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INTRODUCTION 

Dynamical symmetries prove extremely useful and have applications in many 
physical situationsl . Customarily, these symmetries are described mathematically 
in terms of Lie groups and algebrali. It hali been appreciated howewer that more 
general structures can sometimes be required. A celebrated example is that of Lie 
superalgebrali; these arise when supersymmetries are encountered. Another type of 
algebras, that of quantum groups, is also being recognized ali potentially relevant 
to describe dynamical symmetries, especially in the context of integrable models. 
These quantum groups belong to the class of quadratic algebras which are defined 
by subjecting the generators to quadratic relations. The purpose of this paper is to 
provide a simple example where the symmetries are most naturally discussed using 
such a quadratic algebra. 

We shall consider a two-dimensional anisotropic harmonic oscillator with a 2 to 
1 frequency ratio. This problem is known to admit accidental degeneracies that can 
be explained with the help of Lie algebraic techniques 2,3. It is first shown that the 
associated Halmiltonian possesses two constants of motion that are quadratic in the 
momenta. A realization of the su(2) algebra is then constructed using these conserved 
quantities. Since the dimensions of the unitary representations of su(2) coincide 
with the degree of the degeneracies, these are thus accounted for. This resolution 
is not completely satisfactory howewer. The reason is that under commutation the 
constants of motion do not actually form a Lie algebra; one needs in fact, to divide 
these quantities by the square root of certain operators to obtain closure. As we shall 
explain, such difficulties do not show up if a quadratic algebra framework is used 
instead of the Lie algebraic one. It therefore seems that quadratic (and polynomial) 
algebras could be useful tools to deal with dynamical symmetries. Such a claim has 
been made also in Refs . [4-6J, where other interesting examples are discussed. 

We shall also m ake another interesting observation from this analysis of the 
anisotropic harmonic oscillator. Recently, qUalii-exactly solvable problems have at­
tracted a lot of attention. (For a review see Ref. [7J.) These quantum systems are 
characterized by the fact that part of their spectra can be obtained algebraically. This 
is made possible by the existence of a hidden symmetry algebra generated by first 



order differential operators. Hamiltonians that can be expressed as bilinear combi­
nations of these operators will leave invariant any finite-dimensional representation 
space of the symmetry algebra and as a result, the corresponding part of t.heir spectra 
can be computed through a finite-matrix eigenvalue problem. In one dimension, more 
specifically, one uses the su(2) realization 

To _ . 8 T+ _ 2 . 2 8 T- _ 8 - -) + z: 8z ' - ) z - z 8z • - 8z ' (1) 
[T',T±l = ±T± I [T+,T- I = 2T'. 

which for j as emi-integer , entails a (2; +I) - dimensional representation over the space 
spanned by the monomials I, %, ••• , z2j. One then takes for Hamiltonians 

iJ = L C..T"T' + E C.T". (2) 
•.,=o.± e =O,± 

Through a similarity transformation and possibly, a change of variable Z = z(z), 
these Hamiltonians can be cast in the form -ib +V(z) and a list of quasi-exactly 
solvable Schrodinger operators is thus obtained. We may remark that exactly solvable 
systems result if the parameter j does Dot appear in the Hamiltonian. This bappens 

2for instance in the case of the Morse potential V(z) = A(e- ea: - 2e- Z
) which plays 

an important role in molecular physics. The simplest example of a quasi-exactly 
solvable problem in one dimension i. provided by the anharmonic oscillator with 
potential V(z} = iw2z8 - 2fjw'lzt + [2fj2w2 -w(4j + ~)l z'. This system, as it turns 
out, is related to the two-dimensional anisotropic oscillator with Hamiltonian H = 

- Hp~ +p~) + ~w2[z~ +4(Z2 - fj)21, Pi = -~8!. i = 1,2. Indeed1 owing to the higher 
symmetry of the Hamiltonian, the Scbrodinger equation B1/J(Zl,Z2) = E1/J(ZltZ2) 
separates in parabolic coordinates 8.8 well in Cartesian coordinatess . We shall see that 
when parabolic coordinates are used, the separated equations coincide exactly with 
the one-dimensional equation associated to the anharmonic oscillator with potential 
V(z} . 

We take great pleasure in dedicating this paper to Franco lathello who has so 
brilliantly applied algebraic methods to domains as diverse 8.8 nuclear, high energy, 
atomic, and molecular physics. We hope that he will find interesting the occurrence 
of quadratic algebras in quantum mechanics. Let us also recall that Professor lachello 
himself studied (among othen) the dynamical symmetries of the Morse Hamiltonians. 
He has shown that these can be traced back to the su(2) symmetry of the two­
dimensional isotropic harmonic oscillator SchrOdinger equation. In this case, one 
separates the variables in polar coordinates and alter a change of variables, identifies 
the radial part as the Schrodinger equatioD for the particle in the one-dimensional 
Mone potential. It is in close analogy with this approach t.hat the relation between 
the quasi-exactly anharmonic oscillator and the two-dimensional anisotropic oscillator 
with a 2 to 1 frequency ratio is established here. 

The remainder of the paper il organized as follows. We first set our notation 
and identify the accidental degenaracies of a generalized 2-d anisotropic oscillator. 
We then present the quadratic dynamical algebra and ehow how the dynamics is re­
solved by constructing the representations of this algebra. We indicate in particular 
how the degeneracies are explained in this framework. Finally, we make the connec­
tion between the 2-d anisotropic oscillator and the quasi-exactly solvable anharmonic 
oscillator. Conclusions follow. 

THE GENERALIZED 2-D ANISOTROPIC OSCILLATOR 

We shall be considering a two-dimensional quantum system with Hamiltonian 

H = H 1 + H2 , (3) 

where 
1 (PZ 2 2) 1(Z ) 1

HI = :2 1 +W zl +8 a-I ;Y I (4a) 

H, = ~ [(p~ +4w2(Z2 _ P)2 ] I (46) 

Pi = -i8~ 1 ,i = 1,2, and a ,fj,w E R. In the special case a = 1, B governs the 
dynamics of an anisotropic oscillator with a 2 to 1 frequency ratio. 

It will be convenient. to introduce the annihilation and creation operators 

1 at _ 1
al = y'2W(WZI +ipd, 1 - v'2W(WZl - ipl), (Sa) 

a, = y'2W [(Z2 - fj) + ~P2)] , aI = V2w [(Z2 - fj) - ~P2)] , (56) 

that satisfy the commutation rdations 

(alo,atl = 1:6lol [alo,a,] = [a1.4t l::;;:: 0 k,l = 1,2. (6) 

In terms of these operators, 

HI t 1 2 )( t) - 2 1-;- = a1 al + .4 (a - 1 al +a1 + :2 ' (74) 

H2 _ t 
- - a2 a2+ 1 . (76) 
W 

The spectrum of B = HI + Hz is easily obtained by separating the SchrOdinger 
equation in Cartesian coordinates. With 1/J(ZI, Z2) = ;(zdx(2:2), the equation H 1/J = 
E1/J amounts to Hl;(zd = El;(Zt} and H,X(z2) = E2X(Z2) with E = El + E,. 
We recognized in H2 , the Hamiltonian of a I-d harmonic oscillatorj its eigenfunctions 

are of the form < :t21n2 > oc < z21(4l)"a IO > and have energy E, = 2n2 + 1. The 
eigenvalues of HI can be determined by exploiting the conformal symmetry of this 
operator. Indeed, define the operators 

Bi = (ah2 - ~(o:2 - 1)(al +41>-2 
(8a)

t t HI 1 = 4 (al +a ) - - + ­
1 1 W 2 

Bi = (Bnt. (86) 

Clearly, 
IH1 , Bt l = ±2wBt . (9) 

It is also straightforward to check that 

BtB{ = [( ~I =t= 1) + [ ;[ ][(Hl=Fl) - ~] , (10) 



from where it follows t hat 

[Bt , B;] == - 4HI (11) 
w 

One immediatly identifies (9) and (11) as the commutation relations of ' 0(2, 1). T he 
relevant representations of this algebra are eaaily constructed. We known that HI is 
bounded below. T here mud therefore be states annihilated by B; from which the 
eigenstates of HI are to be obtained by repeated action with Bi; correspondingly, 
the energy eigenvalue will raise above the minimal values in steps of 2w. One thus 
sets 

B I IEI >=EE, IE 1 >, (12a) 

Bt lEl >= "E,H... IE 1 +2w >, (126) 

B;IE1 >= 'E, IE1 - 2w > . (12c) 

From (12), one haa Bi B;IE1 >= '~,IEI > and with the help of (10) one obtains 

,,~ = (El _ 1 + ~) (El _ 1 _ ~) . (13) 
, w 2 w 2 

The lowest energies are the zeros of .~, and following our discussion the spectrum of 
HI is found to be 

lal)El = 2nl +1 ± 2 w nl = 0,1, ... (14)( 

Note that the set (2nl + 1 - la1/2)w is admissible only if 0 ~ lal < 2, otherwise 
there would be states with non-positive norms. When a = 1, the two series in (14) 
combine to give the standard oscillator spectrum El = (nl + ~)W, nl = 0,1, ... The 
total energies are thus 

E =El + E2 = lall2(nl + n2 + 1) ± '2 w[ 
(15)

lal=(2N ± 2)w nl,n2 = 0,1, ... , N = 1,2, ... 

Since the integer N is made out of the sum of the two integer-valued quantum numbers 
nl and n2, accidental degeneracies occur and their multiplicity is in fact given by N. 
We shall now show that a dynamical quadratic algebra can be used to explain these 
degeneracies. 

THE DYNAMICAL QUADRATIC ALGEBRA 

Consider the operators 
D =H1 - H2 , (16a) 

C+ =wBia2, (16b) 

C_ = c1 = wB; at . (16c) 

It is easy to see that these quantities are conserved. Together with the Hamiltonian 
H and the identity operator I, these operators (16) generate the symmetry algebra 

of the anisotropic oscillator. The stucture relations are straightfowardly determined 
to be: 

[H, D ] = [H,C+J = [H, C-J = [H,/] = 0 , (1 7a) 

[D,/] = [C+,/J = [O- ,lJ= 0, (176) 

rD, C±] = ±4wC± , (17c) 

2 
3 2 1 2 ( 0 ) 2[C+,C_I = "2D + DH - "2H + 2 - w 1. (17d)2 

We note in (17 d) t hat the commutator of C+ and C_ is given as a quadratic combi­
nation of D and H. The operators H. D , C + , C _ and I do not therefore define a Lie 
algebra. In a representation on an energy eigensta te, H is constant ; it may then not 
be taken as a generator inequivalent to I. Since we are dealing with differential op­
erators, the Jacobi identity is satisfied. It is also not difficult to see that t his algebra 
possesses a Casimir operator K commuting with all the generators. Explicitly, 

2 
w } 1 3 1 2 [1 2 (0 3 2]K=-{C+ C_ +-D +-HD - -H + ---)w D. (IS)
2' 88 8 S 2 

Of course since H is central, we might equivalently take as Casimir operator 

i< = K - ~H[H2 - (4 - a?)w2J. (19) 

It is checked that i< = 0 in our specific realization. Clearly the operators C± transform 
the degenerate eigenstates of H among themselves. In fact, the representations of the 
quadratic algebra (17) that we need, can be easily worked out; they will be seen to 
determine the spectrum of H and to completly account for its degeneracies. 

Define the basis vectors IE,d > as the simultaneous eigenstates of Hand D: 

HIE,d >= EIE,d >, D/E,d >= dlE,d > . (20) 

As far as the Schrodinger equation is concerned, separation of variables in Cartesian 
coordinates is associated to this choice: using still.,p(zl, Z2) = ¢(Zl )X(Z2), D.,p(Zl, 2:2) = 
d.,p(Zl,Z2) with d = El - E 2 • 

In view of (17 c) and the fact that C+ = C!, we must have 

C+/E,d >= totH... IE,d + 4w >, (21a) 

C_ /E,d >= tot/E,d - 4w > . (21b) 

It follows of course that C+C_IE,d >= t~IE,d >. Now with the help of (17d),(IS) 
and (19), we find that 

1 - 1 
C+C_ = ~K + 8w (H + D - 2w + wlalHH + D - 2w - wla/)(H - D + 2w). (22) 

We have already pointed out that in our realization i< = 0, We thus get here 

2 1 ­
tot = 8w(d-d+Hd-d_)(d-d), (23) 



where 
d± = - E +10/(2 ± la lL (24a) 

d=E+2CoI. (241.1) 

(Naturally, this result could have been obtained by working directly with the ex­
pressions (16) and using (7i1) and (10).) Ai this point, two requirements on the 
representations of the symmetry algebra allow to determine the spectrum of D and 
H. First, these representations .hould be unitary and hence we should have t~ ~ O. 
Second, they should be finite-dimensional as there are only finitely many degenerate 
energy eigenstates. Thill lut condition implies that there eould be D-eigenvalues 
dm." and elm,.." such that O- IE,dmin >= 0, O+IE,dm.. >= °or equivalently such 
that td"';ft = 0, td.....H w = O. The eigenvaluel of D would thus run from dmi" to 
elm,.., in steps of 4101. A first series meeting the above two entera has 

d = d+, d+ + 4101, • .. ,d - 4w. (25) 

If we denote by N (= 1 I 2, ...) the number of degenerate H -eigenstates and hence, 
the dimeQf;ion of the representations, we have 

(d - 4w) - 4 = 4(N - 1)w . (26) 

Using the definitions (24). we aee that (26) entails the energy spectrum formula: 

E = (2N + ~)w N = 1,2, ... (27)
2 

If 0 S la 1< 2, another serie. is present: 

el = a_,d_+ 4101, . .. ,d - 4w . (28) 

Note that t~ is &lao non-negative here because the gap -2lalw between tL and d+ 
does not dominate the increment 4101. A. before , if there are N eigenstates of D with 
the eigenvalues (28), they are seen to have energy 

E = (2N - 1;1) 101 N = l,2, ... (29) 

This is how the quadratic symmetry algebra (1 7) enables one to obtain the spectrum 
of H - compare (15) with (27) and (29). 

SEPARATION OF VARIABLES AND THE QUASI-EXACTLY SOLV­
ABLE ANHARMONIC OSCILLATOR 

For most known systems with accidental degeneracies and hidden symmetries, 
the SchrOdinger equation admit. seperation in more than one coordinate systems. 
The present anisotropic oscillator is no exception. In two dimensions, there is a corre­
sponda.nce between coordinate systems in which variables separate in the Schrodinger 
equation and the constanta of motions that are quadratic in momenta:!. So far with 
our problem, we have only exploited the ract that H'l/J = E,p separates in Cartesian 
coordinates. We- have indicated that this coordinate system is singled out when the 

constant of motion D = ~(p~ - ~)+ ~W2%~ + ~(a2 -l)~ - 2w2(Z2 - (3)2 is diagonal­
ized. Consider now the following hermitian combination of the symmetry generators 
of H: 

R = ~(C+ +0 _ ) - 2(3(H +D). (30) 

This conserved quantity is also quadratic in the momentaj in fact, in Cartesian coor­
dinates, it takes the form 

2 1 2 %2
R=P1L+Lpl+ 2w zl(zz-2(3)+ -2(1-a )2 (31)1 

z1 

where L = ZlP2 - %2P1. Diagonalizing R instead of D leads to separation in the 
parabolic coordinates (e+ I e-) that are related to the Cartesian ones as follows 

1 
ZI = e+e- Z2 = "2 (e! - e.) . (32) 

From (30) we see that R is tridiagonal in the bases IE, ~ >, d~ d± + 4nw, 
n = O,l, . . . ,N - 1: 

RIE,d; >= ~(td± IE,a;+1 > +'d*IE,d;_l » -2P(E + d;) IE,d; >. (33) 
.. +1 " 

Its eigenvalues wI.. are given by the zeroes of the characteristic polynomial of Nth 

order associated to this matrix. Let IE, A > be the corresponding eigenstates 

RIE,A >= wAIE ,A > . (34) 

A three-term recurrence relation for the overlap function < E, AlE, a; > is simply 
obtained in our algebraic framework. Take 

< E.AIE,d; >=< E,AIE,cF > P! (A). (35) 

Cleatly pl eA) = 1. From (33) and (34), the coefficienh P!(A) are seen to satisfy 

wAP!(A) = Y2W(td* P';+l (A) + (td±P:_1(A» - 2J1(E +d)P! (A) . (36)
"+& ... 

If we now set 

n 

P!(A) = (2w)n/2(I1 tdf)-1Q~(A) n = I, ... ,N-l (37) 
i= l 

and use the definitions (24) as well as E = (2N ± 1jl )w, we find that the factors 
Q!(A) obey the three-term recurrence relation 

Q; +l(A) = [~ + (3(4n + 2 ± a»)Q;(A) - 4wn(n ± 1;1 )(N - n)Q;_1 (A) (38) 

n =O,I , ... ,N-I j Q~(A) = 1. 

These {unctions of A, thus define orthogonal polynomial sets. (This is true for the 
Q;(A) as long as lal < 2.) Let us now make explicit our claim that a. quasi-exactly 



1 

solvable anharmonic oscillator descents from the 2-d anisotropic oscillator. In the 
parabolic coordinates (32), H and R take the form 

H == 2({~ + {~ )-l X [11"~ + 11"~ + w2({~ + {~) - 4,Bw2({~ - {~) 
(39a) 

+ 4,B2w2({~ + ~~) + ~(a2 - 1)(e.;2 + e 2)] , 

R == ({.~2 +c:2)-1 

X[f~211"~ - e21r~ + w2 ({~ - {~) - 4/lw2 ({! + e) + ~ (a2 - 1)({.;4 - e4)], 
(39b) 

where 11" ± == -i e:± . If we set 

< {+ ,{-IE,A >= tPE,A({+,{-) = u~+)({+)u~-)({_), (40) 

we readily see that the eigenvalue equations HtPE,A = EtPE,A and RtPE,A = WAtPE,A 
amount to the following two separated equations for the functions u~±)({±): 

[~11"; +VE({±)] u~±) = ±wAu~±) , (41) 

where 

21 
101 

2 (\ 1 2 1 24 ( 22 )2VE({±) = {± + g(a -1){i - 2,Bw {± + 2,B w - E {± (42) . 

We recognize that the equations (41) have the form of one-dimensional Schrodinger 
equations in a (generalized) oscillator potential with anharmonicity terms in {4 and 

{tl. (Note that E = (2N ± ¥)w enters as a parameter in the potential.) Remarkably 
these equations coincide with the Schrodinger equation associated to the simplest 
example of a quasi-exactly solvable system. To see this, return to the realization 
given in (1) of the n(2) algebra. If we make the change of variable z = e and take 

H == e--iIeo, (43) 

with 
if = -2T>T- - (N +1 ± laDT- - 4,BwTo - ~T+ (44a) 

and 
{4 2 1 

a=w"4 -f3w{ - 2(1 ±Ial)ln{, (44b) 

we find after a short computation that 

H == ~11"2 +VE(e) + ,Bioi ( E ± 1;1) (45) 

for 11" == -i-k . Up to a constant this agrees with (41) - (42). So, if one is considering 
the one-dimensional Schrodinger equation 

1
[211"2 +VE({)]U({) == fU({) (46) 

with E = (2N ± ¥ )w, the eigenvalues and eigenfunctions of the N lowest levels 
can be obtained exactly. This is done as follows using the connection between (46) 
and the 2-d anisotropic oscillator. On the one hand, the first N energies f are given 
by the eigenvalues of R. On the other hand, the two-dimensional wave functions 
tPE d± (ZI' Z2) =< ZI, Z2 [E, d~ > are very easily determined in Cartesian coordinates. 
In tenrms of the overlap coefficients < E,A[E,d~ > for which we have a recursion 
relation, the eigenfunctions of R are given by 

N - l 

< zl , z2IE ,A >= L < E, A IE, d~ >< ZI,Z2IE ,d! > (47) 
n=O 

One then passes to the parabolic coordinate system (32) , in which we known that 
separation occurs and write < z lt z2! E,A >= u(+)({+)u( - )({_) to identify u(+)(O 
as the wave function associated to the energy level f = lolA. For an exposition of 
how these same eigenvalues and eigenfunctions are found by exploiting the realization 
(43) - (44) of H see Ref. [7]. 

CONCLUSIONS 

Summarizing, we have provided here a novel algebraic analysis of the much 
studied2 ,3,9 2-dimensional anisotropic harmonic oscillator(3)-( 4). We have illustrated 
with this very simple example that quadratic algebras do arise naturally in the de­
scription of systems with accidental degeneracies. We hope to have shown that the 
prejudice according to which symmetry algebras should be Lie algebras or superalge­
bras is not well founded. We have also explained how quasi-exactly solvable systems 
could be obtained through dimensional reduction by exploiting the fact that (solv­
able) systems with higher symmetries usually separate in more than one coordinate 
system. 

For two dimension-s, there exists a classification of potentials with accidental 
degeneracies for which the Schrodinger equation separates in two coordinate systems3 • 

In addition to the one that we have considered in detail, the list consists of 

1. V(Z\,Z2) = a(z~ + z~) + ~ +.l 
ZI z~ 

2. V({+,{-) = a + ,B/{! +ile
{! +e 

3. V({+,{_) = a +,B{+ +i{­
{! +{~ 

In all of these cases, we have shown that the symmetries responsible for the accidental 
degeneracies are again naturally described by quadratic algebras. These results will 
be reported in full in a fo rthcoming publication1o • 
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