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APPLICATION OF SUPERSYMMETRY TO DOUBLE WELL PROBLEMS
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ABSTRACT

Employing the method of supersymmetric quantum mechanics, we propose a highly
accurate and rapidly converging perturbative scheme to compute the energy split-
ting between the ground state and the first excited state of an asymmetric double

well.

In a double-well potential, quantum mechanical tunneling generates an en-
ergy split £ = E, — E; between the ground state and the first excited state. This
purely quantum effect is obviously of great relevance to many branches of physics
and chemistry and hence has been studied from various angles since the early days of
quantum mechanics. The relevance of supersymmetric quantum mechanics (SUSY-
QM)[1] to this problem stems from the following observations: For any potential
V_(z), with the ground staie adjusted to have zero energy, SUSY-QM allows one to
construct a partner potential V,(z) with exactly the same energy eigenvalues except
for the ground state, which remains unpaired. Often, it is considerably easier to
determine the ground state of V, (z) rather than the first excited state of V_(z), and
hence the calculation of §E becomes much more tractable in the V,(z) sector.

-~ y In this talk, I will present the results of our recent analysis regarding the
' {:‘z} \ applicability of SUSY-QM to the case of asymmetric double well. In particular,
&% \ : it is shown that the calculation of §E, which originates from a non-perturbative
& ) N tunoveling effect in the potential V_(z), car be ronverted to a [ully quanium me-
’ < v chanical, perturbative problem in the partner potential Vi (z). Furtherinore, f~ the
(T? non-trivial problem of deep wells, this perturbative expansion is highly convergent
6, and improves substantially upon the semi-classical analyses.

\9 For a quantum mechanical problem with a potential V_(z), supersymmetry
\}, allows one to construct a partner potential V,(z) whose energy eigenvalues E} are
in one to one correspondence with the excited states of V_(z);i.e. E} = E;,,, where

E% are eigenvalues of Vi(z).



The two Hamiltonians H_. and K, can be written (with units A = 2m =1)
respectively as A*A and 44*, where

A= (i + wm) , dte ('2‘? + W(:)) . )

Here, W(z) = —!.;:.;. is the so called superpotential and y{~ is the ground state
wavefunction of H_. A specific example of an asymmetric double well which we will
consider in detail corresponds to the simple choice of a ground state wavefunction
which is the sum of two Gaussians centered at +zo, ${~) = e (=+50)" 4 g=o(s-2:)* | which
leads to the potential

V.a) = ([—z. +4a%(z — 2g)Ye~ls-7e) 4 2+ 4(2 + zo)’]e‘('*l-)’) . i

e (=+20)? 4 g-e(z~30)?

In Fig. 1, we have plotted V_(z) for various values of the asymmetry parameter a.
Since the ground state energy of V_(z) is zero, we have to determine the en-
ergy of the first excited state of V_(z), and that, thanks to supersymmetry, happens
to be the same as the ground state energy of the potential V; (z).
From the ground state wavefunction ¢{~ of H_, we can construct a well
defined normalizable function ¢(z) given by

el (iﬁ"(v))zdv

s L (i&"(y)):dy
U5 (3)

for x> 0;
209§ (x)

#(z) = for x<0,
with I, = & [ e (vg')(y))’dy]. It is easy to show that ¢(z) thus constructed is a

zero energy normalizable eigenfunction of the singular Hamiltonian H, given by
2
Ho=H, - {(v&"(q)) [% + %] 6(=)}.

and hence ths ground state energy of H, turns out to be the expectation value of the
term within braces. For the purpose of computation of this expectation value, we
follow a very convergent perturbation expansion scheme, the so-called logarithmic
perturbation theory[2] which gives excellent result, and the first order expression is
given by

111 1 1
EM = Z[Hﬁ-r]w (3)

To be brief, we are not presenting higher order corrections, computations of which
are fairly straight forward.

To test the accuracy of our scheme, we compare our perturbative results
with those obtained from standard WKB method([3], and also with numerical re-
. sults obtained by solving the Schrédinger equation using fourth order Runge-Kutta
method for the potential in Eq. (2). We find that, as z; increases the barrier gets
higher, and the SUSY-QM generated result for §E approaches extremely close to
the numerical answer.

In Fig. 2, we plot §E calculated by different methods against the asymmetry
parameter a, keeping zo fixed at 2.0. We find that results based on the WKB method
deviate much faster from the numerical solution as the asymmetry parameter is
decreased (a = 1 is the symmetric case) than SUSY-QM generated answer. We also
note that, for very asymmetric cases (a ~ .4), SUSY-QM approach provides results
that are again, in excellent agreement with the numerical solution. However, as
we have stated before, supersymmetry based approach is much easier than solving
the Schrédinger equation with an extremely small eigenvalue lying very close to the
ground state with vanishing energy.
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Fig. 1. The potential V_(z) (Eq. 2) parameter a.
Fig. 2. A plot of §E vs. a for 20 = 2.0.
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