pa.r
ticular how the results described 80 far enable one to recover the matrix dements of the 
5L,(2) corepreaentation given in Ref.{23] . 

Let A be the space dual to ~(.1(2». The coordinate ring A(SL,(2» of the quan
tum group 5L9(2) is introduced 88 followa. Consider the fundamental representation 
X: U9(41(2)) -+ £rulC2 which is defined by 

( 
0)1/'

XCAt) = '0 q- l/t , x(e) = (~ ~), X(J) = (~ ~). (26) 

Since X ia a represent&tion, we have 

X(ob) = X(a)X(b) I G,b E U,(,1(2)) . (27) 

The matrix dements of X, that we shall denote u 

x = (1: u) (28)
vII' 

define mappingsUq (.,z(2» -+ C, via the evaluation map II - X(G)i hence z, u, v and y are 
elements of A. We shall call A(S Lq(2» the 8ubalgebra of A generated by these coordinate 
elements. Thi. algebra is seen to inherit from U9(41(2» a Hopf structure. The coproduct 
~A: A -+ A ® A, antipode SA: A - A and eounit 'A: A -+ C are defined by 

~A(X) (a ® b) = X(a6) a,h E Uq (41(2)) , (29)I 

and _ql/2,,)
S.A(X) = ( _ q..!'I/2v £A(X) = (~ ~) (30) 

z ' 
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In term. o£ matrix elemenh, the definition (29) is equivalent to 

AA(Xr .) = L X ... X .. , 1",.1 = 1,2, (31) 
1=1,2 

with the undentandina that (+ @ i')(a ® b) = .(a).(6) for ., q; E At a,b E Ug(.I1(2)). 
The product PA : A ® .A - .A iI determined by 

PA(+ ® i')(a) == +"(a) = • ® "(~(a» . (32) 

With theae definitionl one finde that 

zLuMfiN (ell Ia"r) = ,-~Pc,,+ .. -L)-iL("+")-i(jII("-l)+"(II-l»+i (,.-M)(II-N) 

x (qjq)L (Iliq),. (gjg)1I 
(qi ,),,-AI (9i q)L-,,+M (1 - q),.+11 ' (33a) 

for P - M = " - N, M:$ P :$ M + L , 
=0 I othenri.lc: , 

aud 

"MflNJ,t (e"lapr) = ,-! PCII+ ..+L)-!L(,,+)')-!C,.C,.-l)+II(II-l» 

x (fiq),. (9i9)11 6 6 (33b) 
(1 - 9),,+11 /I,M ",N, 

with M, N, and L noDllegatiw integera. Given these evaluatiOlU on the Poinca.re-Birkhofr· 
Wiu buia element. of U,(.1(2», it is immediate to see that the coordinate elements obey 
the Collowi.nc commutation rela&iou 

91 1 291/2~ ;.2 r/,Jn = flZ / 
2_1/ =JI" 9 / "" =JIf' taU = UU , (34) 

a.nd 
det,X = :r:tf - q-l/z.v =JIZ - 91/ 2UfI =1.4 . (35) 

The matrix element. Wi; defined in (12) can alao be viewed as elements of Aj they 
indeed provide linear mappinp from U,(.1(2)) into C, II - Wij(a), a E Ug(,"(2». In
troducing an infinite matrix W, with elements Wij, the composition relation (13) can be 
rewriUen in the form 

AAW = W®W, (36) 

and we conclude that W detinea a corepreaenbtion of 8L,(2). 
We would like now to derive the analytic expresaiona for the elementl Wi; of W 

in terms of the coordinates &, ., fI and y of .A, starting from the formo1a.s (16), the 
evaluation of Wi; on U(a,fj,"Y)' This is certainly possible since the element U(a,/3,7) = 
e,(ae) Eq(/lf) Ie" generatea the complete baaia of U,(.'(2)): 

(_1)"q,,(2 - P)/2 (D!)" (D;)" U(o,/l,p») IQ:II=o = e"IeP f" . (37) 

7 

An arbitrary element of A is therefore completely specified once its evaluation on U(a, P, 7) 
is given. With the help of the following formulas, 

Z£UM"N (U(a.,P,7») = q-i"r(M-N-Ll -*£(M+Nl-i(M(M-I) - N(N-I» 

(38a)
x (_~ !<N- M-L+l).) aMpN

(1 - q)2 q ,q l~ (1 _ q)M+N ' 

uMvN.,l (U(a,P,7») = q- b(M-N+L)-~£(M+N)-i(M(AI-I)-N(N-lll 

a.MpN (38b) 

x (1- q)M+N ' 

M, N and L nonnegative integen, and knowing (see (33» that z LuMvN and 1J.M"Ny L 

span A(8L,(2», the expreasioDB for Wi; can be easily abstracted from the matrix elements 
Wij(U(a., .8,7» given before. One obta.ina2J 

.A+i+l. ) 
w... _q(i-j)(.A-J) 

(
q ,9 j - i tP (g.\+;+1 qi->..qi-i+l' q _ qJ/2uv) U; - iy'+i 

'J - (q;9)j- i 2 1 " , , , 

jfi5. i,i +i ~O , 
(39a) 

l.+i+l. )(w... - (i-j)(l.+i) 9 I q i-i -(i+ i) i-i tP ( .A- i+l -i-l.. qi-i+l. _ 1/2 ) 
., -'1 (9i9)j-i z u 2 1 q ,q , ,'I, q uv I 

ifi 5.i, i+i 5.0, 
(39b) 

.\-i+1. )(
C· .)(. .) go ,9 i-' ( l.'+ . \ . . 1 1/2)" '+ ' W:.. -, I-I ..-I J tP q +, 1 q'-'" q ' -J+ . q _q uv v' - Jyl J 

., - (9i ')i-I 2 1 I I , , , 

iri~i,i + i~O , 
(3ge) 

(~-i+l. )
Wi; =q(i-i)(l.+i) ( . )'.9 :-j z-(i+ilvi-j 2tP1 (ql.-i+1 ,q-;-).;9i - ;+1; 9,_ql /2uv) • 

(J,91-J 

jfi~j , i + j:$O. 

(39ci) 

These (our casea need to be distinguished in order for the elements Wij to be analytic in 
2:, 14, " and y. 

Let u.s briefly explain how these formulas are derived from (16). We shall use as 
example the cue i 5. j. First, notice from (38) that a is paired with u, and (J with v under 

ithe evaluation on U(a.,/3,7). A glance at (16a) then tellJ WI that Wij has to involve u j 

and a function ofuv 80 as to yield a j - i times a function of a./3 when evaluated on U(a,p,7). 
Since zL"M"N and uMvNyL form a basi. for A(SLq(2)), Wij mu.t be either of the form 
Y'(14v) "j- iff or of the form. zL' u j - i tP(Ufl), with Y' and", two analytic functions. To obtain 
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these functions, and the indices L and L', confider the following formulas, derived with 
the help of {38}: 

cp(uv) u j - i llL (U{O,.8,7») = ,-h(j-i+L)-Hj-i)(j-i+L-l) (~)1-, j-i 

X rp(~q-t(j-i+L») (404)
(1 - ,)2 ' 

i-i 
zL' uj - i ;'(U'D) (U(a,/l,7») = , -l,.(j-i-l.')-l(j-i}(J-i+L'-l) 1: q( ) 

x (_~,-j(j-i+L'-l).t) ~(~,-j(j-i+L'») (406)
(1 - 9)2 I L' (1 - 9)2 ' 

and compare them respectively with (USa) lAd with 

. . ( ) _ -.,j /2 ( ,p_U.)/. ) J-i (t 1+i+1 j9)J_i ( ,(1+2i)/ 2 .) 
WIJ U(0 ,P,7) - q Q 1 () -afJ -(1)2,q- t tit J-i - 9 -(Hj) 

21 
1 - i+1 -i-1 . '-HI g(1+ )/2).. 

x 2~' ( t , 9 .1' i,,-aIl (1- q)2 I 'S 1 , 

(41) 

whlch is obtained from (160) by uiq Beine', q-analos of Euler'. trannormation h omula:2e 

2~1(qCl ,9'j t C j9, " ) = (qeH-c.r;q)c_e_' 24»t (qc-e,qc-'igcj9,qeH-cz ) . (42) 

Ob,erve now that L and L' are immediately determined from the fact t.hat the dependence 
of W.j (U(a,p, '1» on 7 it all contained in the factor 9-.,j/2. Thus, hom (40a) one gets 
L = i+j , while from (4Oh), L' = - i -j. Since we want Wi; to be analyt.ic in the coordinates 
of SL,(2), we mu.Uake Wij ='P(a",)u;-illi+j when i+i ~ 0 and Wi; = z-(i+j)u; - i tJ!(uv) 
when i + j SO. It ill then sttaightforwvd to He by compa.riq (400) with (1 6a) and (40b) 
with (41) that the fundioDB tp(U'D) aud . (.,,) mut be thOle recorded in (390) and (3gb). 
The expreuion. for Wi; when i ~ j are obtained in & Iimilar way. 

The matrix element. (39) are computed in a different way in Ref. [23J. First, the 
general form of Wij iI apecified. For each of the four indu subaets characterized by the 
signs of i + i and i - j , nUl leaves in WiJ an analytic function rp(Uti) to be determined. 
In order to obtain these functiona one introducel a U,(,,(2))-adion 11' on A, such that 
(11'"(0) t)(b) = + (6a), with. E A, IUld a,6 E U,(.1(2». On the c:orepreaentation W of 
SL,(2) one baa 

w(o)W = W· W(o) I (43) 

implying that the entries in each column of W realise a buia for the module V(l, rno). 

Recalling that the Caaimir operator of U,(,1(2)) Ulum.es the value 0(1) on v(~,rno) (see 
(23», one can write: w(O) W ij = 0(1) W i;. This equation implies a aecond-order difference 
equation for the functiODl 'P('''')' that, uaiq (25), can be now upreued in terms of the 
hypergeometric aeries 2~1' 

9 

To establish the connection between basic hypergeometric functions and SL'l~) in thi. 
£ashion, one needs to know explicitly how 1I'(k), 'II'(e) and '11'(1) ad e.g. on ~Lu vN and 
u M "NilL. This can be accompli.hed inductively. From the definition ohhe representation 
11', one sees that '11'(4)." = L"w(llr)ct''II'(ar )", for I," E A, and Ao(4) = LrGr®CI", 
4 E U/l(,1(2». With the twisted deri'Yation rule. that this entaila, one can proceed by 
induction starling hom (43) with W replaced by X. The results are given in Ref.[23]. 

The derivation of th~e actioDs can be rimplified by tHing inatea.d the three-variable 
realization of U/l(,1(2)) given in (19). From the definition of 11' and i it is clear that 

w(0).(U(a,fJ,'1») = i(o)(.(U(0, ,8,'1)) ) , • E A, a E U,(.1(2» . (44) 

The followinS strategy can now be adopted to determine the action of '11'(4) on ct . It suffices 
of courae to consider the caaea a = k, e, /. Firat, evaluate. on U( 0 ,,8,7) and then operate 
with "'(0) on the rault; these steps are readily performed using (38) and (19). In view of 
(44), this givea the evaluation of w(o). on U(O,,8,'1), which, as we already pointed out, 
completely determinea thia functional. Comparing with the various evalua tion formulu, 
it ill immediate to rea.d off the expression for 1r(a) •. 

Let u, show for example how w(e)u ft and 'II'(J)Ip(uv) are obtained in this way. From 
(38) one haa uO (U(O,.8,'1» = q-.,,,/.-,,(,,- l)/·o"/(1 - q)". We now act on this function 
of a and 7 with the q-difIerence operator wee) given in (196) to fuid 

1I"(e)v" (U(a ,,s,'1») = iCe) (uftU(O,,s,'1») 
0 1 (45)

= -1-,( n-2) - 1n( ,.-I) 1-q" 0 - (1 +~ -(n- l)/:I) 
q 1 - q (1 - q)"-l (1 _ q)2 q 

From this, using again (38), one immediately obtains 

w(e)u" = q-!<n-1) 1 - q" zu,.-l . (46)
l-q 

It is alBo inatrudive to examine 1I'(f)tp(Ut1), with rp an analytic fundion. From (40) and 
(17e), one baa 

i(f) (tp(uv)(U(a, P,"Y») = - ql-"/2~ (1- Til ) rpCl ~q)2) 
9-.,/2 a (+ )I (47) 

= - - -- D. !p(z) I

1- q 1 - q _=,-1011/(1-,>, 

and then uaiq (400) one arrives at 

ql/. ( )
w(f)rp(U1J) = 1 _ 9 D!" rp(U1J) ull · (48) 
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In concluaion, we !lee that the quantum algebra approach to 9-1peCial functions, de
velopped in analOS)' with the Itandard Lie algebruc interpretation of .pecial function., ia 
simple and fruitful. It allowa one to recover the fault. obtained in the quantum group 
approach to q-apecial functioDl and often offen computationallimplicity. 
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