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Abstract 

The dynamical algebra of the n-dimensional harmonic oscillator with one 
second-order parafermionic degree of freedom is exhibited. It provides an example 
and an explicit realization of a second-order parasuperalgebra. These constructs 
generalize the more familiar superalgebra structures. They possess a Z2 grading 
and involve a symmetric trilinear product among their odd elements. Particular 
attention is given to the one- and two-dimensional cases. It is pointed out that the 
one-dimensional oscillator Hamiltonian is parasupersymmetric, i.e., that it belongs 
to the class of Hamiltonians H for which one has a realization of the algebra 
[H, Q] = [H, Qt] = 0, Q2Qt + QQtQ + QtQ2 = 4QH. It is further noted that the 
parasupersymmetric Hamiltonians constructed by Rubakov and Spiridonov always 
possess two additional conserved parasupercharges. It is finally explained how 
the two-dimensional oscillator parasuperalgebra provides a spectrum-generating 
algebra for the one-dimensional parasupersymmetric Morse Hamiltonian. 
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Loosely speaking a quantum-mechanical system is said to possess a dynamical 

algebra if its states form representation spaces for this algebra. The simplest 

situation where this occurs is when the Hamilton operator can itself b e expressed 

as an algebra element in a realization of some algebra [lJ. There are also many 

interesting cases where the Hamiltonian can be written as a bilinear combination 

of algebra generators [2J. In both instances, there exist various techniques that 

allow for a group theoret ic resolution of the dynamics. We shall here be mostly 

concerned with examples of the first type. 

When systems involving both bosonic and fermionic canonical degrees of free

dom are considered it is appreciated [3J that superalgebras can arise as dynamical 

algebras. This is so, when there are constants of motion that generate super

symmetry transformations, that is transformations mixing the bosonic and the 

fermionic variables. 

It has been known [4J for a long· time that the canonical quantization rules are 

not the only relations that can be imposed on the basic dynamical variables in order 

for the Heisenberg equations to be compatible with the "classical" equations of 

mot ion. T here is in fact an infinity of consistent schemes and quantities satisfying 

the corresponding generalized quantization rules are said to be parabosonic or 

parafermionic [5J. 

As a matter of fact, there exist systems which involve dynamical variables 

both of the ordinary Bose type and of the para-Fermi type. In such a context, 

we may expect symmetry operations transforming the bosonic variables into the 

parafermionic ones ( and vice-versa) to occur. These operations which generalize 

the familiar supersymmetry transformations have been called parasypersymme

tries [6J. T heir generators realize new algebraic structures, parasuperalgebras, of 

which superalgebras are a special case. The main feature of parasuperalgebras 

lies in the fact that they involve a multi-linear product rule for their fermionic 

elements. The purpose of this contribution is to give an example where this new 

type of dynamical algebra is encountered. 

Let aJ and ai, i = 1, ...n, respectively stand for ordinary bosonic creation and 

annihilation operators satisfying 

i,j = 1, ... n. (1) 
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To these variables let us add one single set of second-order parafermionic cre

ation and annihilation operators at and a. By definition these quantities obey the 

trilinear relations [5] 

(2) 

We shall take the following Hamiltonian to govern the time evolution of these 

dynamical variables: 

H = L
n 

~ {aLai} + ~[at,a]. (3) 
i=1 

It is well known that the canonical commutation relations (1) are realized if one 

uses n coordinates x i and takes 

ai = vb-(Pi - iwXi), at = vb-(Pi + iWXi), (4) 

with Pi =-i8/8xi. As for the parafermionic variables, it is not difficult to see that 

a and at are irreducibly represented by the following 3 x 3 matrices: 

(5) 

Substitution of (4) and (5) in H gives 

n 

2 2)= '""'" L..J '21 ( 2 +W~3, (6)H Pi +W xi 
;=1 

with 

~3 = ~ [at , a] = (~ ~ ~ ), (7) 
200 -1 

making clear that this Hamiltonian describes a n-dimensional oscillator. We shall 

now present its dynamical algebra which as we shall see, is a fairly large second

order parasuperalgebra. (This explains our interest in this otherwise rather trivial 

system.) Aspects and applications that are specific to the one and two-dimensional 

cases will be discussed in the conclusions. In particular, we shall indicate what is 

meant ·by a parasupersymmetric Hamiltonian and shall explain how the invariance 
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parasuperalgebra of the 2-dimensional oscillator provides a spectrum~generating 

algebra for the parasupersynunetric Morse Hamiltonian. 

Let us introduce the following constants of motion: 

(8) 

J.l = 1,2 
(9) 

with 

(10) 

Their conservation is easily verified by checking that they belong to the kernel of 

d/dt = a/at + i[H, ]. 

Let us also identify as follows all bilinear monomials in Pi, Pi t , TI' and T-I' 

that can be constructed: 

At. = p.tpt
I] 1] , (lla) 

a=1,2,3, (lIb) 

(lIe) 

Qil' = PiTI" 
(lId) 

Sil' = P/TI" 

(In equation (lIb), aa, a = 1,2,3, stands for the standard Pauli matrices.) This 

exhausts the list of the independent bilinears; note that 

(12a) 

(12b) 

(12c) 

As the structure relations that we are about to give will show, T, Q and S (and '1', 
Q and S as well) transform as 2-spinors under the SU(2) generated by the La's. 
We claim. that the operators defined in (8), (9) and (11) form a closed algebraic 
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set v, if one includes the identity operator I. Note that V possesses a natural Z2 

grading with (Pi, p/, A ij , AL, H~), La, Y, I) E V(B) as the bosonic basis elements 
- - - (PF) . .

and (T", T", Qi", Qi", Sill' Sill) E V as the parafernuonlc ones. We thus have 

the decomposition V = V(B) + V(PF). The structure relations of this algebra are 

of the following form: 

[V(B), V(B)] C V(B), 

[V(B), V(PF)] C V(PF), (13) 

{V(PF), V(PF), V(PF)} C V(B)V(PF), 

with [ , ] the usual commutator and { , , } defined by 

{XI,X2,X3} = Xl (X2 X 3 + X 3X 2 ) + cyclic permutations of (1,2,3). (14) 

This fully symmetric trilinear product arises because we have chosen the parafer

mionic variables a and at of second order. (A p-linear symmetric product would 

need to be used if the parafermionic variables were taken to be of order p.) It is 

straightforward to determine the various products of the basis elements (in our 

realization), they are given below. 

The subspace V(B) is itself a Lie algebra. It is identified as Sp(n)-B h(n) EB 

SU(2) EB U(I), i.e. the semi-direct sum of ·the rank n symplectic algebra Sp(n) 

(generated by H~), Aij and A!j) and of the Heisenberg algebra, h(n), in n di

mensions [7] (generated by Pi, p/ and I) to which a SU(2) (generated by La) 

and a U(I) (generated by Y) are added as direct summands. In our basis, the 

non-vanishing commutators are: 

[H~J), Ak,] = W8ikA ji + W8ilAjk, 


[H~J), Al,] = -w8jk A!, - w8jI A!k' 

(15a) 

[ t] (0) (0) c H(O) C H(O)A ij , Akl =W8ik Hjl + W8ilHjk + WOjk il + WOjl ik' 

[Hi~)' Hk~)] = 2w8iIHk~) - 2w8jkH~,0), 

(15b) 

[H~J), Pk] = W8ik Pj, 


[AL, Pk] = W8ik PJ + W8jk P/, 

(15c) 

[H~J), pl] = -w8jk P/, 

[Aij, pl] = -W8ik Pj - W8jk Pi , 
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(15d) 

The transformation properties of the paraiermionic charges under the bosonic 

symmetries are given by: 

[HIT ), Qk~] = wbikQj", [HIT), Skill = -wbjk Si", 

[Aij, Qk~] = 0, [Aij,Sk,,] = -WbikQj,,-Wbjk Qi~, 

[AL, Qk~] = WbikSj" + WbjkSi~' [AL, Skill = 0, 

[ Pi, Qj~ ] = 0, [Pi, Sj,,] = -WbijT~, 
(16a) 

[p/, Qj,, ] = wbijT", [p/, Sj,,] = 0, 

[1, Qi,,] = 0, [1 , Si,, ] = 0, 

[Y ,Qi,,] == Qi", [Y ,Si,,] = Sill' 

[La, Qi,,] == -!(O"a)"IIQill, [La,Si,,] = -!(O"a)~IISill' 

(16b) 

The commutation relations involving Q, S and T are obtained from the above 

formulas by effecting the substitutions Q +-+ Q, S +-+ S, T +-+ T. Finally, the 

trilinear products of the paraiermionic basis elements read as follows with €12 = 

- €21 = 1 and /-L, v, P = 1,2: 

{Qi", Qjll' Qkp} = 0, 


{Sill' Sjll, Skp} = 0, (17a) 


{T~, Til, Tp} = 0, 


{Qil-" Qjll, Skp} = 2w€l-'pbikQjll + 2w€lIpbjkQi", 


{Si", Sjll, Qkp} = -2w€"pbikSjll - 2w€lIpbjkSi~, 


{Qi", Qjll, Tp} = 0, 


{T", Til, Qip} = 0, (17b) 


{Sill' Sjll, Tp} = 0, 


{T", Til, Sip} = 0, 


(17c) 
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{Qil-' , Qj", Qkp} = 4fl-'p[AijQk]" + (Il +-+ v), 


{Sil-' , Sj", Skp} = 4fl-'p[A!jSk]" + (Il +-+ v), (17d) 


{TI-" T", Tp} = 4fl-'p[l T]" + (Il +-+ v), 


{Qil-' , Qj'" Skp} = 2fl-'p[(Hk~) + j wt5ki LaO"a)Qj + (i +-+ j)]" + (Il +-+ v) 

- Wfl-''' [t5ki Qjp - (i +-+ j)], 

{Sil-' , Sj", Qkp} = 2fl-'p[(Hj~) - jwt5jkLaO"a)Si + (i +-+ j)]" + (Il +-+ v) 

- Wfl-''' [t5jkSip - (i +-+ j)], 

{Qil-" Qj'" Tp} = 4fl-'p[PiQj]" + (Il +-+ v), (17e) 

{T1-" T", Q i p} = 4fI-' P [PiT]" + (Il +-+ v), 

{Sil-' , Sj", Tp} = 4fl-'p[P/Sj]" + (Il +-+ v), 

{TI-" T", Sip} = 4fl-'p[P/T]" + (Il +-+ V), 

- (0) 2 
{Qil-' , Sj", Qkp} = 2fl-'p[Aki Sj + (Hjk - 3wt5jkL aO"a)Qi]" + (Il +-+ V) - Wfl-'"t5jkQip, 

- t (0) 2 
{Qil-' , Sj", Skp} = 2fl-'p[Ajk Qi + (Hki + 3wt5kiLaO"a)Sj]" + (Il +-+ V) - W€I-'"t5ki Sjp , 


{Qil-' , T", Qjp} = 2fl-'p[AijT + PiQj]" + (Il +-+ V), 


{Qil-' ,T", Tp} = 2fl-'p[PiT + lQi]" + (Il +-+ V), (17 f) 


{Sil-' , T", Sjp} = 2fl-'p[AJj T + plSj]" + (Il +-+ v), 


{Sil-' ,T", Tp} = 2fl-'p[plT + lSi]" + (Il +-+ v), 


The relations of the form {A, B, C} or {A, B, C} can be obtained from the above 

uSIng 

and 

{A,B,G} = -{A,B,C} 

{A, B, C} = -{A, B, C}. 

( l Ba ) 

(lSb) 

7 



Investigating the symmetries of oscillators with a single parafermlonic degree 

of freedom has t hus· revealed a remarkable algebraic structure. Two obvious gen

eralizations would lead to even richer parasuperalgebras. F irst, one could consider 

oscillators with more than one parafermionic degree of freedom; second, one could 

allow for parafennionic variables of degree greater than two (see refs. [5] and [6]). 

These situations remain to be analysed. 

We shall now close this paper by discussing some aspects of the one-dimension

al case and by explaining how the invariance parasuperalgebra of the two-dimen

sional oscillator provides a spectrum generating albebra for the parasupersymmet

ric Morse Hamiltonian [8]. 

In one dimension the Hamiltonian (6) reduces to 

(19) 

Let us single out the following two odd elements from its dynamical parasuperal

gebra basis: 

T hese constants commute with the Hamiltonian in accordance with eqs. (16): 

[H, Q] = [H, Qt] = o. (21) 

Their t rilinear products are obtained by specializing formulas (17) and using the 

fact that 

(22) 

One finds: 

(23a) 

{Q,Q,Qt} = BHQ, (23b) 

{Q,Qt,Qt} = BHQt. (23c) 

This parasuperalgebra is the second-order generalization of the superalgebra 

Q2 = Qt2 = 0, {Q,Qt} = 2H, 
(24) 

[H, Q] = [H, Qt] = o. 
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It 	was first introduced by Rubakov and Spiridonov [6]. 

A Hamiltonian H is said to be parasupersymmetric (of order 2) if there ex

ists two parasupercharges Q and Qt such that the parasuperalgebra specified by 

the relations (21) and (23) is realized. The one-dimensional harmonic oscillator 

Hamiltonian (19) is therefore parasupersymmetric. 

As shown in reference [6], one-dimensional parasupersymmetric Hamiltonian 

can be constructed quite generally in terms of two functions W 1(x) and W 2 (x), 

that satisfy 

Wi(x) - Wf(x) + W~(x) + W{(x) = k, 	 (25) 

with k a real constant and the prime standing for differentiation. (The "potentials" 

WI and W2 are otherwise arbitrary.) Given two such functions, one can check that 

the relations (21) and (23) are realized for 

(26a) 

and 

(26b) 

In our oscillator special case WI = W2 = W x and k = 2w. 

We would here like to point out that the above Hamiltonians always possess 

two further bosonic constants, ~3 and Y, and two additional conserved parasuper

charges, Q and Qt [9]. Indeed, let Q be the parasupercharge which is is obtained 

by commmuting Q with Y = ~(aat + ata), i.e. let 

Q	= [Y,Q] 

= 1M [(p + iWI)bt b2 + (p + iW2)b2bt ] (27)2v 2 

= 1M [(p + iWI)a t a2 - (p + iW2)a 2 at ] . 
2v 2 

One finds that 

[H, Q] = [H, Qt] = [H, ~3] = [H, Y] = 0, 

[2:3, Q] = -Q, [2:3, Q] = -Q, [2:3, Qt] = Qt, [2:3, Qt] = Qt, (28) 

[Y, Q] = Q, [Y, Qt] = _Qt, [Y, Qt] = _Qt. 
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T he trilinear products involving Q, Qt, aand at are straightforwardly evaluated 

and in addition to those given in (23) one has: 

- - -t {Q,Q,Q } = 8HQ, 

{Q, Q,Q-t} -_ -2kQ, 
- - t _ 

{Q, Q, Q } - -2kQ, 
(29)- -t - {Q, Q,Q }-4HQ -kQ, 

- t _ 
{Q, Q,Q }-4HQ -kQ, 

{Q,Q,Q} = {Q,Q,Q} = {Q, Q ,Q} = 0, 

(plus hermitian conjugated relations). 

In our oscillator example, 

(30) 

One m ay verify that the trilinear relations (17) among Qll, 812 , Qll and 8 12 

correspondingly reduce to those given in (29) with k = 2w. 

The last point that we would like to make is to indicate the connection be

tween the parasupersymmetric one-dimensional Morse Hamiltonian and the two

dimensional oscillator, hence showing that the dynamical parasuperalgebra of the 

latter system is also a spectrum-generating algebra for the fonner [8]. 

The parasupersymmetric Morse Hamiltonian is obtained by substituting 

(31) 

in Eq. (26a) . One finds 

H cP h
2 
(-X )2 h -x~ 1 (32)2 M = -- + - e - 1 + e +-.

dx 2 4 
L.J3 

4 

The eigenstates of the Hamiltonian 

(33) 

can be obtained by constructing the unitary representations of its dynamical para

superalgebra; more precisely, by detennining basis for the corresponding represen

tation space. (We have set w = 1.) A natural set of quantum numbers is provided 
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by the following eigenvalue equations: 

( H(O) + H(O) \ Ih(O) 8 m ) = h(O) Ih(O) 8 m ) h(O) = 1,2... , (34a)11 22 } ,,2 " 2, 

8=1,0,-1, (34b) 

with 

(35) 

The range of values for m2 is detennined by observing that MI = !(aI a2 +a~al)' 
M2 and M3 = !(aIal -a~a2) fonn an SU(2) algebra with M2 = M;+Mi+M; = 

i[(H~~) + H~~)? -1]. Now let 

(36) 

Instead of h(O), we can equivalently use as quantum number the eigenvalue h = 

h(O) + 28 of fI, identify the basis states as Ih, 8, m2) and replace (34a) by 

h = -1,0,1, .... (37) 

In tenns of the polar coordinates 

Xl = rcos¢, X2 = rsin¢, (38) 

M2 = -~a/a¢. Equation (34c) is then immediately integrated and one gets 

(39) 

Separating the variables in 

(40) 

one finds 

1 ( 1 d d 4m~ 2) ] (41 )- ---dr- + -2- + r + 28 Wh 6 m2(r) = hWh 6 m2(r).[ 2 rr dr r " " 

The solutions to this equation can be obtained either directly or by applying ladder 

operators on the ground state wave functions. They are given by 
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with C6 normalization constants and F a confluent hypergeometric function. 

The eigenfunctions of the Morse Hamiltonian can now be obtained from (42) 

by a mere change of variable. Indeed, setting r2 = he- x in (41) and multiplying 

this equation on both sides by r2 yields 

(43) 

with H M as given in (32). 
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