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The XXX-Heisenberg model appears to be fundamental in giving rise to many of the 
recent interesting developments in modern quantum field theory and mathematical physics. 
Integrable models, conformal field theories and quantum groups are seen to arise from 
various limits, extensions and generalizations l . It is, in fact, the original model considered 
by Bethe2 

, which gave r ise to the celebrated "Bet he ansatz" solutions. Recently there 
appeared an article3 , studying the Bethe ansatz equations in the two particle sector of 
the spin one-half model. It was shown numerically that as the number of lattice sites, N, 
increases past 21, a new pair ofreal solutions appear. These do not fit into the conventional 
scheme of classification of the solutions to the Bethe ansatz equations causing some anxiety 
as to the verity of the completeness of the full set of 5U(2) extended Bethe ansatz states, 
which just by counting should be 2N states. This however, is not a problem, since exactly 
two complex states disappear and form the real pair which appears, conserving the total 
number of states. We analyze the Bethe ansatz equations analytically and confirm the 
numerical result. 

The spin 4XXX-Heisenberg model with N spins corresponds to the Hamiltonian 

H = !.. I:
N 

(a, .a,+1 - 1) 
4 i:] 

with aN +l = aI, and the ai are just the Pauli matrices for each i. The Bethe ansatz in 
the 1vl particle sector corresponds to eigenfunctions of the form 

11{I) = t/J(XI"'" x M )a;1 a;la;3 ... a;,., 10)I: 
%1 <"1<'''<'',\/ 

with 

t/J(XI,'" XM) = ~ e{iI:;:lkp(i)"i+iI: i<1 ~P(j).P(I)}, L P(J»P(') 

PE S,., , 



IO} is the ferromagnetic state with all spins up, P is a pennutation on M objects and "'i,J 

satisfies 
",. . ,1: . k 

2cot(T) = cot(j) -cot(1)· 

kl .. . kM e (0,271'] are the spectral parameters. The wave-function is symmetric under 
interchange of any two coordinates %j. 

Imposing periodic boundary conditions 

"'(%1,'" ,%M-h N +1) = ",(1,%1,'" ,%M-J) 

implies the M coupled equations 

M 
ilt i• l . je ; N =IT e j =l,2, .. ·,M. 

'.1,,,j 

With Aj = cot(t) we get the equivalent fonn for the equations 

= nM 

e (Ai -Ai)(e(Aj»N j = 1,2," 'IM,
'.1 2 
,..I 

with 
A+i 

teA) = A _ i' 

The energy of the state is then given by 

M -2J 
E(A1 ,''',AM)= LA'+I' 

j=1 J 

The usual hypothesis states that in the large N limit, for fixed M , any 8OluLion AI, ... ,AM . 
consists of "strings" of the fonn 

6NA:,j = A: +i(n +1- 2j) + o(e- ) j= 1, ' '',n 

where n ~ 1 gives the length of the string, Q labels strings of a given length , j specifies the 
imaginary part oC A and 6 > O. With such a hypothesis, the Bethe ansatz equations only 
involve the real parts, A:. The solutions are parametrized. by (half-odd) integer numbers 
I~ for N - Mn (even) odd, where Mn is the total number of string of length n. It is 
generally believed that there is a 1 - 1 correspondence between solut ions of the Bethe 
ansatz equations and sets of independent , non-repeating integers 1~ , (l~ ::f 13 for Q :F 13, 
such that no two s trings o( the same length have the same integer)4. This is essential 
for all proofs o( the completeness of the SU(2) extended Bethe ansatz solutions for the 
XXX-Heisenberg model. The new real solutions shown below violate this correspondence, 
(or N > 21 there exist (ewer complex string solutions than predicted by counting integers. 

There is presumably no problem with completeness, two complex solutions drop out to 
fonn a real pair. 

The Bethe ansatz equations for M = 2 are 

(e(Ad)N = e( Al ; A,) 

(e(A2»N = e(Aoz -2 Al ). 

Now 
AJ -A2 A,;A'+i A1 +i - (A2 -i)

e(--) = 1\ = . .). 
2 ~ - i Al - l - (A2 + I 


· ~ A . h " i(e?,tl)'
Rep1acmg lor i WIt Hi = e A. - 1 gtves 

e(AI - A,) =_ (e(Al)e(A,) - 2e(A.) +1) . 
2 e(A1)e(A,} - 2e(A,) +1 

We define the variables Xi = e(A;}, then we get 

xi' = _ (XIXZ - 2X1 +I) and xl' = _ (XIX' - 2X2 + 1)
X 1X 2 - 2X2 +1 X.X2 -2Xl +1 . 

Multiplying these equations together gives, 

(X1X 2 )N = 1, hence XIX, = w 

where w is an Nth root of unity. Thus replacing X 2 = x\ above, yields 

xi' =_ (w - 2.:'1 + I) = -XI ( W - 2XI +1).
w-2Xi"+1 wXJ-2w+Xl 

Assuming Xl :F -:!fr, or 0, we get 

X!N-l)«W + I)Xl - 2w) +w - 2Xl + 1 = 0 

ie. 
(w + 1)Xi' - 2wX~N -l) - 2Xj + (w +1) = O. 

We want the roots of this polynomial equation, for each choice of w. We are actually 
interested in the real roots in terms of Al which are mapped to roots on the unit circle in 
terms oC XI' FUrthermore 

I 2w 12 4 4 2 
(w + 1) = (w +1)(w· + 1) = 2 +2~ = 1 +R.ew > 1 

for w ::f 1. Thus the denominator that we multiplied by may only vanish for w = 1. In 
this case, Xl = 1 = Xi which gives no Bethe ansatz wave fWlction since it vanishes due 
to the Pauli principle. 



The equation is cast in a more symmetric form with the replacement X I --+ ..;wX1. 

We first consider the case N odd, where it is always possible to have ..;wN = -1. Then 
we get 

10= (WJ + 1)wi xt - 2wWJ~xfN
- ) - WJ izx1 + (WJ + 1) 

=- (w + l}Xt + 2./WxfN 
-

1
) - 2'/wXI + (w + 1) 

:; -v'W ( v'W + )w )xt -2Xt-1 + 2X1 - (v'W + Jw )) 

which yields 

6 ~ N - (N I) - 6
cos('2)XI - Xl - +X1-COS{ '2)= O, 

iawith the definition .;w = e i ( ~). Now we look for solutions on the unit circle, Xl = e . 

The equation becomes 

)eiNa iacos( ~ - ei(N-l)a + e - cos( ~) =0, 

which simplifies magically to 

o=e~ cos(~)(e~ _ e~) _ eiae ilNi'lo (e i(N i 2 
l 

0 _ e -;(1'1,-2)0) 

= e~2i (cOS(~)Sin(~O) _ sin«N ~ 2)0)). 

Thus 

This equation is easily studied graphically. 0 E [0,271"]. The right hand side has zeros at 
o = ~":2 for k = 1,2,3"" ,N - 3 and poles at 0 = 2~'" for k = 1,2,3" ", N - 1. The 
value at 0 = 0 is ¥ but at 0 = 7!' it is -1. Graphically we get a root for each intersection 

. ( 1'1-20)
of a horizontal line with y = cas(!2) with the curve y = sIn . : 

sln( ) 

N=l1 

2 Pi 

• oiD(~)Figure 1: .;;:;\ , N = 11 

Just counting the intersections it is evident that there is a root for each zero. There are 
always N - 3 such roots. An additional pair of real roots can appear if 

cos(~» N-2 
2 - N ' 

giving N - 1 real roots, but Xl = 1 is also a root of the original equation, giving totally N 
roots. This exhausts all roots of the polynomial and then there are no complex conjugate 
pairs (for A). Thus we find 

6CriLiCU) N-2 
cos( --2- = -;:;. 

For large N, this will have solutions for ~ near 0 or 2'K , but because of reflection symmetry 
about 0 = 7!' we need only look around 0 = O. Assuming 8 is small and making an 
expansion in 6 and 1:1, we get 

1 8critiCU) 2 + ... = 1 - N2 
1 - '2( 2 

giving 
4 

8criLicai = Jii ' 

The values taken by ~ (the condition that w1f = -1 must be satisfied) give 

8 71'm 
for m = 1,3,5,· .. , N - 2,

2 N 



or 

~ = ~ ± '" for m = 2 4 6 ... N - I2 N ' ", I 

(N is odd). Hence for the odd series in m, we get 

m < 3./N
'" 

and for the even series in m, we must take the minus sign, giving 

2Im-NI < -/N. 
'" 

We see that the nwnber of new solutions behave like IN. The first N for which we have 
a new solution is N = 23, when m = 3 is allowed, next at N =65, m = 5 is allowed and 
so 00. 

For the case N even, we get the following modifications. First of all, for either choice for 

the square root, ,;w = ±e''''' , we have ,;wi = (-I)1ft. Thus for the case m odd, we get 
the condition as above, 

. «N-2Io)8 sm ~2-
cos( -) = . (l!.!!)2 sin 2 

I 

but here N = 2n. Thus, 

(~> _ sin«n-l)o) 
cos 2 - sin(no) . 

The R.H.S. is a function which has zeros at Q = (:~I) ' Ie = 1,2, 3, ... ,2n - 3, excluding 

Ie =n- I , i.e. 2n - 4 zeros, and poles at Q =~ , Ie =1,2, · ·· ,2n-l, excluding Ie = n. The 
value at Q = 0 is ~. The situation is as before except at Q = 1f , the value is - ";1 , not 
-1, and the function "turns over". The function is reflection symmetric about a = 11'. We 
therefore obtain at least 2n - 4 real roots (the number of zeros), but we get two additional 
real roots, making a total of 2n- 2 = N - 2, for 

Icos( ~ )1 > n:l . 
This condition can be satisfied for ~ near zero or near 1f. We also of course get the 
reflec tions of these about 7r. We get two new solutions for m < ~v'N and for 1m - ~I < 
~..[N, N.B. m is odd. Thus for the case N even, but m odd there are two solutions which 
viola.te the string hypothesis correpondence. We also always have solutions of the original 
polynomial corresponding to XI = ±1, (N even) which gives totally N roots, hence there 
are no complex roots for critical values of m. 
For m even, the equation for Xl becomes 

0 = (w + l )w 'tx[i - 2ww¥X~N-l ) - wi 2XI + (w + 1) 

=(w + I)Xf - 2.;wX~N-I) - 2yGXl + (w + 1) 

= yW (y'W + }w )X[i - 2X[i-l -2X1 + (y'W + }w» . 

Replacing Xl = e;o yields 

cos(~)eiNO - ei(N - I)a - eio + cos(~) = 0, 

(with ,;w = eit) which simplifies to 

o= e~ cos(~)(e~ + e~) _ eioe i(N i ').. (e ;(N,"" + e -;(N,-'IO) 

.iltJJ. ( 8 No (N - 2)0 ) 
=e-Y-2 cos("2)cos(T)-cos( 2 ), 

yielding 
(J cos«N- 2)O)

cos()- 1"2 - cas(bf) 

This equation is also easily studied graphically. The R.H.S. has zeros at 0 = (lJ~2) for 

Ie = 1,3,5"" ,2N - 5 and poles at Q = *" for Ie = 1,3,5"" ,2N - 1. We can check that 
at Q = 0 the function is -1 and at 0 = 1f it is -1. Graphically we get a root for each 

intersection of a borizontalline with y = cos(~) with the curve y = ccn(~): 

N=lO 

• cos(~)Figure 2: ~_:t\, N = 10 

Counting the intersections it is evident that there is a root for each zero. There are N - 2 
zeros, thus there are always only N -2 real roots, Xl = ± 1 are not roots in this case, in fact 

it is easy to see that cos ( ~O) and cos « N; 210) never vanish simultaneously. Hence there 

http:viola.te


are always two complex roots and no new real roots which violate the string hypothesis 
correspondence. 

Our method can be generalized to the M particle case. In general we cra.n reduce the 
Bethe ansatz equat ions to a set of coupled polynomial equations in terms of our variables 
X i. These can in tum, in principle, be reduced to a single polynomial equation in just 
one variable, however of higher order. We find it is a dramatic simplification to deal with 
even, coupled polynomial equations than the original tunscendental equations. We hope 
to extend our analysis to other models where the Bethe ansatz has proven useful. 

This work supported in part by NSERC of Canada and FCAR du Quebec and FOM of 
the Netherlands. We also thank the Institut fiir Theoretische Physik, Innsbruck , Austria 
for hospitality, where some of this work was done. 
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A bst ract 

We study the massive Schwinger model, quantum electrodynamics of massive, Dirac 
fennions, in 1+ 1 dimensions; with space compactified to a circle. In the limit that tran­
sitions to fermion-anti-fermion pairs can be neglected, we study the full ground state. 
We focus on the effect of instantons which mediate tunnelling transitions in the induced 
potential for the dynamical degree of freedom in the gauge field. 

I. Introduction and Summary 

The massive Schwinger model is the direct analog of the quantum electrodynamics of elec­
trons and positrons in 1 + 1 dimensions. It was studied] in a non-perturbative analysis 
of the effects of the mass term on the phenomena which manifest themselves in its mass­
less relative2 , the usual Schwinger model, quark trapping (confinement) and spontaneous 
syuunetry breaking without massless scalars (Higg's phenomena). The usual Schwinger 
model, is exactly solvable and has led to much insight concerning the actual structure of 
quantum field theories. It has afforded the first reconciliation of gauge invariance and the 
absence of massless states2 . It also provided a scenario of how confinement could mani­
fest itself at long distances while asym ptotic freedom was valid at short distances3 . The 
massive model, further modified with a current-current interaction was rigorously proven 
to exist by Frohlich and Seiler4 • Recently, it was shown that its fennionic determinant is 
directly relevant to the fermionic determinant in four dimensional Q.E.D., in the presence 
of non-constant, though uni-directional electromagnetic fields 5 . Thus the two dimensional 
model has direct bearing on a physical four dimensional theory. 

The massive Schwinger model however, is not exactly solvable. Bosonization yields a­
scalar field with am cos( ¢) self-interaction term and an electromagnetic interaction which 
is no easier to solve. The mass term prohibits the possibility of performing crural gauge 



tra.nsformatioDB, even at the classical level, hence the gauge field cannot be removed from 
the Lagrangean. Imposition of Gauss' law however, a.Ilows for the elimination of all non­
zero momentum modes of the gauge field at the expense of introducing the Coulomb 
interaction into the Hamiltonian. On the circle, we are left with one dynamical degree of 
freedom, the Wilson loop of the gauge field. For the infinite line the Wilson loop degree 
of freedom is still there, however it becomes infinit.esimals . 

Yang-Mills theories defined on a circle have been studied by MantonS (Schwinger model), 
by Rajeev1 (pure Yang-Mills) and more recently by Langmann and Semenoff8 including 
massless fermions. Some of the results in ' pre-empt some of our results, however there 
are no dynamic.al caiculatioDB done there, and the nonnal ordering ground state energy 
that bas been left out there is very important in the massive case. Topologically non­
trivial gauge transformations 011 II ... circle, render the Wilson loop variable compact, in 
fact, also a circle. The resulting Hamiltonian contains a kinetic term for the loop variable, 
its interaction with tbe fenruons and the properly nonnal ordered fermionic kinetic term. 
The normal ordering introduces an induced potential for the loop degree of freedom. This 
potential tends to localize the loop variable at its minimum. InstantoDS, however, mediate 
tunnelling transitions around the circle on which the loop variable is defined, which tend 
to delocalize the loop variable. 

We focus on the effect of these instantons. We calculate the semi-classical correction 
to the ground state energy. When these corrections become appreciable, the spectrwn 
must change from that of a localized particle to that of an essentially free particle which 
is constrained to be on a circle. This signals the breakdown of the semi-classical limit, 
however, the corresponding energy gives an estimate of the energy of the transition regime. 
We therefore find two regimes in the low energy spectrum of the massive Schwinger model. 
At low temperature, the spectrum is essentially a harmonic oscillator spectrum with a 
frequency w. This gives a specific heat which is constant for high temperature, Pw - 0, 
but vanishing exponentially for low temperature, (Jw - 00. Heating the system will 
eventually move it into a new regime, where the loop variable delocalizes. Here the energy 

spectrum behaves like w'n2 , yielding a specific heat which behaves 88 R 88 f3w' - o. 

11. Hamiltonian 

T he massive Schwinger model is governed by the Lagrangean density 

c.. = - ~FfI"(x, t)PU'(x, t) + IJIf(x, t)(io, - hex, t»w(x, f), (1 ) 

where F,. .. (x,t) is the electromagnetic field strength and hex, t ) is the Hamiltonian of the 
massive Dirac fermion with a minimal electromagnetic interaction. We fix the gauge by 
taking Ao(x , t) = o. This leaves one gauge field Al(x, t), and hence 

FOI = DIAI(x,t ) = v(x ,t) = -FlO. (2) 

2 

The ferTl.lionic Hamiltonian is 

h(x, t) = -i-y~(o" + iev(x, t» +m ..l, (3) 

where -y~ = i-y°-yl, and we take the representation -y~ = (13, -yO = (11 in terms of the Pauli 
matrices. 

The equations of motion resulting from the Lagrangea.n are Ampere's Law, 

ii(x,t) = elJlf(x,ths"'(x,t), ( 4) 

and the Dirac equation, 

iotlJl(x,t) = h(x,t)lJI(x,t) = (-i1's(o" +iev(x ,t)) +m-y°) 1JI(:r,t), (5) 

Gauss' Law, however, is absent 

o"v(x,t) = ewt(x,t)w(x,t). (6) 

Invariance of the Lagrangean under static, local gauge transformations 

v(x, t) ­
lJI(x,t) _ 

vex, t) - o"A(x) 
eieA(")W(x,t) 

(7) 

yields a local conserved charge 9(x), 

g(x) = o"v(x,t) ­ elJlt(x,t)w(x,t) (8) 

that is, the time derivative of Gauss' Law is zero, 

o,9(x) = o. (9) 

The canonical fonnalism is straightforward, yeilding the Hamiltonian density 

11 = ~(ti(x»2 + wf(x,t)h(x,t)lJI(x,t), (10) 

with canonically conjugate variable pairs 

vex, t), n"(,,,I)( X, t) = vex , t) 
(ll)

w(x, t), n"'(r ,,)(x, t) = ilJlt(x, t) 

and Poisson brackets 
{v(x,tr)' v(y ,t,)}'.=I, ::: 6(x - y) 

(12) 
{w(x, t z ),iw t( y,t.)}lr=t, = 6(x -y). 

3 
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For the quantum theory we work in the SchrOdinger picture with time independent opera­
tors but time dependent states. T he cl888ical Poisson brackets are replaced with conunu­
tators or anti-commutators, 

[v(z, tr), v( y,t.)],.=t, = i6(x - y), 
(13) 

{lI'(x, t r ), lI' f ( ~ , t ,)},.=t, = 6(z - y). 

The quantization proceeds essentially without subtlety, other than operator ordering ambi­
guities. Once the normal ordering infinities are subtracted, this yields B finite well defined 
Hamiltonian and Gauss operator, requiring no regularization. The normal ordering con­
stants are fixed by gauge invariance and locality9. 

The fen:n.ions can be quantized in the Hilbert space of free, massive Dirac fermions, while 
the gauge fields can be quantized in their corresponding free Hilbert space. The free 
Hamiltonian is 

iIO = Jd:t (~(~(x)?+ : ",f( x)ho(x)lI'(x) :) (14) 

where 

Ilf(:t) = L TP~(:t,p)ap +TP~(x,p)b! 
,.E Z 

vex) = L v(p)e i ¥ 
pEZ 

. e- i ¥ -id 
vex) = L 27rL dv(p) 

pEZ 

hO(x) = _i-yS 8" +m"Y° 

° e 
i
¥ ° TP±(x,p) = J2;LTP±(p) 

TP~(p) = rt~~~~=I===;:~=~~ ( (mL) )J(2(±y'p2+ (mL)2)(±y'(p)2 + (mL)2 - p») ±y'p2 + (mL)2 - p 
(15 - 20) 

and 
{ap,a!} = {bp,b!} = 01',9' all others zero. (21) 

The normal ordering in (14) is with respect to these operators, the vacuum state defined 
by 

aplO >= bplO >= 0, (22) 

for all p. Explicitly the free fennionic Hamiltonian is 

iI~ = I L y'p2 +(mL)2(a!a,. + b!bp). (23) 
pEZ 

4 

The gauge field Hilbert space is presumably a "wave functional" of the variables v(p). 
This is rather formal here, since the ground state wave functional would be the infinite 
fold product of nonnaJized ground state wave functions for each independent variable, 
which does not exist. The problem arises simply because the infinite fold tensor product is 
not isomorphic to the space of norrna.li2able complex valued wave runctionals of an infinite 
number of variables, with the momentum operator represented by the functional derivative. 
This is in contra-distinction to the analogous case for a finite number of variables. Since 
we will be able to eliminate all but a single gauge degree of freedom on imposing Gauss' 
law, we will not overly concern ourselves with the precise definit ion of the gauge field 
Hamiltonian and Hilbert space. 

Introducing the interaction at the first quantized level yields t he Hamiltonian 

hex) = - i"'l' (8r+ iev(x» +m·l 	 (24) 

with putative second quantized version 

ifF = iI~ +Jdxv(x)( lI't(zhs lJI (x». 	 (25) 

We must define the last term in the R. H.S., the interaction current density 

jl(X) = IJIf(xhs lIJ( x) = ~(xhllJl(x) 	 (26) 

and we will also need the charge density 

p(z) = IIJf(x)Ilf (:t ) = ~(xhOllf(x). 	 o 
Precisely, we will define, their corresponding momentum components, for p i 0 

j"(p) = L ((TP~(q)h°"Y"ITP~(p +q)}a!ap+q + (TP~(q)I"Y°"Y"ITP~(p +q)}a!b!+q 
qEZ 	 (28) 

+ {TP~(q)h°"Y"ITP~(p +q» bqap +q - (TP~(q)I"Y°"Y"ITP~(p + q)}b!+qbq) , 

where the bracket (·I·) is between the spinors in equation (20). These are well defined 
operators with their domain consisting of states corresponding to finitely many excitations 
above the free vacuum state. For p = 0 we must actually normal order by subtracting 
infinite constants, we take 

Q = Jdxj O(x) = L (a!aq - b!bq ) 

-J 
qEZ 

' I - ""' ( q ata (mL) a bQs - d:tJ (x) - {Ez y' 2 + (m L ):l q q + J 2 + (mL)2 q q (29)q q

+ 	 (mL) bfaf _ q bfb).
Jq2 + (mL)2) q q Jq2 + (mL)2 ) q q 

5 



These charges dearly have arbitrary defiuitions up to c-numbers, as far as the fernuonic 
variables are concerned. We can fix these c-number.l by imposing gauge invariance and 
loc.a.li ty8. These c-numbers will only affect the fermionic Hamiltonian by c-numbers if we 
take equations (28) 88 the basic building blocks for constructing the Hamiltonian (25). 

Gauge invariance manifests itself with the condition that the spectrum of (25) is indepen­
dent of vex), we can gauge away vex) with the gauge transformation 

eic Jo· "" ..(,) (30) 

Actually we may not remove all of the constant part of vex), the gauge transformation 
(30) must be single valued on the circle. Thus we must modify (30) to 

e ic Jo· ..,(,,(,)-w) (31 ) 

with 12flL1 
v = 21fL ° dxv(x). (32) 

As explained in reference 9, this gives the gauge covariant Hamiltonian 

HF =H} + e L v( -p)j)(p) + Le2 L v( -p)v(p) +evQs. (33) 

~~: ,ez 

The gauge covariance is manifest if we remove v( -p) dependence by a unitary transforma­
tion 

HF =Ut(HJ, + evQ~ +Le2v'l)U = UtilFU (34) 

where 
U =e-eE"u';uC-,,)j°(P). (35) 

This follows from the commutation relations, which can be rigorously established, 

liO(p),j)(q)] = 2pop,-q 

(H~,jo(p)l = - f jl-(p) (36) 

IQ,QsJ = (Q,il'{p)J = [Q5,i"(p)] = (j°(p),io(q)) = (jl (P),il(q)] = O. 

The full Hamiltonian then is 

" L -1 1 ~ •
H= + HF 

21fL 2 dv(p )dv( -p)
Z"E 

_U eLi°(P» ) (d eLiO( -P») - iI )Ut (-1,,1 ( d 1Jl 
- 21fL ~ 2 dv(-p) +-p- dv(p) - p + 41fL dv'l + F ,,.. 
=utf/u 

(37) 

6 

and we are looking for the ground state of if or equivalently iI. 
We must not forget Gauss' law, which actually simplifies matters. At the quantum level 
we impose Gauss' law as a constraint on physical states. Physical states are those which 
are annihilated by the Gauss operator: 

g(x)lphysicai >= O. (38) 

We can write g(x) by Fourier decomposition as 

_ e i ¥ . 
g(x) = L ?y'G(p) (39) 

"eZ _11" 

where 
• p d ' 0 

G(P)=Idv(-p) -e) (p) 
(40) 

= {utf d,l-"jU p t- 0 
utQU p=O 

with Q the charge operator. 

Thus we look for eigenstates 
HI£ >= £It > (41) 

subject to the simpler conditions 

Ta./..,,) It >= 0 p t- 0{ (42)
QI£ >=0 p =0. 

Clearly the conditions are trivial to satisfy, 1£ > is a charge zero state, that is indepedent 
of v(p)Vp. Then the eigenvalue problem for It > reduces to 

2 " !e2L2jO(P)jO( -p) __l_!:. - ) (43)21fL fE: 2 p2 41rL dv2 + HF 1£ >= £1£ > . ( ,,.0 
I 

The first term is just the Coulomb energy of the fermions while the v is the only physical 
degree of freedom in the gauge field. 

We must st ill deal wi th topologically non-trivial gauge transformations 

gl;(X) = e-'¥ Ie E Z. (44) 

The effect 00 v is to shift it by a constant, 

k 
v -+ v + eL ' (45) 
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Hence v is really a circular variable with circumference -!r. The fennionic part of the 
Hamiltonian transforms covariantly under these gauge transformations, the uni tary op­
erator V which implements these transfonnations for k = 1, effects the mapping on the 
annihilation and creat ion operators which diagonalize fI p, 

1 
a,,(v) = vta,,+l (v - eL )V 

(46) 
b,,(v) = Vtb,,+I(v - e~)V' 

The expression for V is simple, 

V = ne-i(Ap( .. )4!.,(v-.r )-4,+,(v-.r ).!(v))e-'H'p( ,, )i~+,( ,,-c\- )- 6,+tl w- .r)i!<v». (47) 

"EZ 

V is in fact independent of v, as can be seen by reexpressing a,. (v ) in terms of the free 
annihilation and creation operators, 

(tP+(p, v)1 (ItP~{p»)a" + ItP~(p»b!) 

= vt (tP+(p+ l,v - e~)1 (ItP~(p+ 1»)a,,+l + ItP~(p+ 1»)b!+l) V. 
(48) 

Therefore, if 

a" = vt(tP~(p)1 (ItP~(p + 1»)a,,+l + ItP~(p + l»b!+l) V 
(49) 

b! = vt(tP~(p)1 (ItP~(p + 1»)a,,+l + ItP~(p + l»b!+I) V 

equation (46) will be satisfied. This is a (unitarily implementable) Bogoliubov transfor­
mation that is completely independent of v. The Hamiltonian satisfies 

t - - 1 2 12 - 1 
V HF(v)V=H}+e{v+ eL)Qr.+ e L(v+ ell =HF(V+ ell. (50) 

Thus the spectrwn of the fennionic Hamiltonian is invariant after going around the circle 
in v, however the eigenstates form sections of a bundle over v, the fermionic states satisfy 

1 
Vlv + eL >= Iv > . (51) 

The physical state condition, equation (38), which corresponds to implementing Gauss' 
law, makes the states invariant under infinitesimal gauge transformations. The integrated 
version of equation (38), corresponding to finite gauge transformations that are still con­
tinuously connected to the identity (small), simply implies that the states are invariant 
under these small gauge transfonnations 

ei f dzA(z)G(z) Iphysical >= Iphysical > . (52) 
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In G( x), the part corresponding to the divergence of the electric field, effects the trans­
formation on the gauge field, while the fennionic charge density effects the appropriate 
transformation on the fermions. For the topologically non-trivial gauge transformations 
(large), we can only work with the finite form of these transformations, evidently an in­
finitesimal generator does not exist. We should impose invanance of the states under these 
transformations also. The transformation on the gauge field is a translation operator, K:., 

1 
K:.(v) = v + eL (53) 

while the fermions are t ransformed by V, equation (46). Thus invariance of the states 
under large gauge tram,iormations implies 

K:.Vlphysical >= Iphysical > . (54) 

T he eigenstates of the total Hanliltonian then must have the form 

1£ >= L tPn{ v )ln, v > . (55) 

Here In , v > correspond to a complete set of fermionic sta tes sat isfying equat ion (51) and 
tPn (v) is the bosonic wave func tion which is periodic under translation of v by 1C, 

1 
1C{tPr.(v» = tPn(v + ell = tPn(v). (56) 

If we express H in terms of fermionic annihilat ion aud creation operators which diagonalize 

,,.0 

fIF we get 

~ 
H = 

-1 cfl t - t­,, ! p
47rL dv 2 + ~ V( L + ev)2 + m2 (a,,(v)a,,{v) + b,,(v )b,,(v )) - g(v) 

pEZ 

+ ~ L !e2L 2jO (P)jO( - p) 
(57) 

21rL rt Z 2 p2 

and g( v) is the induced potential from the fermions for the gauge degree of freedom9 
, 

-12mL ~ K1( 7rnmL)
g(v) = Y-1r- ~ n (cos{21rneLv) - 1). (58) 

n =1 

III. Approximations 

The basic approximation that we make, which is not exact10, is that excitations to fermion­
anti-fermion pairs ( corresponding to fI pC v» are suppressed. Standard perturbation theory 
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shows that corrections to the wave funct ion and energy levels coming from intermediate 
states are not only suppressed by explicit factors of some coupling constant, but also due 
to powers of the ratio of the characteristic energy scale of the inteTaction Hamiltonian with 
the energy difference between the unperturbed initial state and the intermediate statell . 
If the Hamiltonian is a free part plus a perturbation, 

H = HO + ).H' (59) 

and the full wave function admits an expansion of the fonn 

,p = ,po +). L
OQ 

Q",p" (60) 
n=1 

with 
Ho';''' = E,.",,. n = 0,1,2, · .. , (61) 

we get 

HtP = (Ho + ).H' )(tPo +). L ontPn) 
,,=1 

00 00 

= EotPo + ). L onE",p" + ).H'tPo + ).2 L o"H'tP" (62) 
n=1 n=1 

= EtP = E(tPo +). L OntP,, ). 
,,=1 

This implies 
E =Eo + ). < tPo lH'ltPo> +o().2) (63) 

and 
_ \ < tPnIH' /tPo> +o().2).

).on - 1\ ~ ~ (64) 

In our case we consider excitations from the fennionic ground state 10 >> which is anni­
hilated by op(v) and b,(v). j O(p) can be expressed as a bilinear in these operators, hence 
the Coulomb energy term mediates transitions t o intennediate states with zero, one or two 
fe.rmion- anti-fennioD pairs, at zero total momentum. Then 

AH' = (e L )2 (.!. L j O(p )jO(-P») , (65) 
411" L ,u p2

,,.0 
and the coefficients of states involving fermion- anti-fennion pairs, fi rst order in the per­
turbative expansion of the full ground state are 

I ~ <pain lt(p)t( -r)lo» )
(eL )2 ( r L..~~! , 


4.,.. (Eo - Epain ) 


(66) 
< (eL )2 (.!. L < pairsIi°{p)jo (-p)IO ») 
- 4.,..2mL L ,EZ p2 . 

,,.0 
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This behaviour continues in each order. Thus the coupling constant emerges as (eL)(,;), 
which we take to be arbitrarily small. Therefore we can neglect the contribution of pair 
states, arising because of the Coulomb tenn, to the full ground state. This makes intuitive 
sense in the following way: on a circle, we cannot separate charges to infinity, there is a 
maximum separation that we can separate charges. The Coulomb energy, which is linear in 
the separation, is bounded. It is a little more work to see that the corresponding operator 
is relatively bounded in comparison to the fennioruc Hamiltonian about which we perturb. 
Hence in the limit that its coefficient goes to zero, we can rigorously neglect it. 

The shift in the ground state energy has the leading contribution 

« °1).H'IO » 

= (eL)2 (..!. ~ «OljO(p)jO( -p)IO »)

411" L fe: p2 


...0 

2 
= (eL)2 (.! " E,EZ I(,p- (q, v)l,p+(p +q, V»)1 ) 


4.,.. L fe: p2

,,.0 

(eL)2 1 L 1 ( 1 ) 

= 4;'"",£ '-fE Z' pi 2J(q + eLv)2 + (mL)2( J(q + eLv)2 + (mL)2 + q + eLv) x 
,.,.0 
(mL)2 

2 

-(J(q + eLv)2 + (mL)2 + q +eLv)( J(P + q +eLv)2 + (mL)2 - (p +q + eLv») x 

(2J(P +q + eLv)2 + (mL)2( J(P+: + eLv)2 + (mLF - (p + q + eLV») . 
(67) 

This has as coefficient (eL)2 multiplying a function of eLv, which is of order 1. This shift in 
the ground state energy is suppressed relative to -g(v), the normal ordering contribution 
to the ground state energy, by again a factor of (eL)( -;;;). 

This yields the truncated Hamiltonian 

-1 Ql 1 
H = h L dv2 + L L J (p + ev )2 + (mL)2 (a!(v)ii,(v) + b!(v)b, (v») - g(v ) (68) 

,EZ 

and the ground state will be of the fonn 

ICo >= 1/J(v )IO» . (69) 

The state 10 >> depends on v , hence the derivative 1., will give transit ions to other 
fermionic states. We have 

10 »= WtlO > (70) 
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with 10 > the free fermion vacuum, and 

w = IT e'("·")(G!·~-'p "')· (71) 
,.EZ 

W is the unitary operator implementing the Bogoliubov transfonnation 

W ta,.(v) = C08(6(p, v) )a,. +sin(6(p. v) )b! = a,. W 
(72)

h!(v) = - sin(6(p, v»ap +cos(9(p, v»b! = Wtb!W, 

with 
cos(9(p,v» =< tJI+(p,v)ltJI!(p) > 

(73)
sin(9(p, v» =< tJI+(p, v)ltJI~(p) > . 

Then, 

: 10 »= - L d(9~, v)) a!(v)b!(v)IO» . (74) 
v ,.ez v 

The derivative can be expressed as 

d(6(p,v)) 1 dsin(6(p, v)) 1 d < tJI+(p,v)ltJI~(p) > 
-d-v- = cos(6(p, v» dv = < tJI+(p, v)ltJI~(p) > dv 

(75) 
The denominator is a smooth function of order 1 in eLv, and also in mL. Note that eLv 
is always in [0,1]. The numerator is 

(tJI+(p, v)ltJI~(p») = 

(mL)2 - (v(p +eLv? + (mL)2 - (p +eLv»( ..;pi+- (mL)2 + p) 


~2JJ=v~(p~+~eL;:v:;:;)2~+~(m=L~)~2(:=";=;(=p=+~e~Lv~):;=2=+~(~m:;L~)2;=_=(~p=+=e~L=v:=:=»"";' X (76) 


1 

X -J'Fj=;:p:;=2=+~(m~L)~2::=(";'~p~2=+=;(=m~L~)2:=+=p~) 

It is easy to see that < tJI+(p,v)ltJI~(p) > behaves like ~ for mL» p. For mL« pit 
behaves like m~~L", which is then much smaller than ~ and for mL = ap, with Q :::::: 1, 

we can directly factor the powers of mL out of the expression leaving a function of "!:i and 
Q. Thus differentiating with respect to v in each case gives a factor of -;!t. Thus when this 
parameter is small we can neglect the action of the derivative fv on the fermionic state, 
yielding the equation for tJI(v) 

-1 d2 
(41fL dv'l - g(v»tJI(v) =£°tJI(v), (77) 

a simple, one-dimensional quantum mechanics problem on a circle with a periodic potential. 
For m 1- 0, g(v) is a smooth periodic potential with a single, symmetric well at v = 2~L' 
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It is clear what the excitation spectrum will be. For low energies, the variable will be 
localized in the bot tom of the approximately harmonic well. The energy will be 

1 
£n :::::;hw(n + '2) n = 0,1,2... · • (78) 

where w is the curvature at the bottom of the well. Then for high energies, the variable 
v will hardly notice the small potential - g(v), but will be essentially constrained by the 
size of t he circle upon which it must sit. The circumference is ft' giving rise to an energy 
spectrum 

£n = hw'(n,)2 n':::: 1,2. ·· · . (79) 

w is given by 

w = d 2~L ( d~2g(V)I.,=~). (80) 

while 
w' = 1fe2L. (81) 

IV. Instantons 

We proceed along the lines pioneered by Langerl 2, and popularized by Coleman l3 
, for 

using the Euclidean path integral to calculat~ the effects of tunnelling. T he idea is simple, 
the matrix element of e-TH in t he "posit ion" eigenstate Iv = 2h; > has a representation 
in terms of a Euclidean path integral 

< v - _1_1 -THI 1 1 -Jofr drLE( ( ) _ 2 Lev = - >= V () -T v rJ (82)e 2eL -T v T e «r,,(-,-)=v(.,)=~ , 

where LE(v(T» is the continuation to (dimensionless) Euclidean time r of the usual La­
grangean. In this simple case it corresponds to 

LE(v(r» = ~(V(T»2 - 21fLg(v(r» (83) 

which can be thought of simply as the Lagrangean describing motion of a particle in minus 
the original potential, -(-g( v». The matrix element equation (82) has the expansion 

1 1 1 1TCo < v< v = -le-THlv = - >= e- = -1£0 >< £olv = - > +.. . (84)
2eL 2eL 2eL 2eL 

thus in the limit that T -. 00 we can extract fo, and the amplitudes I < £olv = 2:L > 12; 
contributions from higher states will be exponentially suppressed. 

The Euclidean functional integral can be evaluated in a saddle point approximation. The 
first step is to identify the saddle point, called an instanton here, and then perform the 
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functional integral in a Gaussian approximation about the saddle point. The Gaussian 
functional integral simply gives rise to e- s: where sf is the Euclidean action for an 
instanton, multiplied by the inverse square root of a functional determinant. The detenru­
nant is the product of all the eigenvalues of the functional operator corresponding to the 
second variation of the Euclidean action about the instanton. This product has two main 
problems, it is of course infinite, but it is also zero! 

The infinite product of. a continuum of eigenvalues that become arbitrarily large is formally 
infinite, but in fact completely ill-defined. It is, however, only the ratio of this product 
relative to the correponding (infinite) product for the free case that is important. This 
ratio is finite. The other problem comes from vanishing eigenvalues. These render the 
determinant zero. Such zero modes correspond to degeneracies of the original instanton. 
There usually exist a whole set of instantons with the same action. We should sum over 
the contribution from all saddle points (instantons) with the same, minimal action . When 
we perfonn this sum, we have already taken into account the direction in function space 
corresponding to the zero modes. Thus in the Gaussian integral, we should exclude the 
integration along the zero modes, the result being the determinant with the zero eigenvalues 
removed. There is a Jacobian factor which must be taken into account since the measure 
corresponding to summing over the contribution from degenerate instantons is different 
from that corresponding to integrating over the zero modes directions in the Gaussian 
functional integral . 

Actually for large but finite T, there are no exact zero modes, corresponding to invariance 
under translation of the instanton in Euclidean time. The corresponding eigenvalue how­
ever, is exponentially small in T , thus the infinite T calculations will be exponentially close 
to those for finite , but large T. Furthermore, we must recognize that in this case, there are 
other approximate critical points, corresponding to N widely separated instantons which 
must also be considered. The corresponding action is N times the action of one instanton, 
implying naively that their contribut ion is suppressed by N - 1 powers of e- s: relative 
to the contribution for one instanton. The degeneracy factor of these approximate criti­

cal points is, however, ~J corresponding to independent tr anslation in Euclidean time of 
each instanton. T his factor can be arbitrarily large compensating t he suppression from the 
exponential factor, until N surpasses T . T must always of course be sufficiently large so 
that the space per instanton, *, is still much larger that the size of the instanton. The size 
of the instanton is determined by the parameters that appear in the Lagrnngean, hence 
has nothing to do with T and N . T hus it is always possible to satisfy this constraint. We 
should sum over N until it is of the same order as T. However, once N is of this size, the 
contribution offur ther terms in the expansion is exponentially small, due to the +t , thus 
we m ake only a negligible error to continue the sum up to 00. 

For mL sufficiently large we can keep only the first term in the series for g( v), 

-g(v) ~ -!~LKl (21fmL) sin2(11"eLv) (85) 
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and 
w =47reLymLK1(27rmL), (86) 

is the relevant frequency for a (dimensionless) Euclidean time, r . The corresponding 
instanton equation, obtained by varying the Euclidean Lagrangean is 

Jl 
dr2 v(r) = -87reLmLK1 (271"mL) sin(211"eLv(r» . (87) 

This equation is easily integrated to give 

vCr) = 2- tan- 1 (e±(Jcr-rol) __1_, (88)
1reL · 2eL 

the ± choosing an instanton or an anti-instanton. The action for either is given by 

s, _ 8.jmLKl (21rmL) 
(89)0 - 1reL . 

A method which we follow here, for calculating the ratio ~, where det' is the determinant 
with the zero modes excluded and deto is the free determinant, is given in Coleman 13 • Here 
it is shown that 

det' tPo(·iiJ 
deto = .AotP8(£) (90) 

where tPo( £) is the eigenfunction (evaluated at £) with the smallest eigenvalue .Ao, 
for the differential equation corresponding to the SchrOdinger operator on the interval 
1- -t;L' -t;L ]' with potential +g(v(r»" satisfying the boundary conditions tPo{ -f) = 0, 
tP~(-£) = 1. tPg( £) is the analogous solution for the free problem. As T ~ 00, these 
are easy to find. We find 

det' So(11"eL)2 
(91)

deto = 8w3 = 4w 2 • 

The contribution from the instantons and the anti-instantons sums separately. There is 
no constraint on the order in which they must appear, either tunnels from the same initial 
and final state. This gives two times the same contribution. The factor13 K, which takes 
into account the J acobian factor and the ratio of the detenrunant in the presence of one 
instanton and the free determinant then is 

K = ( So)~ (det 
l

) -~ = (~ )L~. (92)
211" deto 1r eL1f 

Then we find the path integral, equation (82) , is given by (in dimensionless Euclidean 
time) 

OQ 

( L Keso )Nl( LL K eso )Nl (w ).l _ ---L-.l.., 2rtrKe-sO 
(deto) L 2" L 2,.. = _ le fir., e . . (93)

NdN2! 11"Nl,N,=o 
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The sum over NI is for the instantons while that over N2 is for the anti-instantons, the 
upshot is the {actor of 2 in the exponent. The free determinant is calculated in Coleman l3 . 

Finally we find, 

I I 1 1T< v = -le-THlv = - > = e- £. < v = -lEo >< t:'olv = - > + ...
2eL 2eL 2eL 2eL (94) 

= (~)ie-1frH"'-2(~)~-::rc-sa) . 
11' 

Hence 

1 1 ( 16 (JmLKl(27rmL» ) t e-So) __1-BmLK1(27TmL)t:'o = --w 1 - - L 21rL2?rL 2 11'" e 
(95) 

1 1 (1- 4../2 -ISoe-so) __1-8mLKI(21rmL), 
= 27rL 2w ..fo 0 27TL 

where we have included the offset due to the value of the minimum of the potential - g( v). 

The correction that we have calculated is non-perlurbative. Our approximations, eL -;; -+ 

0, ;; -+ 0 and mL -+ 00 still leave So arbitrary (as can be seen from its expression). It 
can take values from 0 to 00. The function e-s.;x is maximum at x = t, where it is equal 

to *. Then ~* ~ 1.3. Hence as So approaches ! from above or below, the effects 
of the instantons become non-negligible. 
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