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Abstract 

An application of the particular type of nonlinear operator algebras to spectral problems 
is outlined. These algebras are associated with a set of one-dimensional self-similar potentials, 
arising due to the q-periodic closure !j+N(X) = q!j(qx), kj +N = q2kj of a chain of coupled 
Riccati equations (dressing chain) . Such closure describes q-deformation of the finite-gap 
and related potentials. The N = 1 case corresponds to the q-oscillator spectrum generating 
algebra. At N = :2 one gets a q-conformaI quantum mechanics, N = 3 set of equations 
describes a deformation of the Painleve-IV transcendent. 
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QUd1lt1l1l1 aigelml.'), or q-ddorlllatiolls of Lie algebra.l;, attracted much attention during the last 
years. They hav(' ap(I('arl'ci ill conforlllal field theories, spin-chain models, in the construct ion 
of lillk iuvariants , aud so 011 . Another type of Ilonliuear algebras, known as W -algebras, also 
formed the subject of intellsive investigations. h is quite natural to ask on the applications of 
these objects within t lit' context of Sturm-Liouville type spectral problems. The answer is not so 
straightforward and most of the allempts done in this direction cary phenomenological character 
- the deformations of spe<:tra are introduced in an ad hoc manner, without proper definition of 
arising operators. As we lihall show below, the problem can be treated in a rigorous fashion on the 
basis of standard cOllcepts of continuous space physics. Moreover, nonlinear algebras will appear 
very naturally as all inevitable consequence of the analysis of exactly solvable potentials. 

The consideration will be limited to the simplest one-dimensional SchrOdinger equation 

- ,/>"(.r) +U(r)tjI(x) =AtJ1(X), (1 ) 

describing a particle moving in some potential U{z). (The prime in (1) and below always denotes 
deriva.t ive with respect to real coordinate x, x E R.) The quantum mechanical spectral problems, 
associated to (1), traditionally provide good place for probing new group-theoretical ideas. This 
is inspired by the general belief that any kind of regularity in spectral data is generated by 
some symmetry algebra of a Hamiltonian. The qualitative understanding of peculiarities of a 
given system is reached when an operator algebra governing the map of pbysical states onto 
each other is explicitly constructed. The most advanced approach to building of such symmetry 
transformatiolls, which we are going to exhibit, is connected with tbe technique developed by 
Darboux long time ago [lJ. Within quantum mechanics, it is known as factorization method 
[2]. JII the theory of integrable nonlinear evolution equations, it was generalized and named 
as the dressing method [3J . Later, Darboux transformations were identified as supersymmetry 
transformations, mixing bosonic and fermionic degrees of freedom in specific models [4]. Some 
further parasLatistical generalization of the latter interpretation was suggested in Ref.(5). Using 
this method, we shall describe a set of self-similar one-dimensional potentials whose discrete 
spectra are composeJ from a number of geometric .series. Among the corresponding nonlinear 
spectrum generaling algebras we shall find a q-deformed Heisenberg-Weyl algebra and a quantum 
conformal algeura .suq ( I, I), where parameter q will have the meaning of interaction constant. 
However, we shall not discuss the Hopf algebra structure which seems to be irrelevant in the 
prescnt context (perhaps it will be needed in higher dimensional models). 

Quantization of the spectral parameter Aemerges due to particular boundary conditions im
poscd upon the wave functions tJt(x) . Just for an illustration we exhibit one of the possible 
(self-adjoint) conditions: 

¢" (l".) = h1tt'(XI), ",'(r2) = h2"'(X2), (2) 

where Xl and Xl are two different points on the line, and hI, h2 are arbitrary real constants. Here 
we wou Id like to mention the powerful restriction on asymptotic growth of eigenvalues {An} for the 
potentials without singularities in [X.,X2J. Namely, {An} c.an not grow faster than n2 at n -t 00 

16]. This observation immediately restricts the region of applications of q-deformed commutation 
relatiolls which often formally produce exponentially growing discrete spectra. Below we imply 
the condition of square normalizability of wave functions, tJ1(x} E Lll - oo,ooJ, for the discrete 
energy states. For singular potentials one still will need additional boundary conditions. The 
(quasi)periodic potentials with zonal structure of spectra will also appear in the consideration. 

Let us first present some basic principles of the factorization method. The main object ap
pearing after successive factoriza.tions of the stationary one-dimellsional SchrOdinger operator (1) 
is the following chain of coupled Riccati equa.tions (the dressing chain): 

f;(.r) + f;+1(x) + flex) - fJ+l(x) = k j , j E Z (3) 

kJ == Aj+1 - Aj , 

where kj (AJ ) are some constants. The Hamiltonians Lj associated to (3) have the form, 

L j = p2 + fJ(1') - f;(x) +AJ = a;aj +AJ , (4) 

aT = p ± ih(x), p == -id/dx . 

Conditional isospectrality of Lj a.nd Lj+l follows from the intertwining relations 

LJaj = aj LJ+I> aj Lj = LJ+1aj . 

Any exactly solvable spectral problem with infinite number of discrete levels can be represented 
in the form (3), (4) with Aj being the Hamiltonian eigenvalues: 

LpI'!;) = E!/)tJt!;) , EiJ
) = An+j, n =0,1,2, .. , 

tJ1!;) oc ajtP~J_~I) , "'~_+II) oc aj"'!!), (5) 

tJ1~jl(X) = exp(- JZ I;(y)dy) . 

In this case >'i+l > AJ and all wave functions tJ1i)) are square integrable, with n nodes inside taken 

coordinate region. For Hamiltonians with finite number of bound states normalizability of .,p~,) 
truncates at some j. A large list of potentials, whose spectra are easily found by the factorization 
method, is given in the first paper of Ref. [2J. In general, however, parameters AJ do not coincide 
with physical eigenvalues since for a given potential they could be chosen arbitrarily. 

In order to solve underdetermined system (3) one bas to impose some closure conditions. At 
tltis stage it is an art of a researcher to find such an aosatz, which allows to generate infinite 
number of Ii and k} by simple recurrence relations from fewer entries. Most of the old known 
exa.m pies are generated by the choice h(x) = a( z)j +b(z)+c( x) / j. where a, b, c are some functions 
determined from setting powers of j in (3) equal to zero. Three years ago Shabat and Yamilov 
considered the problem from another point of view [7). They suggested to treat (3) as some 
infinite-dimensional dynam ical system and to find potentials corresponding to finite-dimensional 
truncations of the chain . In particular, it was shown that very simple periodic closure conditions: 

fJ+N(X) = Ii(x), Aj+N = ~j, (6) 

for N odd lead to the potentials with zonal structure of spectra which are described by (hy
per)elliptic functions and called finite-gap potentials (parameters Aj represent physical eigenvalues 
when they coincide with the boundaries of gaps). First non-trivial example appears at N = 3 and 
corresponds to the one-gap Lame equation. After rewriting corresponding potential in the Weier
strass form and demanding the wave functions to vanish at singular points one gets a different 
solvable spectral problem. 
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potential ex l/I2. We guess LI.at a t 4 < 1 there ex ist such k.,2 that se ries converge for a rbitrarily 
large I. The conditioll (l ((I + J) 2' :1/4 guarantees that llorm alizable wave fu nctions and their fi rst 
derivatives vanish at ZNO [8]. T he spectrum of such system would ar ise fwm only one geometr ic 
series (secolld is e lil11ill at('d by boulldary cond itions ). 

For non-s ingu lar a t zero solutiolls one has f l. l = L~o bl l 
,2)x i , where b~I ,2 ) are two arbitrary 

(Ollstallts. Aga iu, ill gt'lIt'ral series diverge at q --t 1. Particular choice of in itial conditions gives 
the solu t ion wh ich ill t his lilll i t corresponds to (8) with a coordinate shift. Depending on the 
values of k. and J,'2 the li mit q --t 0 recovers either the smooth, two-level potential with bound 
slate energies at 0 a lld 1.:., Or its analytically continued partner. Only fi rst of these corresponds 
to (22) at N = 2, ('ach series belonging to independent representation of .suq(l, 1). Moreover, 
it is this solu tio n that ..('d ll ces to t he q-oscillator one (12)- ( 16 ) (with q replaced by ql / 2) after 
restrictions h (.r ) = ql/2f.(q l/2r ), 1.:1 = qJ.: •. At q --t 1 spectral series become equidistant which 
means th at pOleut ials sta rt to be un bou nded at space infinities. Because of the n ice connection 
wilh ord iuary confol'lllailllodel [8], we suggest to ca ll the N = 2 system as q-deformed conformal 
quantum mechanics. 

For the N = 3 systt'l1l of equations: 

f;(J') + f ;( x ) + f:( x) - f;(x) = kl , ' 

f;(.r) + f~(x) + f;(x) - fi(x) =k2, 

f~(J;) + qf;(q:r) + fi(x) - q2f:(qx) = k3 , (27) 

one can exclude h.3(:r) and get 

h,3(X) = -~f(x) =F 2f~x) (f'(x) + k2), (28) 

1 + JqTq 1 - .filTq fr 2 W 
f(.c) = --2-f.(.r) + --2- Jo fl (y)dy - 2(x - xo), (29) 

!"(x) = /,2(J' ) + 'l J(X)(f2(X) + /'(x) - ! f2(x) - J'(x) - kl - !k2 ) - ~ (30)
f(J') • I 4 2 2f(x)' 

where .co is a constallt of integration. At q = lone has fl(x) = f(x) + w(x - xo)/2 and (30) 
becomes the PlY equation (10). So, the system (29), (30) describes a q-deformation of the PIV 
transcendent. 3 III fact, all fUllctions h(x) satisfy one combersome equation with different choices 
of the parameters k j • As a result, the relations (28) give new solutions of the q-PIV system in 
terms of a kllown one: h(J';k l ,k2,k3) = fl(x;k2 ,k3,q2kd, h(x j k .. k2,k3) = fl(X;k3,q2kl,q2k2) ' 
Existence of these nonlinear maps is a result of the hidden self-similarity.4 

The notion of q-periodicity (17) and corresponding algebraic relations (19), (20) are central 
in this paper. However, above we just outlined some of the properties of self-similar potentials. 
It is quite interesting to know what kind of potentials one gets as a result of deformation of the 
finite-gap potentials, i.e. when for some j one has k j + k;+1 + ... + kj +N - = O. There are other1 

possibilities in addition to the mentioned ones. For example, the coordi nate x and parameter q 
were taken to be real and nothing prevents from the consideration of complex values as well. An 

3 For a different approad\ to ,, · deformation of the Painleve equations see Ref.(! 7J . 

"Such transformatiolls for lhe solutions of stalldard Painleve equations were discussed in a recent paper [18]. 
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interesting situa tion is d('scr ibed when q is a root of uni ty, qm = 1. From the rela tions (17) one 
easily sees tha t now 

f;+m N( :r ) = qmf) (q my ) = f j(x ), kj+mN = q2m kJ = k; , (31) 

which is a subcase of (6) because 

>' j+mN - A; = (1 - q2m )(kj + kj+. + ... + kj+N-I )/(I - q1 ) = O. 

In a short joint research wi t h A.Shabat the N = I, q3 = 1 case was analyzed and appearance 
of the simplest Lame equation for the equianharmonic Weierstrass function was demonstrated. 
Corresponding spectral problem is known to be solvable [19]. A charming property of t he self
similar systems in t hese cases is t ha.t operationally they are natu rally characterized not by the 
generators of the order mN polynomia.l algebras but rather by their m-th operator roots which 
are well de fi ned and satisfy simpler (al t hough unusual ) com mutation relations. Unfort unately, the 
genera l analytical structure of the q-transcendents is not known and this does not allow to analyze 
analytical continuation of the solutions found for the specific values of q. Also, there should exist 
some infinite-gap potentials which are reduced to the self-similar ones in the limit of zero widths 
of the gaps. 

Different problems appear when the scaling operator Tq (15) in the definition of A± is replaced 
by the translation operator, Taf(x) = f(x + a) . Instead of (13) we then have 

/'(x) + /,(:r +a) + F(x) - f2(x + a) = constant. (32) 

This equation may be considered also as a special limiting case of (13). Since q = 1, we have a 
realization of the ordinary Heisenberg-Weyl algebra. The full effect of non-zero parameter a in 
(32) is not known to the author. For monotonically growing at x --t ±oo functions the leading 
asymptotic term F(x) - f2(x +a) has different signs at space infinities which means that growing 
solutions of (32) (if any) should oscillate. Higher dimensional generalizations of the presented 
construction are unknown to the author (except of the simple cases when variables separate and 
the problem becomes effectively one-dimensional). Two final remarks are in order. First, the 
factorization method allows to replace superpotentials iJ(x) by hermitian matrix functions [20], 
in which case right hand sides of Eqs. (3), (14) are proportional to unit matrices. Second, there 
may exist an interesting interrelation between the described self-similar potentials and the wavelet 
analysis [21] where affine transformations (dilatations and translations) generate orthonormal 
bases of the Hilbert space. 

The author is indebted to J.-M.Lina, A.Shabat, and L.Vinet for valuable discussions and 
helpful comments. This research was supported by the NSERC of Canada. 
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J ust slight modi fi catioll of (6 ): 

fJt N(X) = fJ( J.:), kj+N = kj, 	 (7) 

descr ibes esscnt iil ily more cOlllplicawd potelltials, although orie has only one additional free pa
rameler w = kJ + k i +1 + ... + )':)+ N- I = >"Jt N - >'] -I- O. It is easy to see that (7 ) at N = 1 gives 
t he harmonic osci llator problem, whereas (6) is degellerate . The N = 2 system coincides with the 
general COli formal quantum mechanical model [8], 

I kJ - k2 1 kl +kl
f u (r ) = ;-(± --- +--x). 	 (8) 

2 1.:1 + k2 X 2 

Already N = 3 case leads to transcendental potentials (91, namely, Ji(x) depend now on solutions 
of the Pain leve- IV eq uation [I]: 

1 1 ( 
fl(X) = 2I wX + f (I ), f 1.J(I) = --;;/ =f 2j f I + k2), w = k. + k2 + k3 , (9) 

f " = -1'2 - ().~x f2 + (I-w2 2 k 
-

k)f 
-

k~ (10)+ 3 f3 + x + 3 1 2f 2 2 2f' 

To the author's knowledge this is t he first example, when Painleve transcendent appears in a 
quantum mechanical context . 

Let us take two uJlconstrained Hamiltonians LJ and Lj+N from the chain (4) and assume 
that both are self-adjoint. The map from unnormalized wave functions of L)+N to those of Lj is 
performed by successi ve action of the operators at , 

tP~)(x) = n:)+ ¢~+N)(X), KI = aJaj+I" .aj+N_1> KT == (Kn t 

A')+Lj+N = Ljh'f, Lj+NKj- = KTL j . 	 (11) 

For a discrete spectrum the labeIJing of levels differs by some integer, n' = n + m, Iml ~ N . 
Qualitatively, the situation is depicted in Fig.l, where dashed lines are used to denote non-physical 
(unnormalizable) levels of the intermediate Hamiltonians. The latter exist if superpotentials fj 
have strong enough singulari t ies, in which case the L/s are not isospectral and operators at are 
not weIJ defined on somc physical states. 

+ + a:"a.j Cl.J+, J +N-I 

f\ r\ (\ 'P( j,+ N) 
-- --__ - n

Fig.l The action of I\)-operator 
on the Lj+wstates in a rbitrary 
case (below) and for LJ+N = 0 0 0 0) lK~)
Lj + COTIst (on the right) . 	 dJ(j} 

o 

Tn! - -- +. - ~(j+N) 
~ rL 

Lj Lj1>I ' Lj+N 
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Now we restrict potent ial of Lj+N to be equal to that of L j up to some simple transformation. 

Then K; map eigenstates of L) on to each other , tP~~) f-t tP~j) (t here may be zero modes). The 
simplest case is realized when all states are mapped onto t hemselves , i.e. when = n. T his n' 
is equivalent to Ljt N = L j , or (6) . From (11) operators K; are seen to be integrals of mot ion 
[7J. For n' -I- n a spectrum generating situation arises. Taking >"j+N -I- >., and substituting 
Lj +N = L, + >'j+N - Aj into (11 ) one gets the standard ladder relations. Integrabili ty of these 
finite-d imensional truncations of the chain (3) is analyzed in Refs .!7, 9). The next step is to classify 
intrinsically infinite-dimensional solutions of (3). Let us show that q-deformations naturally appear 
in a consideration of t he related exactly solvable spectral problems. 

A peculiar potential was found in Ref.[ l O] by the following self-similarity constraint: 

f J( x) = ql f(qlx) , kj = qljk, 0 < q < 1, k > 0, (I2) 

which gives a solution of (3) provided f( x) satisfies the equation 

j'( x) + qJ' (qx ) + f2(X) - q2f2(qX) = k. 	 (13) 

Quantum algebraic content of this model was uncovered in Ref.[ll] , where it was shown that 
q-deformed Heisenberg-Weyl algebra [12], 

A-A+ -lA+A- = k, 	 (14) 

is implemented by the choice 

A+ = (p + if(x))Tq , A- = T;l(p - if(x)) = (A+)t, 

Tqf(x) = Jqf(qx). 	 (IS) 

Intertwining relations between A± and Hamiltonian H = A+ A- - k/(1 - q2) easily generate the 
spectrum 

H A± = q±2A±H, ::::} En = _kq2n /(1 _ q2) . (16) 

A deformation of supersymmetric quantum mechanics, inspired by this model, was suggested 
in Ref.{13]. The main idea is very simple - one has to replace superpartner Hamiltonian by that 
obtained after affine transformation (i .e. dilatation and translation) and adjust kinetic term to 
the standard form. Degeneracies of levels are removed and energy split is proportional to 1 _ q2, 
where q is the scaling parameter. Within this scheme, Eq.( 13) is a condition of homegeneity of 
magnetic field alond third axis for a spin-l/2 particle moving on the line. This construction is 
easily generalized to the particular parasupersymmetric model defined by unification of sequential 
members of the chain (4) into diagonal (N +1) x (N +1) matrix. Acting on each subhamiltonian 
by different affine transformatioll group elements and rearranging kinetic terms one would get 
multiparameter deformation of parasupersymmetl'ic algebraic relations . Following the considera
tion of Ref.[S], one may impose various physical restrictions on the matrix Hamiltonian and look 
for explicit form of potentials accepting those constraints. Analyzing such possibilities the author 
have found (14) the folJowing q-periodic closure of the chain (3), 

2fj+N(X) = qfJ(qx), k j +N = q k j . 	 (17) 
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It leads to a set of lIlixed fillitc-dilrerellce-ditTerential equations which describes q-deformation of 
the tlnite-galJ and relall·d pOlentials discussed in Refs. [7, 9]. Shabat's self-similar system is gener
ated at N = 1. Bccau~(' of Lhe highly transcendental character of self-similarity and connections 
wilh the Paillieve eCllIa' iuns all correslJondilig potentials may be called as q-transcendental ones. 

Let us find a sYlllnlt'lry algebra bE'i1ind (17). First we rewrite q-periodicity at the Hamiltonian 

level: 
LJ+N = qiTq LJ Tq-

I + aJ , aJ = >'J+N - q1AJ' (18) 

where we normalize a) > O. Substituting this into (II) we get 

L)Aj -q1 ..t-;-L) = a)Ai, A; LJ - q1LjAj = aJA;, (19) 

Ai == [\')+Tq , A; = (Ant. 
Obtained formulae repn'st'nl a first lJart of the quantum algebraic relations determining structure 
of the system. Secolld part is fixed by a particular q-commutator of Aj following from the 

ident ities : 
N - I N-I

A; .·1~ = II (l'J - Aj+i), A; Ai = II (qlL; +a) - AJ+.). (20) 
1=0 ,=0 

As an example, we write one possible equality : 

AtA; - q2N A; Ai = PN- 1(Lj), (21) 

where P N - 1 is a polYllotn ial of the degree N - 1. Formulae (19), (21) define a particular class 
of 1I0nii near algebras which may be interpreted as a q-deformation of the polynomial algebra 
of ordinary ditTerential operators discussed in Ref.[9] (the latter in turn may be considered as 
the simplest W-alg(>bras) . Corresponding ladder relations determine the spectrum provided A1' 
respect boundary couditions of a problem . The peculiarities of representations of general nonlinear 
alge ura [Jo, J ±J = ± J±, [J+, 1-] =g(Jo), where J±.o are some formal operators, were discussed in 
Ref.[ 15]

For simplicity, we restrict our consideration to the whole line spectral problems with non
singular potentials, in which case all a;'5 are well defined. Then the index j can always be cbosen 
in such a way thal Ai will not have zero modes (this will be assumed below). Normalizabilityof 
physical states is not spoiled by A;-operators, which thus raise and lower energy. As a result, the 
equation A;1/J(x ) = 0 determines lowest energy state. Suppose that all N independent solutions 
of t his equat ion are nonna lizaule, which corresponds to the ordering Aj < Ai+1 < . . . < Aj+N-1 

and normal izable l/J~I ),S in US). Energies of all bound states are easily found: 

(Ai - q )qlr, for n = Nr 
. a A _ ~6 fo r n = Nr + 1

E(l) = __J _ + ( 1.+1 ~)q, (22)
" I - q2 ...

{ 
(AJ+N -I - ~ )q2. , for 11 = N r + N - 1 

By definition E~) < E~J~I' a.nd since q < 1, one has E!!,l = aj / ( l - q2), f oo (x) = 0, i.e. the 
potentials are reflectioll iess, with spectra comprising N geometric series. For the continuous 
spect rum the roles of A; are interchanged , action of A; creates a series of states with exponenti aUy 
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growing eigenvalues. Note tl lat at q -+ 0 there will remain only first N levels corresponding to 
zero value of r in (22). Th(' smoothness condition allows to put qf)(qx) = 0 directly in the set of 
equations defining !.i(;r) and obtain N -level dressing problem for zero potential. It is known to 
lead to a potential describi Jlg fixed time N-soliton solution of the KdV equation. 

The formula (22) does 1I0t work at q > l. In fact, this region of q may be reached by analytical 
continuation of q < 1 solutions and permlltations: 

fl(.r,q - l;kl ,k2, . . . ,kN) = iqJ.(qr / i,q;kN,kN_I," .,k.), 

h(X,q-') = ifN(X/i,q), h(X,q-l) = ifN - ,(x/i,q), ... , fN(X,q - l) = ih(x/i,q), 

where kj -dependence ill the last relations is the same as in t.he first formula. In Ref.[ll] the 
N = 1 case was analyzed at q > 1 and the presence of singularities was demonstrated. Analogous 
situation takes place in general - analytic continuation of smooth potentials to imaginary axis 
creates singularities. The latter are moving under the scaling transformation and t.his breaks 
needed isospectrality of Lj's. Note that we do not q-defonn Heisenberg equations of motion, so 
that quantum mechanical time evolution coincides with the standard one. However, the time 
evolution of the potentials U(.r) as infinite-number soliton solutions of the KdV equation requires 
special consideration. 

In order to elucidate the construction, we consider N = 2 q-periodicity in more detail. Basic 
equations 

J;(x) + f;(x) + f~(x) - f;(x) = kl , 

fHx) +qf;(qx) + fNx) - q1f~(qx) == k" (23) 

and operators A+ = (p + ifd(p + ifl)Tq and H = aral generate the algebra 

1IA+ - q2A+ II = (k. + k2 )A+, A-H - q2HA- =(k1 +k2 )A- , (24) 

A- A+ - q4A+ A- = q2(kl (1 +q2) +2k1)H +k2(kl +kl ). (25) 

By adding to H some constant one may rewrite equations (24) in the form (16). Relations 
(24). (25) at q == 1 define conformal algebra su( 1, 1) and at q I 1 they represent a particular 
"quantization" of this Lie algebra (see, e.g., Ref.[16]). 

Let us find fl,l(X ) as formal series near x = O. Consider first the singular solutions. Permitted 
singularity has a pole character: 

a 00 a 00 . 

fl(x) = - +~ bjX'li -1 h(x ) = -- + Le;x11
- , 

1 

xL.-' 
;= 1 x ;= 1 

, -I C
1

C 
I
-j - bjbi _ j 

I-I 2ib b
q2'bi +e; = L q j i - j - CJCi- j (26)b, + Ci = L ')i _ 1 +2a ' 

. 

j= 1 ~ j = 1 2i - 1 - 2a ' 

b _ I kl k2 1 k2 qlkl 
I - I - q2 ( 1 + 2a - 1 - 2a ), CI = l- q2(1- 2a - 1 + 2a)' 

where a is an arbitrary I)arameter. In general, the series diverge at q ~ 1, proper choice of a, 
however, provides t he trullcated solu tion (8). In the limit q ~ 0, the function qfl(qx) does not 
vanish, qf,(qx) -+ a/J·. Su bst.ituting this into (23) one gets two-level dressing problem for the 
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