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ABSTRACT .
We present the Lax pairs, whose compatibility conditions yield the constraints and the
Ward identities of the Wy-gravities in the light-cone gauge. The constraints specify the
ghost structure of the theory and take in to account the possible presence of the cosmological

constants. The examples of ordinary (W) and Wj gravities are worked out as special cases
of this general formulation.

Study of the induced gravity in the light-cone gauge has been the subjeci of consid-
erable interest after Polyakov’s observation of a hidden SL(2, R) Kac-Moody symmetry in
this problem(1]. Subsequently, the works of Knizhnik, Polyakov and Zamolodchikov(2] and
others[3] have unravelled the full consequences of this symmetry. Although the non-local
effective action for the induced gravity,
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becomes local both in the conformal and the light-cone gauges, the problem of quantization
is much more tractable in the latter case. Here A is the cosmological constant and a « ¢,
¢ being the conformal anomaly of the matter sector. The light-cone gauge is characterised
by the line element

ds? = dz* dz™ + h(zt,z7)dz*?, 2

where the metric h(z*,z ™) transforms under the residual coordinate transformations as
Sh=ch' +é—he. (3)

The dot and the prime denote the derivatives with respect to z+ and z~ variables. The
simplicity of the light-cone approach can be easily seen from the equation of constant
curvature, which yields a constraint

R=0h=-2, | @

in contrast to the dynamical Liouville equation in the conformal gauge. The constraint
equation yields the equation of motion for the induced gravity 8 h = 0, allowing the
expansion of h(zt,z7) as

hz*,27) = J-(24) = 20°(z%)z™ + JH(z*)e ™ (5)

here J=(z*), J°(z*) and J*(z*) are the currents of the 2l(2, R) Kac-Moody algebra.

Geometrical meaning and the origin of the current algebra symmetry have become
clearer after imbedding the light-cone gravity in a gauge theory[4]. Both the Virasoro
and Kac-Moody symmetries of the effective matter and the gravity sector can be obtained
from the residual gauge transformations of a suitably gauge-fixed SL(2, R) connection.
Interestingly, the Ward identity and the constraint emerge from the compatibility equation
of a pair of Lax operators involving this connection. This compatibility equation is nothing
but the zero curvature condition of the SL(2, R) gauge field. This approach is in complete
parallel to the Lax pair formulation of the integrable, non-linear equations of KdV type
and hence might shed light on the origin of these hierarchies in the lattice model approach
to 2d-gravity(5].

In this talk, I will describe the appropriate generalisation of the above observations to
give a proper definition of the so called W-gravity[6]. It is worth noting that a consistent
covariant formulation and the geometrical interpretation of this theory is still lacking.
Briefly, in case of the W-gravity, the effective matter sector is characterised in the light-
cone gauge by the Wi algebras(7] which are generalisations of the Virasoro algebra. The
corresponding generalised gravity sector has the SL(N, R) Kac-Moody symmetry. It should
be mentioned at this point that, although in principle, it is possible to obtain an effective
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action in this approach by integrating the anomaly equation(zero-curvature condition)[8],
it is not necessary for the purpose of getting the correlation functions. Once the constraints
have been obtained and the underlying current-algebra symmetry becomes transparent, the
Ward identities can be solved iteratively to yield all the relevant correlators(9].

We start with a gauge field A, (4 = +, —), valued in the Lie algebra sl(N, R). First, the
A_ component of the connection will be fixed in such a way that, the remaining degrees of
freedom in A_, the so-called w;’s, will transform as Virasoro quasi-primary fields under the
residual gauge transformations. In the second step, we define the A sector by introducing
a new family of fields, the h;’s, which are analogs of the metric field for the wy generators.
In parallel to the case of ordinary gravity, we assume that these fields originate from a
covariant action which involves couplings of symmetric fields (generalised metrics) h,,,
huvp etc with the tensors (stress-energy and higher spin generators) w,, w,., efc. This
action has enough symmetries to gauge-fix all the components except the h;’s and w;’s
mentioned above. :

_ Our objective now is to obtain, the relevant Ward identities and the consistent con-
straints involving the h;’s from the compatibility of the Lax pair 8- + A_ and 8; + A, or
equivalently from the zero-curvature condition. We require the constraints and the dynam-
ical equations of the Ward identity to appear respectively in the diagonal and the upper
row of the curvature matrix. All the other entries of this matrix are zero, at least weakly.
This procedure determines most of the components of A ; the remaining freedom is related
with the constraint equations themselves and the symmetry properties of the h;’s under
diffeomorphism. This leads to the last step, similar to the first one, where we require the
fields h;,i > 2 to transform like currents under the fundamental Virasoro symmetry:

8(p)hii>2 = —(i = 1)k p' + hlp. (6)

For h;, we want to maintain Eq.(3), at least for the finite subgroup of diffeomorphism.
This requirement and Eq.(6) imply that 8°h; are dimensionless quantities and, hence, the
constraint equations

®; = xi0h; — Ai~0, Vi=2,3,.. N (7)

are meaningful. This gives us the opportunity to introduce N “cosmological constants” );

" and N free parameters x;.

We now propose an algorithm that realizes for any sl(V, R) algebra the gauge choice
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mentioned above. Let us write

0 W, -W, -W, ... —Wa
c 0 5 0
0 1 0 ... 0
A-=1o0 0o 1 0 o |- (8)
: 0
0 o0 1 0
and
H ...
Hy oo ...
Av=| g, ... . 9)
Hy

We will put ¢; = 1 for convenience; this parameter scales the central charge. It is well-
known that the W;’s are not quasi-primary fields and the H;’s do not transform as definite
spin currents. Let us consider the following change of variables:

EHED)

Wi =§‘:(—1)‘-" Aij(N)8wj, with A;;(N) =

= 5

» | (=) (Vo (10)
| Bi=3_ Bji(N)&"7h;, with Bi;(N) =(—1)"'"'—’2i——;51’

=i i-j

that we will justify later. The gauge field A- being thus completely defined, the zero-
curvature condition yields the following recurrent relations on the matrix elements a;; of
At

!
aij+1 — @i-1,j = 6; j — HiW;,

2 SN +1-i
ke =Y (i — HWisa) - ) — (@i — HiWia), (11)
=2 i=2

an-iN = —(an_ip1,n — HN-itWN).

These equations determine all the elements of A4 in terms of the N — 1 fields H;’s. Let
us ignore the constraints for the moment and concentrate on the symmetries. It is rather
* obvious that the issue of the gauge preserving symmetries §A_ = 0_¢ + [A_, €] is similar
to the zero-curvature condition since, on the constant elements of the gauge field in Eq.(8),
the gauge preserving condition amounts to solving d_¢ — 84 A_ + [A_,¢] = 0. Therefore,
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the matrix € is determined by its first column

€4 oen ’ (12)
€N

and the recurrent equations (11) can be used to compute all the other components. The

knowledge of the € leads to the proper variations of the w;'s and of the h;’s. In order to

fulfill the requirement that w,’s transform as Virasoro quasi-primary fields the following
redefinition of the gauge parameter is necessary:

N
e;:ZB;;(N)a“fp,,, (13)

=
with the matrix B(N) defined in Eq.(10). More precisely, looking only at the variations
induced by pz, the gauge transformations lead to the following expressions

"

Swz = 2wz pp +wypa + C(N) py',

k-1
Swzit1 = (2k + 1) waks1 P2 + Waei1P2 + E Chrma(N)QF*, (14)
1=1
k-1
| bwar = 2k wak py + whp2 + Z CiL(N)Q}*.
=1

We have defined the central charge C(N) = w and

2(1-1) .
(—1)'0'-‘(1) 3 2l-i+1
i = E ng'—)zlpg ), (15)
i

i=0

where () are given by:
ao(l) =1, on(I) = 2(1 - 1)(21 + 1), oz(1) =11 — 1)(2 +1)(2 - 3),

and, ) »
(zl-'H) (2(-—1) (zl+;---)

aizs(l) = — '—';(3)—-——— (16)

Let us note that the derivatives appearing on the parameter p; are always greater or equal
to three which implies that we have defined the gauge field A_ in terms of quasi-primary
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fields. Futhermore, the dependence on N, i.c. on the central charge, is completely contained
in the coefficients C}(NV). A lengthy calculation leads to the following conjecture[10]

Ci(N) = (-1 (N—k+2!)(k-l—2)(2(1:—1)—1)1N+(k_()(k_l_l)+l,

2(20+1) 2 -1 ITis, (2(k =) —1)
(53)

Finally, let us mention that we obtain the correct symmetry varitions of the h;’s for i > 2:
bhi>a = -—(i - l)h.‘p’, “+ h:p,.

However, the variation of h; involves higher derivative terms which vanish only in the finite
subgroup of the diffeomorphisms.

The constraints and the“cosmological constants” can now be added to the A, sector.
We consider the following shift of the previous gauge field 4,:

0 x:—ﬁza“.’lz 0 0 0
0 0 A3 — k33hs 0 0
0

0 0 Ay — &3k
Ay — AL + :

0 Ay—rndVhy
0

-

amn
The resulting zero curvature equations exhibit the expected dynamical equations on the
fields wy with, a shift in the cocfficients of the higher derivative of the h;’s. The diagonal
entries of F_ now exhibit the expected N — 1 equations ®; ~ 0.
It is easy to show that the presence of the constraints restricts the gauge preserving sym-
metry to that of the finite subgroup of the diffecomorphisms. Of course, such restriction is
also seen in the quantum regime where the relevance of the constraints is well understood
in terms of the ghost system. Let us only mention that, similar to Eq.(5), the operators
h;’s are expanded in terms of si(N, R) current operators

2i-2

hi=Y 2" I, (18)

n=2

Such expansions are legitimate by the equations 8*~'h; = 0 that generalize the constant
~ curvature equation and are easily obtainable from the dynamical equations with the w;’s
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equal to zero. Then, the equations ¢; ~ 0 lead to the following system of constraints

¢ Ji(l'i-l) " 0’
J§£+:) ~0,

J,-“’ ~ const, and .m = B N S (19)
-’.'..'>z ~0,

J@D g,

Dimensional analysis of this set of constraints completely describes the weight spectrum
of the necessary ghost systems. The resulting central charge contribution is[11] ¢ghose =
—n?(n+1) +n(n+1)+2.

In the following we will work out the examples of the much studied ordinary(w;) and
the w; gravities in light of the above general formulation for the sake of consistency and
clarity. In the former case the gauge choice

L0 =) (W A ( etk
s (X— 0 ) = ( Ak Y (2)

yields §t = 2t + et + 73— ¢ under the residual gauge transformations that maintain A_.
This variation is easily recognized as the variation of the stress-energy tensor in a conformal
field theory, with a central charge c equal to 73—. Furthermore, all the parameters of the
gauge variation are not independent:

€ —.+i¢
= e
0 1
€ = —-2-86, (22)
1
¢+ = —(Ka’ +‘)¢,

and it can be easily checked that h(z*,z~) does transform as the light-cone metric field:
Sh=—he +eh' +é (23)

The zero curvature condition F' = 0 provides the constraint equation and the gravitational
Ward identity given respectively by

>
4

b=

I

(24a)

K
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Byt = ((c +x)02 +0¢t+ :a) h. (248)

It is worth emphasising that for taking into account the constraint with the possible p-
resence of a cosmological constant, the parameter & should be nonvanishing. It should be
pointed out that it is precisely the case in the quantum Ward identity of the 2d-gravity.
In this case however, the nonvanishing x is exactly calculable. In our gauge choice with
x # 0, the gauge preserving symmetries are restricted to those described by ¢ such that
Be=0if Ay #0o0r&e=0if \; =0. The parameter of the residual coordinate invariance
is restricted as can be odserved in the work of KPZ[2].

In the W, case we define the gauge field A_:

0 —W1 —W;
A_=| ¢ 0 0 (26)
0 1 0
where the c; is a constant and the W;’s are dynamical fields with dimension ¢ (the dimension
of 32— is +1).
As they stand, the dynamical fields in A_ do not satisfy the Virasoro symmetry prop-
erties mentioned before. The gauge transformations that preserve Eq.(26) are found to be

described by the functions ¢~ and €~ or, more conveniently, by the arbitrary functions p;
and pj:

- €
€ =cp2— ?Ph (27)
€7 =aps,

and, defining the w;'s by the following change of variables
1,
We=w;, Wys=w;- sz- (28)

It is easy to check that,

"

2
§(p2)w2 = 2wapy +pawy + o7
S(p2)ws = 3wspy +p2uy,
8(p3) w2 = 3wapl +2ps wh, (29)
1
§(ps)ws = —E(2wg' p3 + 9w} ph + 15w py + 10wz py')

2C1 1 1|
- T(wzzl": + wawy p3) — G_c,p" "
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We can consistently construct a Poisson bracket structure between the w;’s, starting with
the Virasoro algebra satisfied by the generator of diffeomorphisms w,:

{w2(2), w2(v)} = (e8 + w20 + Bw2)8(z - y) (30)

with ¢ = % The primary field w; can be interpreted as the generator of the spin-3

transformations:

{w;(z),w;(y)} = —% (c&’ + 21073: + 38‘1’282 + 3821028 + Za’wg + -?w;&wz)ﬂ: - y),
{w2(z), ws(y)} = (wsd + 20 ws)é(z ~ y)

{w;(:),w,(y)} = (2!0;8 + 8w;)6(: - y)
(31)
As can be seen from the Poisson bracket {w3(z),ws(y)}, there are non-linear terms which
go to zero in the so-called “classical limit” ¢ — oo.

The Ay field is written as,

e A2t
A+= H) e X)+... y (32)
Hy

with H; ~ h; + ....

The components of A4 are determined in such a way that the curvature is of the following

form
¢, E, E;
0 &-% 0 |, : (33)
0 0 -,
with )
@, = r;0%hs - Mg,
2 = K20°h2 — A2 ' (34)
‘b; = Kaa’hg = A;
and Ey = —0;w,+--+, E; = ;3+w; +---. The constants «; are free parameters. Together

with the “cosmological constants“ A;, they represent the presence or the absence of the
constraints. Let us notice that the Eqs.(34) are legitimate only if the metric fields h; have
the proper dimensions such that 8'h; is dimensionless. In fact, the zero-curvature condition
alone does not define a unique A4 since we obtain

H; = 1k hj,
{ 2 =¢chz+ahy (35)

Hy = ¢, hsy,

where a is free. However, choosing this parameter equal to zero spoils the symmetry

property of h; under the diffcomorphisms. Keeping the interpretation of h; as a metric
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field, i.e. Eq.(3), gives a = —%. Then, the remaining varations are found to be

5(p2) hs = — 2h3 py + p2 by,

S(p;)h: =—1'h3 P’” pes lhl P" + -l-h"p' . lh"’p, + iw, h’ P, - iw; h’)PS (36)
ghars —ghaps + ghsp—ohy 3 3T 3.

8(p3) hs = = ha p3 + 2h3ps + ps.

" Finally, the dynamical equations E, ; = 0, obtained from the zero-curvature condition are
the following:

0+W3 = ((C + ﬂ:)o, + W!b + Ow;)hg + (ﬂ;ﬂ‘ + (w:8 +'28m3)h]| (370)

8wy =(a38 + 2ws8 + Ows )k,

376
—-112-((: + £3)8 + (28° wg + 36° w20 + 30w, 6° + 2w, 8°) + ?wzbwz)h,. (376)

The a;’s and 5;’s are linear combinations? of the «;'s. It is remarkable that they only occur
in the shift of the central charges, as in the sl(2, R) case. It is worth mentioning that this
system leads to the Boussinesq equation by setting hy = 0 and hy = 4.
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