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ABSTRACT 

We study the QED theory by using the loop regularization method 
and find that the regularized theory is covariant and can lead to ali 
the results that are derived by using other regularization methods. 

In our last paper[l], we developed a new method for regularization and renormalization 
in the field theory. By using this method, we successfully got the renormalized </>4 field theory 
to the second order of the coupling constant. 

In this paper, we would like to generalize this method to the gauge field theories . As an 
example, we study the QED theory at the one loop order by using this method. 

The action of the theory is 

J 1 >. - 
S(A, tP) = d4 x{ -4 F""F'''' - 2(0' A)2 + tP(i fJ - m)tP - etP /AtP} (1) 

where tP represents the chiral fermion field, A the U(l) gauge field, .,j; = tP+,o, F"" = 

(o"A" - o"A,,) and p is the abbreviation of a",". In this paper, we choose the Feynman 
gauge>. = 1 for simplicity. In this case the Feynman rules of the theory are: 

= (P'~m)oP, 

-~ - kJ , (2) 

= -ie(!,,)po' 

The divergent degree of the 1PI diagram with L loops, I, internal fermion lines and 19 
gauge field lines is 

6 =4L - I, - 21g • (3) 
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li enee, t he d ivergellt l P I diagrams at the one loop order are those t hat are shown in fig . 1. 
In Ol der to gt'l the renormalized QED theory at the one loop order, we have to calculate the 
divergent diagrams (a), (b) and (c) (fig. I). Their integral expressions in the momentum 
space are 

(a) = _e2 J~Trb~"_;_m 1~ ;~ml , 

(0) = _ e 
2 f f.F("'(" ¥~'" 7lA )i1o(p~I<)" (4) 

(c) = _e3 f (:::.(",(1' If-:-m"'lA~m j")i1Q~ ' 

Obviously, all of them are ultra-violet divergent. (a), (b) and (c) are quadratically, linearly 
and logarit hmically divergent recpectively. 

III order to le t these integrals at the one loop order to be meaningful, we have to regularize 
tbem. The spirit of the regularization is the same as that in the 4>" field theorY[l J. In the 
QED theory, t he regularization method can be stated as follows: we first make a shift of 
the electron mass by jJ and regard the term -jJ ljJ ..p as the perturbation term together with 
~; JAr/>. Tile new action turns out to be 

S(A, t/J,jJ) = S(A, t/J) - JttxjJljJ..p . (5) 

So besides (2) , we can have another vertex whose Feynman rule is: 

= -IP. . (6) 

The role of this vertex is to cut the fermion propagator into several parts regarding the 
\lu mber of such kind of vertices in the original fermion propaga.tor. In order to regularize 

the d ivergent IPI amplitude at the L-th loop order rr,·n,)(pl, ' " ,Pn/ i kit "' , kn ,) with ", 
external fermion li nes and ng external gauge field lines, we first calculate 

rt/'''''(P), ... ,PA, ; k.. ·· . I kn ,; q; IJ) (7) 

which is lhe summation of the diagrams with all possible 2q insertions of vertices (6) in the 
fe rmion lines of each loop of the original diagram. Because each insertion of (6) decreases 
t he divergent degree by 1, so the divergent degree of (7) turns to be: 

f/ = (4 - 2q)L - /, - 21g • (8) 

W hen q is large enough , r~n, . n')(plt · · · ,PR/; kh ··· , kng ; q;l1) is convergent and well defined. 

After calculating r~n/ .n"(pl'· . . , p", ;k., · . . , kn ,; qj jJ) , we make an analtytic continuation of 
q from the integer to the complex number and when q -t 0, we get the original amplitude, 
i.e. : 

r (" I ," ')( k k»), r (n"n,)( k k " )L PIt "' ,Pn,; It " ' , n, ::: ,~ L p""',P,,,; '11·", n"jJ,q· (9) 

So It/·"· I(PI,· . . ,PA,; k it " . , k.., ; jJ ; q) can be regarded as the regularized fo rm of 

r~n/.n')(PJ ' · .. ,P"I ; kJ, ... , kn , ) . T he renormali zation of the t heory is the same as in the 
usual approach. Namely, we subtract the d ivergent part of the vertices of t he theory at each 
loop order by addi ng the relevant counterterms to the original action. T he new action is 
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the renormalized one. All the renormalized 1 PI correla.tion functions calculated from the 
renormalized action are finite when q -t O. 

Regularization and eva.lua.tion of divergent integrals: 
Now we set about to calculate the one loop divergent diagrams (0), (0) and (c) by using 

the regularization method stated above. 

In order to calculate the divergent diagram (a), we attach to one of the internal fennion 
lines in the divergent loop with i and to another one with 2q - i vertices (6) and the diagram 
(a) is turned into (a:)(fig. 2). 

The amplitude (aD can be expressed as 

I _ 

(a,) -
19 2f d"p ( 

- 11 e (21T )4 Trh'" jJ
1 )i+ ( 1 )li i+1

.Ie _ m 7" p _ m (10) 

and the regularized amplitude of (a) is defined as 

'2q 
(11)"".. == ~)aD·

i= O 

We can prove that the regularized amplitude (11) is covariant for q large enough . Because 

klAn = - '2ge'2 f ~ "'~..! Tr[ 10 (_1_ ) i+1 (_1_)'29-'+11I'V IJ (2tr)' L...._O ,. 'I-II- m 7.. 'I- m 

= _ 2ge' f tJ4~(",'2q+l _ ",2q )Tr((_ I_ ) ,q- ·+1 (_ 1_ )' (12)11 (h)i L....= I L....=O ; - m 1-II- m 

= _ 2qe2 f d·p Tr[(_ I_ )29+1 _ (_I_ )'2Q+1 J 
jJ jh)T ;-II-m 1.. ; - m 1... 

When q is large enough, this integral is convergent , we can make a shift of t.he integral 
variable and the two terms in (1 2) cancel with each other. Hence the regularized form (11) 
is covariant for q large enough . 

The calculation of (aDs are very tedious. Here we only present the calculation of (a~ ) . 
Otber (aDs can be calculated in a similar way. 

Dy using the Feynman parametrization, (a~ ) can be reexpressed as: 

(a~ ) = _jJ 2ge'2 Id do(l + 2q)o29 f a Trh~("-QHmh. (r't( I -Q)H"' ) ' t2' ! (13)
(1 .. ), tp' +o( l - o) t L m')>+'9 

where we have made a shift of P -t P + (1 - o)k and q, at this stage, is still regarded as 
an integer. Hence, we can exp and the tra.ce term in (13) into power series with respect to 
p. After that, we make an extension of q from t he integer to the complex number and when 
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q -+ 0, we filld that the terms contri buti ng to (13) are 

1'rh,,(p- a ,k+m )-Y... (p +(I-a) ,k+ m )1+29] 

= 4{(p2)Q[2p"pv - g"vpl + 0 (1 - a )(klg".. - 2k"kv) + (1 + 2q)m2g"vl 

+2q(I - 0)(1 - 2a)( pl)9- l p ' k[P"k ... + k"pv - p. kg",,) 
(14) 

+q(1 - a)1(pl)9- 1kl [2p"pv - g"v (pl)] - 2q(1 - 0)1(pl)9- a(p . k)1 12p"p... - g..... (p2)1 

+qm2(p2)9- 1[2p"pv - g...,(p2)J} 


+other terms that do not contribute to the intrgral (1 3). 


At this stage, (13) can be integrated by using the following formulas: 

~~ - i r(Wllr(A-2-P)(M2 )2+P-A
f (2")' (p1+M1)" - (4,,)2 rIA) 


~~ - _i_!g r(3+P)r(A-3-P)(M2 )3+P-A (15)f (2,,)' (p2+M2)A - (4.-)2 4"1' r(A) 


d'p (,,2)/!p"p.P~~ _ i 1 ( + + )r(4+P)r(A-4-P)(M2 )HP- A
f (2";p (pl+Ml) - ~24 g"vgpo g..pgVf> gpqg"p r(A) . 

From (14) and (15), we get: 

f ~ Trh.(;-o¥+mh.(p'+(I-<»¥+m)'H'j 
(2,,)' (P1+o(l_o)k'!_mjp+:l, 

= ~r(2~2q) {-~g"vf(3 + q)f( -1 + q)[o(1 - o)P - m 2p-q 
(16) 

+r(2 + q)r(q)[o(1 - a)(Pg"" - 2k"kv) + (1 + ~q)m2g"v 

+~(1 - 0)(2 - 50)k"k" - q(1 - a)( -~a + 1)k2g.."lIa(1 - a)k2 - m 2]-9} + o(q) . 

By using the expansion 

r(3 + q)f(-1 + q) == _~ -1 + o(q), r(2 + q)r(q) = ~ _ I + o(q) . 
f(2+2q) q f(2+2q) q 

when q -+ 0, we get: 

liIDq~o f 8 Trh,.(,-o¥+mh.('+{I-a)¥+m)'+lqj 
(2,,) [p1+o(l-a)kL m'Jl+l. 

== ~{(Pg"" - k"k"WO(~-o) - 2a(I - o)ln[o(1 - a)k2 - m 2)] (17) 

+5{1 - 0)(2 + a)k"k" - HI - a)2Pg..,,} + O(q). 

and hence 

liffiq~o(a~) = 
2 4i {(k k k2 )[1 1 2 (I (1 )1 a(J-a)k'-

m1 1 7k k Ik2 } ()e (4,,)1 "" - g"v Jq + 9 - Jo a - an,,> + Is .. v - Ii g"" + 0 q . 
(18) 
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We find that (a~) is not covariant because of the last two terms in (18). But as we have 
proved that L~~o(ai) is covari ant for q large enough. So it should be covaria nt for a ll t he 
coefficients of L;~o(aD expanded wit h repect to q. It can be shown that the divergent part 
of (aD when q -+ 0 do not depend on i, furthermore, the dimension of (aD for a ll i equal to 
2, so we can concl ude that for all i , (ai) can be expressed as 

1 1 
') - 2 4j (k k k2 )[ I 2 (I (1 }I <>(I -<»k -m ()]( aj - e (4,,)1 " v - g..v 3q - Jo 0 - 0 n ,,1 + 0 q 

+e2~(cik.. k... - dj k2g..... + j;m2g..,,) 
(19) 

where Ci, di and Ii are some constants and in general Ci -=I di . From (12), we get 

2q 29 29 


LCi = Ldi = C, LIi=O (20) 

i=O i=O i=O 

where C is a constant which is not important for the phisical result which will be shown 
later . Hence we get 

II .." = L:~o(aD 

= (1 + 2q)e2~(k"kv - k2g",,)[~ - 2 f~ 0(1 - 0) In <>(I-<>,!f-
m1 + o(q)] 

(21 ) 
+e2~C(k"kv - Pg"v) 

m1 
= e2~(k.. k" - k2g..v)[~ + ~ + C - 2 f~ 0(1 - 0) In <>(1-oJf- + o(q)] . 

Let us denote II.." ;: ie2(k..k" - Pg",,)Il(k2), we find Il(P) = Il(O) + Ile (k2) where 

1 lol a(1 - a)k2 
Ile (k2) = --21 a(I - a)ln[I - ?]. (22)

7l' 0 m 

This result is the same as that derived by using other regularization methods[2] . 

The regularization of (b) is similar to (a), i.e ., we attach to the internal fermion propagator 
with 2q vertices (6) and the diagram (b) is turned to (b')(fig. 3). When q is large enough, 
(b') is convergent and it can be regarded as the regularized form of (b) . The amplitude of 
(b') is 

d4 k (,k +m)1+2q 12q (23)(b') == _1J e 
1 J (27l')4 (I" (P _ m2)1+2q I")po(p _ k)2' 

By using the same discussions as in the calculation of (a~), we find that when q -+ 0, the 
terms contributing to the integral (23) are 

1liIDq~o(b') = 21J2qf~(1 + 2q)a2q f ~ (k jq[{(I-a)V- 2(1+2q)m)+2(1-o)9(k,)q-1p.k¥}op (24)(2,,) [k'+o(l-o)pL<>m'rl+'q . 

Take the integral over k, we find that 

liIDq~o(b') = ~H(p- 4m)- p[lnP':r' - 4 - ~ + (~)2In(1 - ;;)] 
(25) 

-m[I2 +~ In(1 - ;;) - 41n p1:r1] + o(q)}. 
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SlI1ilarly, after attaching to the internal fermion propagator with 2q vertices (6) in the 
divergeut diagram (c), we get (c: ) (fig.3) which is the diagram with i vertices (6) in one of 
the internal fermion line and 2q - i vertices in another one. The regularized form of (c) can 
be represenled as 

2V 

(e') =2)':). (26) 
;=0 

Wheu q is large enough, (c') is convergent and when q = 0, (c') == (c). So (c') can be regarded 
as the regularized forlll of (c). The amplitude of (cD can be represented as 

I _ 2q 3/ cf4/ 2q p (1- ,k+m)l+i (I+m)l+lq- i 1 
(c,) --p. e ( 271')4~(-r !(l - kP - mlji+J/I'(P-m2)1+2V-"P)pa(p - l)2' (27) 

By the ~ame discussions as in the calculation of (a~), we find that the terms contribute to 
the illtegral (27) when q ~ 0 are 

I _ _ 293/ cf41 W)9(..,P(!- ,k+mh,.U+mhp)pa 

(c,) - J1 e (271')4 \(/ _ k)2 _ m2](P _ m1\1.&.1nl- 1\1 + o(q). (28) 


for a ll i. By using the Feynman parametrization , we find 

li mq~o( c') = L~!O(C:) = (1 +2q)(~) +o(q) 


= -,::r;' 'YII l ! + ~ - J; do J~ -a d{3ln{{3(l - (3)k1 +0(1 - o)pl - 20,Bk . p - (1 - o)m'}J 


_ 1~3 (I do r l - d(.l -,P[(Il - i)+,+ar'+mhe!P¥+ar'+mhe o()
Q 

~ Jo ) 0 I" P(I - p)_'+a(l - a)r - 2ap,p- (J - a)m' + q . 
(29) 

Let us denote (c') = AI' which is the vertex correction at the one loop order. The 
observable part A~ of the vertex is defined by the equation: 

AlI = K'YII+A~ (30) 

where K contains the divergent part when q ~ 0 and A~ is convergent. From (28), we are 
able to derive the anomalous magnetic momentum of the electron. Here we will not give 
its detai led procedures which can be found in (2J. We can find from our approach that the 
second-order correction to the magnetic momentum is ~ . 

Renormalization at the one loop order: 
At t his stage, the renormalization of Q ED theory is straightforward as has been shown in a 

lot of text books[3J. In general, we may add to the original Lagrangian with the counterterms 
whi ch is of the form: 

-HZJ - 1)(all A" - a"AI')(al'A" - a" AI' ) 


+i(Zl - 1)~ IN - 6m(Z2- 1)~Tj; (31 ) 


-e(ZI - l)~ f\1/I} - ~(Z3 - 1)(&· Ar~ . 


The new oction is t he renormalized one . If we choose 
.1 1.' 4 Z2 = 1 - r.;;pq,'Z3 = 1- ~3q' 

(32) 
ZI =1- (4 

.1 
.. )1 9 

I 
' Om = (1- (4<:)1~)m, 
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we find that all the correlation functions got from the renormalized action at the one loop 
order are finite when q -t O. 

If we let A~ = Zl AI', ,po = Zl,p, eo = Zi l Z;! Zle == Zle, mo = m + om which are 
called the bare quantities, then the renormalized action can be expressed in the form (5) 
with the physical quantities A, ,p, m and e replaced by the corresponding bare quantities 
respectively. It is remarkable that p. together with ~ in (5) are not renormaHzed . 

Similar to the discussions in [I] , we can also get the renormalization group equation in 
the QED theory. It is straightforward and we will not give its detailed expression here. 

The method developed here is typical in the gauge field theories. It may shed some light 
on the application of this method to more complicate field theories such as the QeD theory, 
the standard model, etc. FUrther works on these aspects are under progressl4J. 

Z. H. Wang is obliged to Prof. Daniel Z. Friedman, L. Vinet for their encouragement in 
the course of this work. 
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Fig. 1: Divergent diagrams of QED at the I-loop oder. 
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Fig. 2: The regularized diagrams of (a), (b) and (c). 


