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We present a 2+1 dimensional model which exhibits superconductivity through the 
Kosterlitz-Thouless (KT) mechanism with a non-zero critical temperature Te. The model 
has three phases: a confined-vortex phase which iii superconducting at low temperatures, 
an intermediate-temperature phase with deconfined vortices, and an unbroken-symmetry 
phase at high temperatures. The ground state does not break P or T and the ratio of the 
energy gap to Te is bigger than the conventional BCS value. 
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The study of various models exhibiting planar superconductivity at non-zero temper

atures is obviously oC considerable pra.ctical and tbeoretical interett. From the tbeoretical 

point of view this is due to tbe Ca.ct tbat tbe conventional explanation of this phenomenon 

based on spontaneous breaking of electromagnetiam i. not applicable to a plua.r world. 

This result follows Crom the works of Hobenberg,l MermiD &Dd Wagnerl ud Coleman:' 

the critical temperature for breaking of a continuoUl .ymmetry in 2 + 1 dimensions is 

strictly zero. To circumvent this problem, one Ulually invoke. ...mall interpla.na.r coupling 

or takes recourse in unconventional mech&nism., e.g., anyon superconductivity.· 

In this letter, we analyse a 2+1 dimentional relativiatic model witb four-fermion in

teraction (reminiscent of the BCS theory) and tbow that it possetC8 a .uperconducting 

ground state at nonvanishing temperature, because of the vortex confinement mechanism 

of Kosterlitz and ThouJeis. li The motivation to study this modelliet in the appea.rance 

of relativistic fermions as the relevant low-energy degreea of freedom in the strong cou

pling limit of the Hubbard and related models;' widely believed to be relevant for the 

high-Tc supercondudora. Furthermore, four-Fermi couplings al.eo arise naturally in the 

above-mentioned models in tbe presence of doping.7 The goal of the study is to capture 

the generic properties of this class of models DBing large-N renonnalizabiliiy of the {our

Fermi couplings in 2+1 dimensionsl and to find the similarities and dissimilarities with 

the standard BCS theory. Finally, although not conclusive, there it some experimental 

indication as to the KT nature of the phase trantition in the high-T" materials," giving 

urgence to the analysis of various mode" exhibiting such behaviour. 
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The model we investigate is detcribed by the Lagrangian 

C = {Jo(iI- e4},po - 4;N {JQ,,~-j,~t/I~. (1) 

Here ~ > 0, ,p" = Ct/JT = i"'(l,p. is tbe cha.rge conjugate field, and the flavor indices a, 

f3 range €rom 1 to N. Coupling to the pboton field endow. the model with a U(l) gauge 

symmetry. The choice of four-fermi term in (1) w.. motivated by an aUempt to mimic 

BCS superconductivity, wbere tbe interaction ,p{,pI"!"'l leads to a charge-two condensate, 

in a relativistic setting. Tbe more obvious four-fermi term ({Jt/I)2 found, for instance, in 

the Gross-Neveu model,lo leads to a neutral condellSate. 

[n wbat follows, we will usc a Hubbard-Stratonovitch tranaforrnation to linearize the 

four-Fermi term, and find the low-energy effective tbeory for the auxiliary field ¢ in the 

large-N approximation. As a first step, the effective potential at zero temperature will be 

computed to study the question of radiative breaking of tbe U(l) Iymmetry Gla Coleman

Weinberg.l1 U .\ is below a certain critical value, we will see tbat p attaint a nonzero 

expectation value. Next, the situation at finite temperature will be explored. We will see 

that p == I¢I still has a nonzero expectation value up until a certain critical temperature 

TI (where a second-order phase transition occurs). Below T.. the nature of the phase is 

ratber inevident, since tbe field ¢, being cbarged, cannot have an expectation value. In 

fact, we will find two sepa.rate phases, separated by a second critical temperature TKT < 

TJ • Both tbese phases contain a high deneity of voruce.. However, below TKT vortices 

and anti vortices come in tigbtly-bound pairl, whereas in the region TKT < T < Tl the 

vortices are essentially free. Thill confinement/decontinement hu a dramatic effect on 

the properties of the system. We will see that above TKT (but belo~ TI ) the vortices' 
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cont ri bution to the current-current correlation {unction serves to cancel the no-vortex T hus, we obtain the following effective Lagrangian near the critical point (A ~ A,, ): 

cont ribution, a.nd we find no Meissner effect, while below TKT the vortex-antivortex pairs 
Lewi N = 96!lpl l(OJl - 2ieAJI)~ I ' - (A - A,,)~·¢ - 6~ (¢·~);S/" (4) 

make essentially no contribution, and we are left with the no-vortex contribution, leading 

In a.ddition one has the usual Maxwell term, &Dd possibly a Chern-Simons term. However 
to the Meissner effect. 

one easily checks that the latter does not a.riae j thUI, we do not get P or T violation. 
The linearized Lagrangian rew 

To investigate the situation at finite temperature, the effective potential can be calcu-

L = ~cr(il - e4)"er + ~ (¢·~~"er - # er"!) - AN~·~i (2) lated using the imaginary-time formaliam . While the gap equation itself is not particularly 

t ransparent, it can be solved for the temperature TI at which p vanishes, yielding 
integrating over the fermions yields the effed ive action for the condensate ¢ and gauge 

fields: 47rA= A + 2T1 log(1 + e-A
/ T1 ) - 2T1 log 2. (5) 

eiS.,,[A••••") = JW1>VJ e iS • 

In the phase A~ Ac, Tl = 27r(Ac - A)I log 2; in the extremely strong coupling phase A <t:: A" 

The effective potent ial can be computed using the method of Coleman and Weinberg;ll and TI :::::: 7rA~ IA can be large. The order parameter approaches zero smoothly, in both 

from this, the gap equation for p == 1; 1 (which is the fermion mass) is cases . 

e To establish the KT nature of the phase below T1 , let us compute the vev of the
6V ft' = 0 = 2AP - 2P ( .;A' +i' - Ipl)· (3)

6p 7r 
charged order parameter ¢. For that purpose we observe that the order parameter can be 

where A is a cutoff. We see that if (A < Ac == Alb), there ill a solution for p of o. (Notice i8 written as ¢ = pe , p being the massive mode and 8 representing the massles8 excitation. 

that the four-fermi coupling constant is '" I IA, so that A < Ac is a at rong coupling regime.) 
Using the long wavelength propagator for 8 and under t he approximation that p is nearly 

There are two interesting limits: (a) A ~ Ac, where Ipi ~ 4~(Ac - A), in which case the 3 
constant at low temperatures, we find (¢) ::: p(ei8 ) = pe-(8 )/2 ::: const(PIS)'1· Here, IS 

mass gap is small; and (b) A <: Ac, where Ipi ~ 211'A~ /A , in which case the coupling and is an infrared cutoff introduced in the 8 propagator; this originates from the fact that at 

the mass gap are large and the fermion maa. plays the role of the cutoff. 
finite temperature the n = 0 mode (in the imaginary-time formalism (kO)n = 2n7r/P) is a 

The next term in a gradient expansion i. the two-derivative term for the scalar field; massless field, which introduces an infrared divergence in the correlation function. In the 

using a diagrammatic method l2 similar to Coleman and Weinberg, the coefficient is found limit IS ..... 0, (¢) = 0 since 1'/ = 1/47rP K and K == 5p1487r is positive. We have checkedu 

to be 5/967rlp\, the important point being that it is positive. that beyond the leading, order in liN, this neutral order parameter is not affected by 
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infrared divergences. Since the corrections a.re down by liN, in what follows we use the 

one-loop vaJue Cor p. Note that the sepa.ration o.f tP in to. pion-like model i.e., tP = 4>1 +itP2 

0. 14iii not stable above T = 

Now (4) will be analysed in the London limit, to compute the contribution of the 

phase 8 to the photon effective action. With p fixed, (4) appean to be • trivial quadratic 

action for 8. However, it must be remembered th.t' ie a multivalued variable, and naively 

perfonning a Gaussian integratio.n o.ver it £ail. to. capture the contribution of the vortices. 

This is remedied lS by the replacement 8,,8 --+ 8,.fJ - i'P·8,,'P with 'P.'P = Ii the new 8 is 

now treated as a single-valued field and 'P describel the vortex dynamics. The actio.n is 

rewritten in terms of an auxiliary current J,. : 

Cetr/N = - 2~J,.J" - J" (8"fJ - i'P·8'"'P +2eAI'). (6) 

Since 8 is single-valued, it can be integrated out, giving the constraint 8" J" = 0, which 

i6 readily solved by J,,(z) = t".,>.&'a\ where the field a"(z) i. defined globally. The 

Lagrangian now become. 

Cew/N = _ _ 
I 

j2 - 2ef,.~\a"lYA" - 21ra"JCu) (7)4K ,...~" " ' 

where J;") = (2,..it1t"",,8"('P·O"'P) i. the conserved vortex current. The globally defined 

gauge field can now be integrated out in the Landau gauge, yielding 

___1_ _ (II) g"" (,,) ~ (11)9"" p ~ ,.., .!. 
2,..2 K NL,eff - J,. (z) lJ2 J .. (z) + 1r J,. 82 (""p8-' A + 2,..2 F 82 F,.". (8) 

The last term in C.eff is the contributio.n of the topologically trivial piece and is relevant for 

superconductivity. The contribution of this term to the electromagnetic current-current 
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correlator is: 

(j"(z}j"(y») = -4e2KN (8;: -g,..,) 63 (z - JI), (9) 

indicating a pole at zero momentum and hence lIupen:ondudivity. This term in comb ina

tion with the Maxwell action yields a mus M! = 4e2 K N for the photon and hence leads 

to the Meis.ner effect. Since the Icalar mUI near the critical point il M! = p'N/wK, 

the nature of the superconductivity (type I or type II) can in principle be inferred from 

M./MlJ = 48'1f~/5e which is independent of N. AI mentioned befo.re, near the ccit

ical point '\C - ,\ is smalli however, in 2+1 dimensions the electromagnetic coupling is 

dimensionful (as is '\), and without knowledge of its value nothing meaningful can be said 

about the nature o.f the superconductivity. 

Below we will show that at low temperatures, when the vortices are confined, their 

contribution to the F""8-2 F,.., term is zero and hence they do not affect the Meissner 

effect. In contrast, above the KT phue transition temperature the vortex contribution to 

this term is crucial: it exactly cancd.e the contribution from the lingle-valued part (that 

appearing in (8», thereby destro.ying superconductivity. 

The vortex current is coIUlerved and the winding number of 'P is aJways an integer, 

allowing us to write J~lJ) == Pv(a:) =1:. m.6(z-a:.) and J!(z) = Eo moz~6(z-z.), where 

mo is the integer vorticity. Considering only Itatic configurations (J! = 0) and looking at 

the n = 0 mode (the re1it are massive and hence damped), at finite temperature we get 

Setr/N = "'K,8~m..m,dn Ir. - iil- 2eK,8Lmof tfrB(i)lnlr - r".a1i (10)

". . 
without the interaction term this is the actio.n of the familiar XY model. The confining

deconfining phase transitio.n in this model o.ccurs at 'IfK N ,8= 2, which after taking into 
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account the finite temperature correction II gives z tanh{z}= 8/N with z = p/2TKT' Solving 

the above equation gives pN/16 < TKT < pN/4v'2. Since tm. analysis is valid for TKT < 

T1 , this implies N < 4. Below we will show I fini with a physical argument and then with If. 

direct calculation, that this KT transition i. actually a transition from a lIuperconducting 

state to a non-superconducting one, and 10 the luperconducting critical temperature Tc is 

actually equal to TKT. Thus, the physically relevant quantity, 2p/Tc , il fCitricted to the 

range 8f? < 2p/Tc < ~ . In the physically interCiting theoriCi N = 2;s notice that in this 

case the above ra tio is higher than the BCS value of 3.52. T his happens because the gap 

p vanishes at a temperature higher than TKT. 

Assuming that the interaction with the electromagnetic field is small, t he effect of 

the vortices on superconductivity can be easily inferred. Physically, in the confined phase, 

a slowly varying magnetic field sees pairs of tightly bound vortices with opposit e vortex 

charges and hence the net contribution from each pair vanishes, leaving untouched the 

contribution of the single-valued part. Concretely, in the st atic limit 

62 S." 
(/(q)jj(-q)) = 6Ai(q)6Aj(-q) (cSij _ 	 q:~j)q%(p(q)P(-q)). (11) 

In the confined phase, a straightforward calculation yields (p(q)p( -q)) '" qP-2, where 

p > 4,16 indicating that the alero-momentum pole in (ii(q)ji( -q)) does not get a contri

bution from the confined vortices. This also implies that in L,eft' the FI>" 8-2F,." term, 

and hence the Meissner effect, is not affected by the vortex sector. However, above the 

KT temperature, when the vortices are free and the interaction between them is screened 

like in a plasma we expect ra.ther subst&Iltial contribution from that sector. In this phase, 
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directly integrating out the JI> variable yields: 

I'vorte. - N K e%F'''' ~ F. (12)£"'eft' - IJ2 I'"' 

with precisely the opposite sign to that of the previoul contribution. Bence, this confirms 

the physical argument given above that in the deconfined phue the superconductivity is 

destroyed &Ild Te = TKT. We note that tm. analyai8 i8 &lao applicable to other models17 , 

but unlike these ones we do not have gauge fields except the photon. 

To conclude, the model presented here exhibits superconductivity through the KT 

mechanism without parity breaking and is based on a relativistic field t heory which arises 

naturally in many strongly correlated electronic systems. The gap to Tc ratio is high as 

compared to the BCS value because of the fact that KT phase transition temperature 

is lower than that of the neutral order paramater responsible for the gap in the fermion 

spectrum. This indicates that the met allic phase might have interesting properties. Finally, 

we remark that the releV&Ilce of KT transitions to quasi-two-dimensional systems has 

been discussed previouslYi1s such an extension to the model described here is currently in 

progress and will be described elsewhere. 

We acknowledge useful discussions with V. Spiridonov, D. Arovas, B. Sakita &Ild 

M.B. Paranjape. This work was supported in part by the Natural Science and Engineering 

Research Council of Canada and the Fonds F .C.A.R. du Quebec. 
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