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INTRODUCTION

Dynamical symmetries prove extremely useful and have applications in many
physical situations’. Customarily, these symmetries are described mathematically
in terms of Lie groups and algebras. It has been appreciated howewer that more
general structures can sometimes be required. A celebrated example is that of Lie
superalgebras; these arise when supersymmetries are encountered. Another type of
algebras, that of quantum groups, is also being recognized as potentially relevant
to describe dynamical symmetries, especially in the context of integrable models.
These quantum groups belong to the class of quadratic algebras which are defined
by subjecting the generators to quadratic relations. The purpose of this paper is to
provide a simple example where the symmetries are most naturally discussed using
such a quadratic algebra.

We shall consider a two-dimensional anisotropic harmonic oscillator with a 2 to
1 frequency ratio. This problem is known to admit accidental degeneracies that can
be explained with the help of Lie algebraic techniques 2. It is first shown that the
associated Halmiltonian possesses two constants of motion that are quadratic in the
momenta. A realization of the su(2) algebra is then constructed using these conserved
quantities. Since the dimensions of the unitary representations of su(2) coincide
with the degree of the degeneracies, these are thus accounted for. This resolution
is not completely satisfactory howewer. The reason is that under commutation the
constants of motion do not actually form a Lie algebra; one needs in fact, to divide
these quantities by the square root of certain operators to obtain closure. As we shall
explain, such difficulties do not show up if a quadratic algebra framework is used
instead of the Lie algebraic one. It therefore seems that quadratic (and polynomial)
algebras could be useful tools to deal with dynamical symmetries. Such a claim has
been made also in Refs. [4-6], where other interesting examples are discussed.

We shall also make another interesting observation from this analysis of the
anisotropic harmonic oscillator. Recently, quasi-exactly solvable problems have at-
tracted a lot of attention. (For a review see Ref. [7].) These quantum systems are
characterized by the fact that part of their spectra can be obtained algebraically. This
is made possible by the existence of a hidden symmetry algebra generated by first



order differential operators. Hamiltonians that can be expressed as bilinear combi-
nations of these operators will leave invariant any finite-dimensional representation
space of the symmetry algebra and as a result, the corresponding part of their spectra
can be computed through a finite-matrix eigenvalue problem. In one dimension, more
specifically, one uses the su(2) realization

- i1z + g 29 -5
T"——J+z—z, Tt =2jz—2 <> T o oL

(1)
[r®,T%) = £7¢, [T+, 7] =27

which for j as emi-integer, entails a (2; +1)—dimensional representation over the space

spanned by the monomials 1,z,...,2z%/. One then takes for Hamiltonians

= Y carr+ ) cr. (2)

a,b=0,%+ e=0,1

Through a similarity transformation and possibly, a change of variable z = z(z),
these Hamiltonians can be cast in the form —%‘i:, + V(z) and a list of quasi-exactly
solvable Schrodinger operators is thus obtained. We may remark that exactly solvable
systems result if the parameter j does not appear in the Hamiltonian. This happens
for instance in the case of the Morse potential V(z) = A(e™2°* — 2¢~*) which plays
an important réle in molecular physics. The simplest example of a quasi-exactly
solvable problem in one dimension is provided by the anharmonic oscillator with
potential V(z) = jw?z® — 28w?z* + [28%w? — w(4j + })|z*. This system, as it turns
out, is related to the two-dimensional anisotropic oscillator with Hamiltonian H =
-3} +93) + 30’2} + 4(z2 - B)?] , pi = —i5y; i =1,2. Indeed, owing to the higher
symmetry of the Hamiltonian, the Schrodinger equation Hy(z1,2z2) = Ev(z,22)
separates in parabolic coordinates as well in Cartesian coordinates®. We shall see that
when parabolic coordinates are used, the separated equations coincide exactly with
the one-dimensional equation associated to the anharmonic oscillator with potential
V(z).

We take great pleasure in dedicating this paper to Franco Iachello who has so
brilliantly applied algebraic methods to domains as diverse as nuclear, high energy,
atomic, and molecular physics. We hope that he will find interesting the occurrence
of quadratic algebras in quantum mechanics. Let us also recall that Professor lachello
himself studied (among others) the dynamical symmetries of the Morse Hamiltonian®.
He has shown that these can be traced back to the su(2) symmetry of the two-
dimensional isotropic harmonic oscillator Schrédinger equation. In this case, one
separates the variables in polar coordinates and after a change of variables, identifies
the radial part as the Schrodinger equation for the particle in the one-dimensional
Morse potential. It is in close analogy with this approach that the relation between
the quasi-exactly anharmonic oscillator and the two-dimensional anisotropic oscillator
with a 2 to 1 frequency ratio is established here.

The remainder of the paper is organized as follows. We first set our notation
and identify the accidental degenaracies of a generalized 2-d anisotropic oscillator.
We then present the quadratic dynamical algebra and show how the dynamics is re-
solved by constructing the representations of this algebra. We indicate in particular
how the degeneracies are explained in this framework. Finally, we make the connec-

tion between the 2-d anisotropic oscillator and the quasi-exactly solvable anharmonic
oscillator. Conclusions follow.

THE GENERALIZED 2-D ANISOTROPIC OSCILLATOR

We shall be considering a two-dimensional quantum system with Hamiltonian

H =H, + Ha, (3)

where 1 1 1 )
H, = E(Pf +wa]) + g(az = 1);3‘ ) (4a)

Hy =3 [(3} + 4%z - B)] , (45)

P = —is%i ,i = 1,2, and a,B8,w € R. In the special case a = 1, H governs the

dynamics of an anisotropic oscillator with a 2 to 1 frequency ratio.
It will be convenient to introduce the annihilation and creation operators

a = \/%(‘“x +ip), ol = ﬁ(“ﬂ —ip1), (5a)

w=vVE =Mt o], od=vE[@-n-Lm|, o
that satisfy the commutation relations ‘

[aha,t] = kb [ex,a1] = [al,a!] =0 kl=1,2. (6)
In terms of these operators,

% = ‘f!ﬂx + %("z =1)(a + “I)—z % ’ V (a)

H
= =alas +1. (1)

The spectrum of H = H, + H; is easily obtained by separating the Schrodinger
equation in Cartesian coordinates. With ¥(z1,z2) = ¢(z1)x(z2), the equation Hy =
E4 amounts to Hy¢(z1) = Ei¢(z1) and Hax(z2) = Eax(z2) with E = E; + E;.
We recognized in H;, the Hamiltonian of a 1-d harmonic oscillator; its eigenfunctions
are of the form < z;|n; >x< z;l(al)"’|0 > and have energy E; = 2n; + 1. The
eigenvalues of H; can be determined by exploiting the conformal symmetry of this
operator. Indeed, define the operators

B} = (a})* - §(a® = 1)(@ +af)?

(8a)
=af(@m+a) -2+
By =(Bht. (8b)
Clearly,
[Hy, Bf] = +2wBf . (9)

It is also straightforward to check that

|ex|

pi57 = (2 7y + By sn- 3], (10)



from where it follows that

H

w .

(B, By ] = —4 (1)
One immediatly identifies (9) and (11) as the commutation relations of so(2,1). The
relevant representations of this algebra are easily constructed. We known that H, is
bounded below. There must therefore be states annihilated by B from which the
cigenstates of H, are to be obtained by repeated action with B;"; correspondingly,
the energy eigenvalue will raise above the minimal values in steps of 2w. One thus
sets

H\|Ey >= Eg,|E; >, (12q)
BTIEI >= 85|+1le1 + 2w > ) (12b)
Bl |E, >=sg,|Ey — 2w > . (12¢)
From (12), one has Bf By |E) >= s}, |E) > and with the help of (10) one obtains
E lel\ (E la]
azsl:(?'—l+—2—)(7'—l——2— . (13)

The lowest energies are the zeros of ni;‘ and following our discussion the spectrum of

H, is found to be

lal

E1=(2ﬂ1+1i—2‘*)w n1=0,1,... (14)

Note that the set (2n; + 1 — |a|/2)w is admissible only if 0 < |a| < 2, otherwise
there would be states with non-positive norms. When a = 1, the two series in (14)
combine to give the standard oscillator spectrum E; = (n; + %)w, n; =0,1,... The
total energies are thus

E=E +E; = [2(n1+n;+l)ilil]w
2

lal (15)

=(2N:t7)w n,,n;:O,l,..., N:1,2,...

Since the integer N is made out of the sum of the two integer-valued quantum numbers
n, and ny, accidental degeneracies occur and their multiplicity is in fact given by N.
We shall now show that a dynamical quadratic algebra can be used to explain these
degeneracies.

THE DYNAMICAL QUADRATIC ALGEBRA

Consider the operators

D=H - Ha, (16a)
Ci =wB}az, (165)
c.=cl =wBidl. (16¢)

It is easy to see that these quantities are conserved. Together with the Hamiltonian
H and the identity operator I, these operators (16) generate the symmetry algebra

of the anisotropic oscillator. The stucture relations are straightfowardly determined
to be:

{H,D]=[H,C+]={B,C_]=[H,I]=0, (170.)
[D,[]:[C+,I]=[C_,I]:0, (176)

[D,C4] = +4wCy, (17¢)
[C+,C_]=;D’+DH—%H’+ (L%) Wil (17d)

We note in (17d) that the commutator of C and C_ is given as a quadratic combi-
nation of D and H. The operators H,D,C;,C- and I do not therefore define a Lie
algebra. In a representation on an energy eigenstate, H is constant; it may then not
be taken as a generator inequivalent to I. Since we are dealing with differential op-
erators, the Jacobi identity is satisfied. It is also not difficult to see that this algebra
possesses a Casimir operator K commuting with all the generators. Explicitly,

w a?

K=2{Cy,C_} + %D’ +igpr - lp (&

3, 2
> 8 8 3 E)w D. (18)

Of course since H is central, we might equivalently take as Casimir operator
- 1
K:K—gH[H’—(4—a’)w2]. (19)

It is checked that K = 0 in our specific realization. Clearly the operators Cy transform
the degenerate eigenstates of H among themselves. In fact, the representations of the
quadratic algebra (17) that we need, can be easily worked out; they will be seen to
determine the spectrum of H and to completly account for its degeneracies.

Define the basis vectors [E,d > as the simultaneous eigenstates of H and D:

H|E,d>=E|E,d >, D|E,d >=d|E,d > . (20)
As far as the Schrodinger equation is concerned, separation of variables in Cartesian

coordinates is associated to this choice: usingstill ¥/(z1,z2) = ¢(z1)x(z2), D¥(z1,22) =
dz/:(z,,zz) with d = E] = Ez.

In view of (17¢) and the fact that C; = CI, we must have

C+|E,d>=t4ss0|E,d + 4w >, (21a)
C_|E,d >=t4|E,d — 4w > . (218)
It follows of course that C4C_|E,d >= t3|E,d >. Now with the help of (17d),(18)
and (19}, we find that
1 1
Cc,C_= ;K + EE(H +D - 2w+ wla|)(H +D - 2w-wla|)(H — D +2w). (22)

We have already pointed out that in our realization K = 0, we thus get here

= o (d-dy)(d - d-)d - d), (23)



where

dy=-E+w(2t|al), (24a)
d=E+2w. (24b)

(Naturally, this result could have been obtained by working directly with the ex-
pressions (16) and using (7) and (10).) At this point, two requirements on the
representations of the symmetry algebra allow to determine the spectrum of D and
H. First, these representations should be unitary and hence we should have i3 > 0.
Second, they should be finite-dimensional as there are only finitely many degenerate
energy eigenstates. This last condition implies that there should be D-eigenvalues
dinin and dpaz, such that C_|E,dmin >= 0, C4|E,dmes >= 0 or equivalently such
that tq .. =0, t4,..+4w = 0. The eigenvalues of D would thus run from dpi, to
dinaz in steps of 4w. A first series meeting the above two critera has

d=dy,d; + 4w,...,d — 4w. (25)

If we denote by N (= 1,2,...) the number of degenerate H-eigenstates and hence,
the dimension of the representations, we have

(d—4w)—dy =4(N - 1)w. (26)
Using the definitions (24), we see that (26) entails the energy spectrum formula:

E=(2N+’-‘,;—')w N=1.2,... (@7

If 0 < |a| < 2, another series is present:
d=d_,d_ +4w,....,d —4w. (28)

Note that ¢3 is also non-negative here because the gap —2|alw between d_ and dy
does not dominate the increment 4w. As before, if there are N eigenstates of D with
the eigenvalues (28), they are seen to have energy

E=(2N—-%)w N=12,... (29)

This is how the quadratic symmetry algebra (17) enables one to obtain the spectrum
of H - compare (15) with (27) and (29).

SEPARATION OF VARIABLES AND THE QUASI-EXACTLY SOLV-
ABLE ANHARMONIC OSCILLATOR

For most known systems with accidental degeneracies and hidden symmetries,
the Schrédinger equation admits seperation in more than one coordinate systems.
The present anisotropic oscillator is no exception. In two dimensions, there is a corre-
spondance between coordinate systems in which variables separate in the Schrodinger
equation and the constants of motions that are quadratic in momenta®. So far with
our problem, we have only exploited the fact that Hy = E+ separates in Cartesian
coordinates. We have indicated that this coordinate system is singled out when the

constant of motion D = }(p} — p3) + dw?z} + }(a? — 1);% —2w%(zz — B)? is diagonal-
ized. Consider now the following hermitian combination of the symmetry generators
of H:

R=V2(C4 +C-) - 268(H + D). (30)

This conserved quantity is also quadratic in the momenta; in fact, in Cartesian coor-
dinates, it takes the form

1
R=pL+Ip +2w'=x(=z—2ﬁ)+§(1—°’):—;, (31)

where L = z,p; — z2p;. Diagonalizing R instead of D leads to separation in the
parabolic coordinates ({4,£-) that are related to the Cartesian ones as follows

z1=§48-  z2= % &-8). (32)

From (30) we see that R is tridiagonal in the bases |E,d¥ >, df = di + 4nw,
n=0,1,...,N-1:

RIE, &y >= Vau(tg |E,dyyy > +tg2|Eydy_y >) ~28(E +4d7)|E,dg > . (33)

Its eigenvalues wA are given by the zeroes of the characteristic polynomial of N
order associated to this matrix. Let |E,A > be the corresponding eigenstates '

R|E,A >=wA|E,A > . (34)

A three-term recurrence relation for the overlap function < E,A|E,d¥ > is simply
obtained in our algebraic framework. Take

< E,A|E,df >=< E,A|E,d* > P%(A). (35)
Cleatly P¥(A) = 1. From (33) and (34), the coefficients PZ(A) are seen to satisfy
WAPY(A) = V2u(ty: Pr(A)+(tg Pasy(A) - 28(E + d)FE(A).  (36)

If we now set

PEA) = o ([[ 42) @A) m=1,0N -1 (37)
i=1

and use the definitions (24) as well as E = (2N £ J‘—;-l)w, we find that the factors
QZ(A) obey the three-term recurrence relation

QE1(A) =[5 +B4n +2:£ @) QE(N) ~ dun(n £ Z)V —m)@2, (1) (39)
n=0,1,...,N—1; FA)=1.

These functions of A, thus define orthogonal polynomial sets. (This is true for the
Q:(A) as long as |a| < 2.) Let us now make explicit our claim that a quasi-exactly



solvable anharmonic oscillator descents from the 2-d anisotropic oscillator. In the
parabolic coordinates (32), H and R take the form

H = %(51 +) x [nd 42 +w2(fi +€2) —4pw7(¢L - €L) (39a)
a
+4p%% (€ +€2) + ?:(az ~1)(€3* +€27)],

R=(72 4677

L - €+ k(e — €) - 480(E +€) + (e~ 1(E - €7,
(395)

where T4 = »i%. If we set

<4y Eo|BLA >= g a(s, o) = ul (€ i), (40)

we readily see that the eigenvalue equations HYg o = Ev¥pa and RYp s = wAYEa
amount to the following two separated equations for the functions uf\i)(fi):

[%ri + VE({_A,_)] u.;i) = :twAuf‘i) , (41)
where i i 1
Voles) = 3o7€h + 3o - g~ + QOG- (42).

We recognize that the equations (41) have the form of one-dimensional Schrodinger
equations in a (generalized) oscillator potential with anharmonicity terms in ¢* and
8. (Note that E = (2N + L;—l)w enters as a parameter in the potential.) Remarkably
these equations coincide with the Schrodinger equation associated to the simplest
example of a quasi-exactly solvable system. To see this, return to the realization
given in (1) of the su(2) algebra. If we make the change of variable z = ¢? and take

H=e"He, (43)
with
A= —2T°T — (N +1%|a|)T~ - 48T’ — 2T* (44a)
and
¢ 2 1
a=wy —pu® - o(1 £lal)Ing, (44b)

we find after a short computation that

H= %wz +VE(E) + fw (E + %) (45)

for m = —i 2. Up to a constant this agrees with (41) — (42). So, if one is considering
the one-dimensional Schrodinger equation

(37 + Ve(©)lu(€) = eut€) (46)

with E = (2N = 1%1)“:, the eigenvalues and eigenfunctions of the N lowest levels
can be obtained exactly. This is done as follows using the connection between (46)
and the 2-d anisotropic oscillator. On the one hand, the first N energies € are given
by the eigenvalues of R. On the other hand, the two-dimensional wave functions
Yt (z1,22) =< z1,22|E,dE > are very easily determined in Cartesian coordinates.
In terms of the overlap coefficients < E,A|E,df > for which we have a recursion
relation, the eigenfunctions of R are given by

N-1
< 21,22|B,A>= Y < E,A|E,d} >< z1,2,|E,df > . (47)

n=0

One then passes to the parabolic coordinate system (32), in which we known that
separation occurs and write < z1,z2|E,A >= u(H)(¢;)ul)(€.) to identify ult)(¢)
as the wave function associated to the energy level € = wA. For an exposition of
how these same eigenvalues and eigenfunctions are found by exploiting the realization
(43) — (44) of H see Ref. {7].

CONCLUSIONS

Summarizing, we have provided here a novel algebraic analysis of the much
studied?®? 2-dimensional anisotropic harmonic oscillator(3)-(4). We have illustrated
with this very simple example that quadratic algebras do arise naturally in the de-
scription of systems with accidental degeneracies. We hope to have shown that the
prejudice according to which symmetry algebras should be Lie algebras or superalge-
bras is not well founded. We have also explained how quasi-exactly solvable systems
could be obtained through dimensional reduction by exploiting the fact that (solv-
able) systems with higher symmetries usually separate in more than one coordinate
system.

For two dimensions, there exists a classification of potentials with accidental
degeneracies for which the Schrodinger equation separates in two coordinate systems®.
In addition to the one that we have considered in detail, the list consists of

L. V(31:22)=a(=f+:§)+£,+%
z1 2
s e
2 Ve - THEEL
_a+ P+
3. V(E+,E~)————ﬁ+ﬁ

In all of these cases, we have shown that the symmetries responsible for the accidental
degeneracies are again naturally described by quadratic algebras. These results will
be reported in full in a forthcoming publication!?.
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