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ABSTRACT

The decay of false vacua is formulated using supersymmetric
quantum mechanics. The rate of decay depends critically on the
energy splitting between the two lowest energy levels, which is
found via a systematic, rapidly converging perturbation expan-
sion. Perturbative calculations to any order can be easily carried
out using logarithmic perturbation theory. Qur approach yields
substantially better results than alternative widely used semiclas-

sical analyses.
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I. INTRODUCTION

In a double-well potential, a classical particle can remain indefinitely in
the neighborhood of a higher local minimum that is separated by a barrier
from a lower minimum, provided the kinetic energy of the particle is less than
the height of the barrier. However, a quantum mechanical particle with its
wavefunction initially localized in the higher minimum has a finite probability
of being found in the lower minimum due to tunneling through the potential
barrier.” This is known as the decay of the false vacuum or the metastability of
a local minimum. It is a very important process in many branches of physics
and chemistry, and has been widely studied(1-12]. Langer(6] constructed one
of the first theories of decay of metastable states of a quantum mechanical
system, which was extended by Voloshin, Kobzarev and Okun(7] to quan-
tum field theory. It was corrected by Coleman(8], Callan and Coleman(9),
Stone[10] and Frampton[11]. A recent preprint by Boyanovsky, Willey and
Holman(12] has further improved the earlier work. References (8}, (9], provide
a detailed semiclassical treatment of quantum metastability.

In this paper, we study the metastability of a one dimemi.onal system em-
ploying the techniques of supersymmetric quantum mechanics(SUSY-QM).
In particular, we analyze the energy difference between the two lowest states,
which is intimately connected with the slippage of the wavefunction from the
higher potential well to the neighboring lower well. -

In Section II, we briefly review the formalism of supersymmetric quantum
mechanics; for a more detailed description the reader is referred to Ref.(13].
In Section III, we discuss the relevance of the energy splitting to the problem
of the decay of the false vacuum. One way to determine this splitting of the
energy levels is to solve the Schrodinger differential equation numerically.

However, that becomes increasingly difficult and less reliable as the barrier
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gets higher and the splitting gets smaller. The SUSY-QM based approach de-
scribed in this paper gives an extremely reliable and accurate determination
of the energy splitting. In fact, the reliability increases for smaller splitting.
We compare our SUSY-QM results with numerically computed values, and

with those coming from a recent semi-classical analysis[12).

II. SUPERSYMMETRIC QUANTUM MECHANICS

For a quantum mechanical problem with a potential V_(z), supersymme-
try allows one to construct a partner potential V,.(z) whose energy eigenval-
ues E} are in one to one correspondence with the excited states of Vo(z); i.e.
E}_, = E7, where E are eigenvalues of V_(z) and n is a positive integer
(i.e. n € Z;). In the arena of SUSY-QM, one often describes V_(z) in terms
of its ground state wavefunction. Hence, let us assume that the wavefunction

{™) of V_(z) is known, and the corresponding ground state energy Eg has

been adjusted to be zero. The relevant Schrodinger equation is given by
&
H_yo(z) = -t V.(z) | ¥ =0, (1)

and we are using units with A = 2m = 1. The above Hamiltonian can also

be written in terms of the ground state wavefunction yo(z) as
H.= (_£_+‘o_ﬂ)' (2)

where 1, represents the second spatial derivative of the wavefunction. We

now define two operators

_(d_% +=(_i_¢’_3)
a=(g-9), w=(-£-%). ®)

In terms of A and A*, the Hamiltonian H.. is simply given by A*A. However,

one can define another operator H, = AA* = -ﬁ- + Vi (z), where

Vi se ey = 2% (%) =—V.(z)+2 (%&)1.
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By construction, H, is a Hermitian and positive semi-definite operator. The
potentials V_(r) and V,(r) are known as supersymmetric partners. We shall
show shortly that they have the same eigenvalues except for the ground state
energy Ey. The superpotential W(z) is related to ™ by W(z) = 'fwé or
equivalently ¢o(z) = ezp(— [* W(z) dz). Operators A and A* can now be

written as
d
A (E + W(:)) , At = (--}; + W(z)) ; (4)

and the potentials V_(z) and V,(z) are given by

Ve = Wi z)2W'(z); W'(z)= %’- (5)
The commutator [A, A*] is equal to 2W'(z).
Now we shall explicitly show the correspondence between £ and E.
Let us dencte the eigenfunctions of Hy that correspond to eigenvalues £¥,
by y{¥). One discovers that for n # 0;

H, (av)) = A4* (avl)) = A(a*avl?) = AH_ (v0) = E7 (avl?)
(6)
and thus for positive integral values of n, Ay{") is an eigenfunction of H, and
we shall call it the supersymmetric partner state of (™). Since the ground
state of V_(z) does not have a SUSY partner (Ay{™) = 0); one finds E}_, =
E;, where n € Z;. Thus, if the eigenvalues and the eigenfunctions of H.
were known, one automatically learns the eigenvalues and the eigenfunctions

of, what in general is, a completely different Hamiltonian H,.
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III. FALSE VACUUM DECAY

In a potential with a symmetric double well structure, eigenstates with
energy substantially below the peak of the barrier, necessarily occur in pairs
with small energy splitting. This splitting of energy levels gets smaller as
the barrier increases. The same is also true for asymmetric double wells,
provided the deviation from symmetry is small.

A wavefunction that is localized in the higher minimum (say, in the
right well) of a double well, can be approximated by the linear combina-
tion M%M)-, of the ground state and the first excited state eigenfunctions.
Similarly a wavefunction localized in the other well is approximated by the
orthogonal combination ‘5’-‘)7_#9)- For an initially localized particle, the prob-

ability for tunneling after a time r is given by

-
P(r) = l(lpl\/i. olc_.y,l¢'l\}'§¢o

where §E represents the difference between the energy eigenvalues of the

W= sin?[(SE)); (M

ground state and the first excited state. Thus, knowledge of 6 is a crucial
ingredient for determining the probability of tunneling. In the rest of this
section, we will evaluate this energy splitting for an asymmetric well using
SUSY-QM and compare with results obtained from the WKB formalism of
Boyanovsky, Willey, and Holman[12] and with the numerical values resulting
from solving the Schradinger equation directly. We will extend the formal-
ism developed by Keung, Kovacs and Sukhatme[14] for finding the energy
difference for symmetric double wells.

In order to use the SUSY-QM method one needs to know the ground
state wavefunction wf,'l. A specific example of an asymmetric double well
which we will consider in detail corresponds to a ground state wave function

which is the sum of two Gaussians centered at +z,,

P87 = emlednl 4 gals-no)? (8)
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The positive parameter a is a measure of the asymmetry, and a = 1 corre-

" sponds to a symmetric wavefunction. The corresponding superpotential and

potential are given by

Wie) = 80w _ (220(z = zo)emsle=50l 4 2z 4 gg)elzenl
() =- W=

e-(z+50)? 4 e-a(z-z0)?
and

o (2)

[—2a + 4a3(z — zo)3]e~*==%0) 4 (=2 4 4(z + o) e-(F+ee)
e—(s+m)? 4 g-s(s-z0)? ’

respectively. In Fig. 1, we have plotted V_(z) for various values of the

asymmetry parameter a. For a = 1, they reduce to the symmetric case

treated in Ref.[14], i.e.
W(z) = 2[z - zo tanh(2zz0)]

and

V.(z) = 4]z — 2o tanh(2z2,)]? — 2[1 — 223 sech?(22z,)).

Increasing z¢ increases the height of the barrier, and also increases the dis-
tance between valleys.

To find §E, since the ground state energy of V_(z) is zero, we have to
determine the energy of the first excited state of V_(z), and that, thanks to
supersymmetry, happens to be the same as the ground state energy of the
potential V.. (z). Frequently, it is easier to determine numerically the ground
state energy of V,(z) than the first excited state of V_(z)[15].

From the ground state wavefunction ¥$7) of H_, we can generate a func-
tion :g_q- that solves the Schrédinger equation for H; with an eigenvalue
zero; i.e. H, (:S‘:y) = 0. However, ;e:; is not a normalizable function
since Ig:; — 00 as |z| — oo. But from this function, one can construct a

normalizable function ¢(z),

= (0w)’s
o) =% ”'%_'(‘) L for 23>0 ©)
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) for z <0,
with [, given by,
Lo= [ (W) 4] (10)
I, = um (wé"(y))’dv]

respectively. The function ¢(z) is well defined for all values of z. It is easy
to see that ¢(z) is continuous at r = 0 with a value ¢(0) = 7-‘7—1%- o One can
easily show H,4(z) = 0 for z # 0. However, ¢(z) is also not an eigenfunction
of Hy, as its derivative has a discontinuity at the origin; the discontinuity
given by
. 5 (=) 1 1
Flec—¢l-c= %5 '(0) | 7=+ —| . (11)
y 7l
However, ¢(z) can be viewed as the ground state wavefunction of the singular

Hamiltonian Hq given by
afl 1
=H, - (¥{7(0 [—+—]6:,
Ho = Hy = (w(O)" | -+ 7| 82)

which allows eigenfunctions with discontinuous derivative owing to the pres-

ence of the Dirac §-function term. Equivalently, one can write

Ho +6H (12)
o+ (70 [ -+ 1] s

Hy

and hence the ground state eigenvalue and the eigenfunction of H, can be
determined perturbatively by considering (wg"(o))' [f; + f_—] §(x) as a per-
turbation on the unperturbed Hamiltonian Hy. Here we should like to point
out that ¥5~)(0) plays the role of a small expansion parameter of this problem.
This is an especially good choice for a symmetric double well potential with a

high barrier since the value of d'c(,')(O) is very small. For the asymmetric case,

7
there is nothing particularly special about the origin and the discontinuity
of ¢(z) described in the eq. (11) can be chosen at another point, say z = £,
If 2 is chosen at the peak of the barrier (where vb.(," has a very small value),
the perturbation expansion converges even more rapidly. All the equations
in this paper have been written with the choice 7 = 0, but a generalization
to an arbitrary value of 7 is straightforward.

The first order correction to the energy is

. §H ? dz
EY = = iff*:,’iz (13)

% (470)" [ + 2] 6(2) (6(2))" d=
T P

1[1 1 1
R [E * I] Ed@E
Higher order corrections can be computed using the familiar Rayleigh-
Schrédinger perturbation expansion, but this involves summations over all in-
termediate unperturbed eigenstates, which in general are not known. A much
simpler alternative approach is to use logarithmic perturbation theory(16],
which only requires knowledge of the unperturbed ground state wavefunction.
The second order correction to the energy is given by

(1) (5 42 o (1) 3 g
EO - _ [/" E L é(é)(y) dy) of's (E f;:(:)(v) dy) ] ;
' (14)
and the energy splitting 6 E, correct to second order, is given by (1) 4 E(2),
Similarly, even higher order corrections can be readily computed.
As mentioned before, an alternative analytic approach for computing §E
is the WKB method. Ref.[12] is one of the most recent references on this

formalism. It gives the following expression for the energy difference §£:

2 NTALE
65=ﬁ[(61V)’+c "V] ; (15)
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where
T /" dz(E - V_(z)]"},
W, = /" dz[V.(z) - E},
£
and 6W is equal to Wj — W,. W) and W; are themselves given by
W, = / dz(E - V.(2)), (16)

Wy = /" dz[E - V_(z))}.

The limits of integrations z,, z3, T3 and z4 (2, < 3 < z3 < z4) are the roots
of the equation [E — V_(z)] = 0. In general, four classical turning points are
to be expected for double well potentials.

To check the performance of the SUSY-QM and WKB methods, we com-
puted §E by solving Schrédinger equation numerically using fourth order
Runge-Kutta method. This was done for the specific example of eq. (8). We
call it the numerical result in Fig. 2. We also calculated §E using WKB
method, and in Fig. 2, plotted all three values of § £ (obtained from eq. (13),
(15), and from the numerical solution), as functions of zo. We find that, as
Ig increases the barrier gets higher, and the SUSY-QM generated result for
§ E approaches extremely close to the numerical answer. In fact for zo > 1.3
the SUSY-QM generated result agrees so well with the numerical result, that
their graphs fuse with each other in Fig. 2. In Fig. 3a and 3b, we plot § £ cal-
culated by different methods against the asymmetry parameter a, keeping zo
fixed at the values of 1.2, and 2.0 respectively. Agreement of SUSY-QM gen-
erated output with the numerical result is better in Fig. 3b than in Fig. 3a.
This is to be expected as the perturbation parameter y$~(0) has a smaller
value in the first case. We find that the results based on the WKB method
deviate much faster from the numerical solution as the asymmetry param-

eter is decreased (a = 1 is the symmetric case) than SUSY-QM generated
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answer. Again we find that. for almost symmetric situations the SUSY-QM
generated output agrees extremely well with the numerical result. We also
note that, for very asymmetric cases (a =~ .4), SUSY-QM approacﬁ provides
results that are again, in excellent agreement with the numerical solution.
However, as we have stated before, the supersymmetry based approach is
much easier than solving the Schrédinger equation with an extremely small

eigenvalue lying very close to the ground state with vanishing energy.

IV. CONCLUSION

Decay of false vacua is a process of considerable interest in many research
areas that deal with phase transitions due to quantum tunneling. It appears
in cosmology(l], solid state physics(2], particle physics[3], chemistry[4], sta-
tistical mechanics(5], and in many other fields. Much of the analytical study
of metastability has been anchored around the semiclassical WKB approxi-
mation.

Here we employ another very attractive idea that has drawn much atten-
tion in recent years - supersymmetric quantum mechanics. We demonstrate
how SUSY-QM can be used to determine the probability of quantum tunnel-
ing, and the consequent decay of the false vacuum. This is a fully quantum
mechanical analysis, and can be easily carried out to any desired level of accu-
racy using logarithmic perturbation theory. We find that this method works
very well in giving the energy splitting 6 E, even for exceedingly asymmetric
double wells. The perturbation series converges especially rapidly when the
potential barrier is high.

1t is pleasure to thank Profs. W. Y. Keung and A. Pagnamenta for sev-
eral helpful conversations. One of us, AG, thanks Profs. R. R. Bukrey,
C. M. Brodbeck, J. J. Dykla, J. V. Mallow, and G. P. Ramsey for discus-

sions and the Physics Department of the University of Illinois at Chicago for
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warm hospitality where much of this project was completed. This work was
supported in part by the U.S. Department of Energy under grant number
DE-FG02-34ER40173.
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FIGURE CAPTIONS:

Fig. 1.

Fig. 2.

Fig. 3a.

Fig. 3b.

This set of graphs depict the form of the potentials V_(z) for three
different values of the asymmetry parameter a. These potentials

correspond to the ground state wavefunctions given in eq. (8).

A plot of the energy splitting 6E vs. zo.

A plot of §E vs. a.

A plot of §E vs. a. This graph clearly shows the

excellent agreement between the results obtained from the SUSY-QM
procedure (upto first order) and the "exact” (numerical) results.
Results obtained from WKB method also have been plotted for

comparision.
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Figure 3a
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