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NONLINEAR ALGEBRAS AND SPECTRAL PROBLEMS!
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Abstract

An application of the particular type of nonlinear operator algebras to spectral problems
is outlined. These algebras are associated with a set of one-dimensional self-similar potentials,
arising due to the g-periodic closure fj,n(z) = qf;(g2), kj+n = q*k; of a chain of coupled
Riccati equations (dressing chain). Such closure describes g-deformation of the finite-gap
and related potentials. The N = 1 case corresponds to the g-oscillator spectrum generating
algebra. At N = 2 one gets a ¢g-conformal quantum mechanics, N = 3 set of equations
describes a deformation of the Painlevé-IV transcendent.
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Quantum algebras, or ¢-deformations of Lie algebras, attracted much attention during the last
years. They have appeared in conformal field theories, spin-chain models, in the construction
of link invariants, and so on. Another type of nonlinear algebras, known as W-algebras, also
formed the subject of intensive investigations. It is quite natural to ask on the applications of
these objects within the context of Sturm-Liouville type spectral problems. The answer is not so
straightforward and most of the attempts done in this direction cary phenomenological character
- the deformations of spectra are introduced in an ad hoc manner, without proper definition of
arising operators. As we shall show below, the problem can be treated in a rigorous fashion on the
basis of standard concepts of continuous space physics. Moreover, nonlinear algebras will appear
very naturally as an inevitable consequence of the analysis of exactly solvable potentials.

The consideration will be limited to the simplest one-dimensional Schrédinger equation

—¢"(z) + U(z)g(z) = Ay(z), (1)

describing a particle moving in some potential U(z). (The prime in (1) and below always denotes
derivative with respect to real coordinate z, € R.) The quantum mechanical spectral problems,
associated to (1), traditionally provide good place for probing new group-theoretical ideas. This
is inspired by the general belief that any kind of regularity in spectral data is generated by
some symmetry algebra of a Hamiltonian. The qualitative understanding of peculiarities of a
given system is reached when an operator algebra governing the map of physical states onto
each other is explicitly constructed. The most advanced approach to building of such symmetry
transformations, which we are going to exhibit, is connected with the technique developed by
Darboux long time ago [1]. Within quantum mechanics, it is known as factorization method
[2]. In the theory of integrable nonlinear evolution equations, it was generalized and named
as the dressing method (3]. Later, Darboux transformations were identified as supersymmetry
transformations, mixing bosonic and fermionic degrees of freedom in specific models [4]. Some
further parastatistical generalization of the latter interpretation was suggested in Ref.[5]. Using
this method, we shall describe a set of self-similar one-dimensional potentials whose discrete
spectra are composed from a number of geometric series. Among the corresponding nonlinear
spectrum generating algebras we shall find a g-deformed Heisenberg-Weyl algebra and a quantum
conformal algebra suy(1,1), where parameter ¢ will have the meaning of interaction constant.
llowever, we shall not discuss the Hopf algebra structure which seems to be irrelevant in the
present context (perhaps it will be needed in higher dimensional models).

Quantization of the spectral parameter A emerges due to particular boundary conditions im-
posed upon the wave functions y(z). Just for an illustration we exhibit one of the possible
(self-adjoint) conditions:

P(n) =hiy(nr),  ¥'(z2) = hayp(za), (2

where z; and z; are two different points on the line, and h,;, h; are arbitrary real constants. Here
we would like to mention the powerful restriction on asymptotic growth of eigenvalues {),} for the
potentials without singularities in [z}, z;]. Namely, {\.} can not grow faster than n? at n =+ oo
[6]. This observation immediately restricts the region of applications of g-deformed commutation
relations which often formally produce exponentially growing discrete spectra. Below we imply
the condition of square normalizability of wave functions, y(z) € L?[—co,00], for the discrete
energy states. For singular potentials one still will need additional boundary conditions. The
(quasi)periodic potentials with zonal structure of spectra will also appear in the consideration.
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Let us first present some basic principles of the factorization method. The main object ap-
pearing after successive factorizations of the stationary one-dimensional Schrédinger operator (1)
is the following chain of coupled Riccati equations (the dressing chain):

L)+ fin(a) + f}(=) - (=) =k, jez (3)
k= A = Ay,
where k; (},) are some constants. The Hamiltonians L; associated to (3) have the form,
LJ=P2+fj2(-F)—f;(I)+’\J=“;“;+A:v )

af = ptifi(z), p = —id/dz.

Conditional isospectrality of L; and Lj, follows from the intertwining relations
L,a;-" = G;LJ.‘.I, a;L,' = L,“a;.

Any exactly solvable spectral problem with infinite number of discrete levels can be represented
in the form (3), (4) with A; being the Hamiltonian eigenvalues:

Ly =EWp,  EBY) = Ay, n=0,1,2,...
e oy, 9l wayyd), (5)
T
v () = exp (- [ fiw)dy).

In this case A;4; > A; and all wave functions {?) are square integrable, with n nodes inside taken
coordinate region. For Hamiltonians with finite number of bound states normalizability of
truncates at some j. A large list of potentials, whose spectra are easily found by the factorization
method, is given in the first paper of Rel.[2]. In general, however, parameters A; do not coincide
with physical eigenvalues since for a given potential they could be chosen arbitrarily.

In order to solve underdetermined system (3) one has to impose some closure conditions. At
this stage it is an art of a researcher to find such an ansatz, which allows to generate infinite
number of f; and k; by simple recurrence relations from fewer entries. Most of the old known
examples are generated by the choice f;(z) = a(z)j+b(z)+c(z)/J, where a, b, ¢ are some functions
determined from setting powers of j in (3) equal to zero. Three years ago Shabat and Yamilov
considered the problem from another point of view [7). They suggested to treat (3) as some
infinite-dimensional dynamical system and to find potentials corresponding to finite-dimensional
truncations of the chain. In particular, it was shown that very simple periodic closure conditions:

fian(@) = fi(z),  Agn =4, (6)

for N odd lead to the potentials with zonal structure of spectra which are described by (hy-
per)elliptic functions and called finite-gap potentials (parameters A; represent physical eigenvalues
when they coincide with the boundaries of gaps). First non-trivial example appears at N = 3 and
corresponds to the one-gap Lamé equation. After rewriting corresponding potential in the Weier-
strass form and demanding the wave functions to vanish at singular points one gets a different
solvable spectral problem.



potential o 1/7%. We guess that at g < | there exist such k,; that series converge for arbitrarily
large 2. The condition a(a + 1) > 3/4 guarantees that normalizable wave functions and their first
derivatives vanish at zero [8]. The spectrum of such system would arise from only one geometric
series (second is eliminated by boundary conditions).

For non-singular at zero solutions one has f;, = .22, b}m)z", where b},"“ are two arbitrary
constauts. Again, in general series diverge at ¢ — 1. Particular choice of initial conditions gives
the solution which in this limit corresponds to (8) with a coordinate shift. Depending on the
values of k; and A; the limit ¢ — 0 recovers either the smooth, two-level potential with bound
state energies at 0 and ky, or its analytically continued partner. Only first of these corresponds
to (22) at N = 2, cach series belongiug to independent representation of suy(1,1). Moreover,
it is this solution that reduces to the g-oscillator one (12)-(16) (with g replaced by ¢'/?) after
restrictions f;(x) = ¢'/*fi(¢"/*x), k» = qk;. At ¢ — 1 spectral series become equidistant which
means that potentials start to be unbounded at space infinities. Because of the nice connection
with ordinary conformal model [8], we suggest to call the N = 2 system as ¢-deformed conformal
quantum mechanics.

For the N = 3 system ol equations:

[(2) + (o) + fiz) = fR(2) = kyy
Ji(x) + fa2) + f2(2) — f2(z) = ko,
F3(x) + afilar) + f(z) — ¢* f(qz) = ka, (1)

one can exclude fp3(r) and get

1 1 p
fola) = = 1(0) F 55 (/(0) 4 ), (29)
T, = = w
fioy = L oy 4 T [ )ty - 2 - o), (29)
wey = L0 o) 4 ) — L) — @) = by~ k) — KR
710 = T AU+ fe - @ - @ k- gk - )

where ro is a constant of integration. At ¢ = 1 one has fi(z) = f(z) + w(z — 20)/2 and (30)
becomes the P1V equation (10). So, the system (29), (30) describes a g-deformation of the PIV
transcendent.? In fact, all functions f;(z) satisfy one combersome equation with different choices
of the parameters k. As a result, the relations (28) give new solutions of the ¢-PIV system in
terms of a known one: fy(x;ky, ko, ks) = fi(z; ka2, k3, ¢*k1), fa(z; kiy ko, ks) = filzs ks, g%k, ¢%k2).
Existence of these nonlinear maps is a result of the hidden self-similarity.?

The notion of g-periodicity (17) and corresponding algebraic relations (19), (20) are central
in this paper. However, above we just outlined some of the properties of self-similar potentials.
It is quite interesting to know what kind of potentials one gets as a result of deformation of the
finite-gap potentials, i.e. when for some j one has k; + k;41 + ... + kjyn—1 = 0. There are other
possibilities in addition to the mentioned ones. For example, the coordinate = and parameter q
were taken to be real and nothing prevents from the consideration of complex values as well. An

3For a different approach to y-deformation of the Painlevé equations see Ref.[17].
*Such transformations for the solutions of standard Painlevé equations were discussed in a recent paper [18).

interesting situation is described when ¢ is a root of unity, ¢™ = 1. From the relations (17) one
easily sees that now

Sramn(2) = q7fi(q72) = fi(z),  kjpmn = ¢y = Ky, (31)
which is a subcase of (6) because
Xjamn = A = (L= ¢"™)(kj + kjgr + ...+ kjan-1)/(1 — ¢*) = 0.

In a short joint research with A.Shabat the N = 1, ¢* = 1 case was analyzed and appearance
of the simplest Lamé equation for the equianharmonic Weierstrass function was demonstrated.
Corresponding spectral problem is known to be solvable [19]. A charming property of the self-
similar systems in these cases is that operationally they are naturally characterized not by the
generators of the order m/N polynomial algebras but rather by their m-th operator roots which
are well defined and satisfy simpler (although unusual) commutation relations. Unfortunately, the
general analytical structure of the ¢g-transcendents is not known and this does not allow to analyze
analytical continuation of the solutions found for the specific values of ¢q. Also, there should exist
some infinite-gap potentials which are reduced to the self-similar ones in the limit of zero widths
of the gaps.

Different problems appear when the scaling operator T, (15) in the definition of A* is replaced
by the translation operator, T, f(z) = f(z + a). Instead of (13) we then have

f(x)+ f'(x +a) + f*(z) — f*(z + a) = constant. (32)

This equation may be considered also as a special limiting case of (13). Since ¢ = 1, we have a
realization of the ordinary Heisenberg-Weyl algebra. The full effect of non-zero parameter a in
(32) is not known to the author. For monotonically growing at £ — *oo functions the leading
asymptotic term f2(z)— f%(z + a) has different signs at space infinities which means that growing
solutions of (32) (if any) should oscillate. Higher dimensional generalizations of the presented
construction are unknown to the author (except of the simple cases when variables separate and
the problem becomes effectively one-dimensional). Two final remarks are in order. First, the
factorization method allows to replace superpotentials f;(z) by hermitian matrix functions {20],
in which case right hand sides of Eqgs. (3), (14) are proportional to unit matrices. Second, there
may exist an interesting interrelation between the described self-similar potentials and the wavelet
analysis [21] where afline transformations (dilatations and translations) generate orthonormal
bases of the Hilbert space.

The author is indebted to J.-M.Lina, A.Shabat, and L.Vinet for valuable discussions and
helpful comments. This research was supported by the NSERC of Canada.
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Just slight modification of (6):
franlx) = fi(x), kisn =k, (7

describes essentially more complicated potentials, although one has only one additional free pa-
rameter w =k, + k3 + ...+ kynvoy = Ajyn — A; # 0. It is easy to see that (7) at N = 1 gives
the harmonic oscillator problem, whereas (6) is degenerate. The N = 2 system coincides with the
general conformal quantum mechanical model (8],

I ki—kyl ki + ke
(im+h} 2

Srale) = z). (8)
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Already N = 3 case leads to transcendental potentials (9], namely, f;(z) depend now on solutions
of the Painlevé-1V equation [1]:

h@)=qoet 0, file)=~3f 517(1' Fh) wm by ket )
" f/? 3 k2
:5?+§fﬁ+zujﬁ+@w%2+k3—kgf—E%. (10)

To the author’s knowledge this is the first example, when Painlevé transcendent appears in a
quantum mechanical context.

Let us take two unconstrained Hamniltonians L; and Lj;n from the chain (4) and assume
that both are self-adjoint. The map from unnormalized wave functions of L;;n to those of Lj; is
performed by successive action of the operators af,

W) = Kt(0), K} =atal et K= (KD

I\'+LJ+N = le\f, Lj+N1\’; = KJ-_LJ‘. (11)
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For a discrete spectrum the labelling of levels differs by some integer, n’ = n + m, |m| < N.
Qualitatively, the situation is depicted in Fig.1, where dashed lines are used to denote non-physical
(unnormalizable) levels of the intermediate Hamiltonians. The latter exist if superpotentials f;
have strong enough singularities, in which case the L;’s are not isospectral and operators aff are
not well defined on some physical states.

+ + +
a; Gt Rjenay
Jr J .
AN Y
’
Fig.1 The action of A',-operator T "~
on the L;j,y-states in arbitrary . +
case (below) and for L4y = ST (KJ)
L; + const (on the right). “P(J) (+N)
D — N T
N KT te

LJ L;,,x : LJ+N

Now we restrict potential of L;j;n to be equal to that of L; up to some simple transformation.
Then K¥ map eigenstates of L, onto each other, %1 ¢+ ) (there may be zero modes). The
simplest case is realized when all states are mapped onto themselves, i.e. when n’ = n. This
is equivalent to Ljyn = Lj, or (6). From (11) operators Kf are seen to be integrals of motion
[7). For n’ # n a spectrum generating situation arises. Taking Aj4n # A; and substituting
Liyn = L; + Ajyn — A; into (11) one gets the standard ladder relations. Integrability of these
finite-dimensional truncations of the chain (3) is analyzed in Refs.[7, 9]. The next step is to classify
intrinsically infinite-dimensional solutions of (3). Let us show that ¢g-deformations naturally appear
in a consideration of the related exactly solvable spectral problems.

A peculiar potential was found in Ref.[10] by the following self-similarity constraint:

HE) =g f(dz), k=4¢"k 0<q<l, k>0, (12)
which gives a solution of (3) provided f(z) satisfies the equation
J(2) + af'(q2) + () ~ ¢ f*(qz) = k. (13)

Quantum algebraic content of this model was uncovered in Ref.[11], where it was shown that
g-deformed Heisenberg-Weyl algebra [12],

ATAY - Q*ATAT =k, (14)
is implemented by the choice
A = (p+if@NT, AT =T - if(2) = (4,

T,f(z) = Vaf(qz). (15)
Intertwining relations between A* and Hamiltonian # = A*A~ — k/(1 — ¢?) easily generate the

spectrum
HA* = ¢**A*H, = E,=-k¢"/(1-4¢). (16)

A deformation of supersymmetric quantum mechanics, inspired by this model, was suggested
in Ref.{13]. The main idea is very simple - one has to replace superpartner Hamiltonian by that
obtained after affine transformation (i.e. dilatation and translation) and adjust kinetic terin to
the standard form. Degeneracies of levels are removed and energy split is proportional to 1 — g2,
where q is the scaling parameter. Within this scheme, Eq.(13) is a condition of homegeneity of
magnetic field alond third axis for a spin-1/2 particle moving on the line. This construction is
easily generalized to the particular parasupersymmetric model defined by unification of sequential
members of the chain (4) into diagonal (N +1) x (N + 1) matrix. Acting on each subhamiltonian
by different affine transformation group elements and rearranging kinetic terms one would get
multiparameter deformation of parasupersymmetric algebraic relations. Following the considera-
tion of Ref.[5], one may impose various physical restrictions on the matrix Hamiltonian and look
for explicit form of potentials accepting those constraints. Analyzing such possibilities the author
have found [14] the following g-periodic closure of the chain (3),

fien(@) = afilgz),  kin = %k, (17



It leads to a set of mixed finite-difference-differential equations which describes g-deformation of
the finite-gap and related potentials discussed in Refs.[7, 9]. Shabat’s self-similar system is gener-
ated at N = 1. Because of the highly transcendental character of self-similarity and connections
with the Painlevé equations all corresponding potentials may be called as g-transcendental ones.

Let us find a symmelry algebra behind (17). First we rewrite ¢-periodicity at the Hamiltonian
level:

Lyn= quqLJTq‘l +0;, 0;=AjaN — X, (18)

where we normalize o, > 0. Substituting this into (11) we get
L,AJ* _.qufl.J =a,AJ*, -‘1;L,—q’L_,~A;=U;A;, (19)

e - _ (At
AY=KIT, A7 =(ahl.
Obtained formulae represent a first part of the quantum algebraic relations determining structure

of the system. Second part is fixed by a particular g-commutator of A} following from the
identities:

N-1 N-1
ArA; = [T = Nwi)y A7AT = [T(Ls + 05 = M) (20)
1=0 1=0

As an example, we write one possible equality:
AYAT - ¢ AT AT = Praa(Ly), (21)

where Py_, is a polynomial of the degree N — 1. Formulae (19), (21) define a particular class
of nonlinear algebras which may be interpreted as a g-deformation of the polynomial algebra
of ordinary differential operators discussed in Ref.[9] (the latter in turn may be considered as
the simplest W-algebras). Corresponding ladder relations determine the spectrum provided A_,*
respect boundary conditions of a problem. The peculiarities of representations of general nonlinear
algebra [Jo, J&] = £Js, [J4,J-] = g(Ju), where J. o are some formal operators, were discussed in
Ref.[15]-

For simplicity, we restrict our consideration to the whole line spectral problems with non-
singular potentials, in which case all a¥’s are well defined. Then the index j can always be chosen
in such a way that AT will not have zero modes (this will be assumed below). Normalizability of
physical states is not spoiled by A,*—operators, which thus raise and lower energy. As a result, the
equation A7 ¥(z) = 0 determines lowest energy state. Suppose that all N independent solutions
of this equation are normalizable, which corresponds to the ordering A; < Ajy1 < ... < Ajyn-1
and normalizable z/!“,"‘s in (5). Energies of all bound states are easily found:

(A = f?;,)q", forn = Nr

(Aisr = 122)d™, forn= Nr+1

E9 =24

1-¢* (22)

(Ajen-1 — l—?v-;)q", forn=Nr+ N -1
By definition EY) < EY), and since ¢ < 1, one has EY) = o,/(1 ~ ¢%), fo(z) = 0, i.e. the

potentials are reflectionless, with spectra comprising N geometric series. For the continuous
spectrum the roles of A} are interchanged, action of A creates a series of states with exponentially
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growing eigenvalues. Note that at ¢ — 0 there will remain only first N levels corresponding to
zero value of r in (22). The smoothness condition allows to put gf;(gz) = 0 directly in the set of
equations defining f;(xr) and obtain N-level dressing problem for zero potential. It is known to
lead to a potential describing fixed time N-soliton solution of the KdV equation.

The formula (22) does not work at ¢ > 1. In fact, this region of ¢ may be reached by analytical
continuation of ¢ < 1 solutions and permutations:

filx, g bk ko, k) = dgfi(qx /i, gk kv, k),

f?(rvq-l) = ifN(Iliaq)- f3(I'q_‘] . ifN—l(I/i’q)v LY fN(‘tvq-") = ij?(x/i)Q)v

where kj-dependence in the last relations is the same as in the first formula. In Ref.[11] the
N =1 case was analyzed at ¢ > 1 and the presence of singularities was demonstrated. Analogous
situation takes place in general - analytic continuation of smooth potentials to imaginary axis
creates singularities. The latter are moving under the scaling transformation and this breaks
needed isospectrality of L;’s. Note that we do not g-deform Heisenberg equations of motion, so
that quantum mechanical time evolution coincides with the standard one. However, the time
evolution of the potentials U(z) as infinite-number soliton solutions of the KdV equation requires
special consideration.

In order to elucidate the construction, we consider N = 2 g-periodicity in more detail. Basic
equations

Jilz) + fil2) + [i(2) = f3(2) = ky,
5(@) + afilgz) + f3(2) = ¢ fi(qz) = ka, (23)
and operators A* = (p+if,)(p+1/2)7, and H = afa; generate the algebra
HAY = PAYH = (k, + k) A*, ATH — ¢*HA™ = (ki + k3)A™, (24)

ATAY - q'A*A" = q’(k.(l + q’) + 2’!2)” + kz(k) + k;) (25)

By adding to H some constant one may rewrite equations (24) in the form (16). Relations
(24), (25) at ¢ = 1 define conformal algebra su(1,1) and at ¢ # 1 they represent a particular
“quantization” of this Lie algebra (see, e.g., Ref.[16]).

Let us find f 2(z) as formal series near z = 0. Consider first the singular solutions. Permitted
singularity has a pole character:

filz) = g + ibi;7i-l’ fa(z) = ~§ 1 ic‘_z'ﬁ—l,
i=1

=1

2 gy —bibi; ; S g¥bybicj ~ cici;
bi4cg=Y 12 2= Bp 4o = £ b N L]
M Vi el L Pl (26)
1 k k 1 k 2k
b (= o) (st = o),

T1-¢'1+2 1-2a T1-¢'1-2a¢ 1+2a
where a is an arbitrary parameter. In general, the series diverge at ¢ — 1, proper choice of a,
however, provides the truncated solution (8). In the limit ¢ — 0, the function gfi(qz) does not
vanish, qfi(gz) = a/x. Substituting this into (23) one gets two-level dressing problem for the
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