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Abstract 


In the case of exactly solvable problems, the dynamical symmetries give a group 
theoretical setting for the Lanczos method. They will be used to obtain recurrence 
relations for classical orthogonal polynomials of a discrete variable. Specifically, the 
one-dimensional harmonic oscillator and the radial part of the SchrOdinger equation for 
the three-dimensional harmonic oscillator and the hydrogen atom are shown to provide 
an algebraic interpretation of the Charlier and Meixner polynomials respectively. As a 
byproduct, realizations of the oscillator and sU(l,l) algebras in terms of finite difference 
operators can be constructed. The connection with coherent states is also mentioned. 

Difference equations play an important role in physics: besides being naturally suited to 
the description of discrete physical systems, they appear whenever a differential equation is 
discretized on a lattice. It is therefore natural to investigate their symmetry properties, in the 
hope that such a study be as fruitful as it was in the case of differential equations. Amongst 
the questions that come to mind, is the following: how can one construct realizations of 
Lie algebras in terms of operators acting on functions of a discrete variable, and what are, 
then, the relevant functions? The purpose of this talk is to show that such a program can 
be realized [1] within the context of elementary quantum mechanics, and that the functions 
spanning irreducible representation spaces are classical orthogonal polynomials of a discrete 
variable [21. 

OUI' starting point will be the Lanczos method [3] which, given a self-adjoint Hamiltonian 
H and a state Uo that is not an eigenstate of H, provides a set of orthogonal functions 
{uo, Ul> U2, ... }, and two sets of numbers {ao. a" ...} and {b.,~ •... } such that the three-term 
recurrence relation 

HUn = b,.un-J + anun + bn+lun+J (1 ) 

holds. Expanding solutions tPE of the eigenvalue problem HtPE = EtPE on the Lanczos basis, 

tPE = L Pn(E)un , (2) 

one readily obtains a recurrence representation of the Schrooinger equation , 

EPn(E) = anPn(E) +bn+lPn+J(E) +bnPn- J(E). (3) 

Now, for exactly solvable problems, dynamical symmetries allow one to derive analytical 
expressions for the sets {Un}, {an} and {bn}. The three-term recurrence relation (3) then 
defines orthogonal polynomials Pn(E) and one may view Eq.(2) as an addition law for the 



Un's and the p" 'so In particular, for Hamiltonians with a discrete spectrum, one deals with 
polynomials Pn(EIr ) of a discrete variable Elt • 

In order to illustrate these considerations, let us apply them to the Hamiltonian of a one
dimensional harmonic oscillator, H = ~~+ i%',which can be rewritten as H = At A +! in 
terms of the usual creation and annihilation operators At = ~[- 1;; +%1 and A = ~[~ +xJ. 
This system can be solved exactly, because it has a symmetry algebra, the oscillator algebra, 
which is formed of the generators A, At, H and I, with the commutation relations 

lA, At} =/, IH, Atl = At. [H,A] =-A, [I, e] =O. (4) 

A Lanczos basis can be constructed by introducing the set of eigenvectors {Un} of the Hamil
tonian iI = ~ ~ + Hz - a)2 for a shifted harmonic oscillator. Just as H, if can be written 
in a factorized manner, if = AtA +~, with At = At - a/../2 and A= A - a/.j2. As usual, 

Hlun >= (n +4)lun >, ,.itlun >= v'R+1lun +l >, Alun >= vnlUn-1 >. (5) 

It is worth noticing that tio, the first state of the Lanczos basis, obeys the relation Aluo >= 0, 
so that the relation between A and Aimplies Aluo >= ~IUo >. ThUll, 110 is a coherent state 
of t.he unshifted oscillator, restricted to a. real eigenvalue of A. 

The three-term recurrence relation (1) for this problem follows immediately from the 
relation between H and if, 

H = if + ~ (At +A) +~ , (6) 

and from Eqs. (5): 

Hlu" >= (71 + HI +a~)) lu" > +.fi (.fiiIUn-1 > +In+1IUn+l » . (7) 

Let u:, IlOW introduce in the Schrodinger equation, HltPk >= (k + HltPlt >, the expansion of 
'h on the Lanczos basis, 

00 (~)n 1ItPlc >= L - q v(k ) Pn(k) jUn > , (8) 
>=0 a vn: 

v( k) being a normalisation factor to be determined presently. Uaing (1) and the orthogonality 
of the ii's, we easily get the recurrence relation 

a2a2) (9)Pn+dk) = (k - n -"2 Pn(k) - n"2Pn-l(k) . 

that defines [2j the Charlier polynomials Ci"l/2)(k) =Pn(k). These polynomials of a discrete 
variable obey the orthogonality relations 

~C("l(k)c(a)(k) e-°c? =a"n1o (10)f;:o m kl . mnn 

as well as the dual ones 

f Cio)(k) C~o)(l) co ~-" = a-.I: k! Okl. (11 ) 
n=O n. 

The normalisation condition l! tPlll = 1 yields the factor 

• 1
_,.1/4 ~ _~, (12)v(k) = e (v'2) Vk! 

as a consequence of (11) . 
At this point, it is a simple matter to construct a realization of the oscillator algebra in 

terms of the forward difference operator 

T,J(k) ::: f(k + 1). (13) 

and its inverse Tic- I . Indeed, rewriting (9) in terms of Charlier polynorruals, and introducing 
(8) in the relations AltPl< >= JkltPk-1 > and Atlt,t.>k >= v'f+1ltPA:+I >, we get three 
equations, 

(k - n - a)Cio)(k) - anC~~I(k) C~~ll(k), 
(Tk - l)Cio){k) nC~~I(k) , a ::: a 1/2 (14) 

(kT;1 - a)CiOI(k) C~~I(k), 

which provide the starting point for constructing such a realization. Since k, Tic and kTk-
1 

are op~rators acting on functions of the discrete variable k, we will denote them by k, Tk 
and kT.- J

, so as to avoid any confusion. These operators obey the commutation relalions 

I[T. ,kTk-1j = I, [k,kTk- ] = kTk- " {k,Tt! = -1'.. . (15)
' 

Thus, the identification 
'h ...... A , kT1 1 

...... At, k ..... H , (16) 

provides an isomorphism with the oscillator algebra, and from Eqs.(14) the Charlier polyno
mials are seen to span a representation of this algebra. Using (10) to construct normalized 

I . 
polynomials In >::: (ann!r2C~")(k), one can define matrix elements of operators O(k) be
tween tbese polynomials, 

00 .I: -0 

< mIO(k)ln > == E a e C!:IO(k)c~a)(k). (17) 
Ic=O k!v'am +n m! n! 

It is then easy to obtain from (14) the following representation of k, 1'.1: and kTk- in terms 
' 

of infiuite matrices: 

< mlkln > 1a(n + 1) Omn+ l + (n +a) omn + v'OIl Omn-I , 

rn 
I ,< "'ITkin> Om .. + V;; t5mn- (18) 

< mlkT;' ln > aOmn +1Q (n +1) Omn+l . 

Quite obviously, (16) is not the only possible identification. Had we chosen, rather, A '" 

a1(Tk - 1), At ~ a-40d,,-1- 0) and H "" (i.: - aTk - kT.,-1+ a + 1/2), we would have 
recovered the standard representation of the oscillator algebra. 



t • 

A similar analysis can be performed for other problems. The radial part of the Hamilto
nian for a three-dimensional harmonic oscillator Hr = H +K, where H = -~-£,- +~, and 
K = ~r2, has a su( 1,1) dynamical symmetry. In a Cartan basis, the generators of this sym

metry are 'R. == Hr/2 = 4(K +H) and L± = HK -H)±iD, with D == ~ (r* + ~). The scale 

transformation r -+ wr, 'R. -+ f<. = 4(w2 K +w-2 H) and L± -+ L± = ~(W2K - w- 2H) ± iD 
is an inner automorphism of this algebra. Proceeding as in the one-dimensional case, we 
expand the eigensolutions of 'R.lk; 1>= (d +k)lk; I > on the Lanczos basis formed by those 
of R,ln; 1>= (d + n)ln; I>, 

Ik; 1>= lJ(k) E(1 ~_T+ ) n In! (2d)nt l /2 Qn(k)lnj I >, (19) 

where T± = 4(w- 2 ± w2 
), d = ~(l + 3/2), (2d)n = 2d(2d + 1) ...(2d +n - 1), and lJ(k) is a 

normalisation factor. The coefficients Qn can be shown to obey the recurrence relation 

T+ - 1 2
--Qn+l(k) = -- (T+n - k +d(T+ - 1)) Qn(k) - n(n +2d -l)Qn_l(k), (20)
T+ + 1 T+ + 1 

which defines [2] the Meixner polynomials of the first kind mn(k;2d,c) == Qn(k), with c == 
~. The identification 

k+d- 'R., kt;1 - L+, (k +2d)t" - L, (21) 

provides a realization of su(I,I) in terms of difference operators, and the Meixner polynomials 
span representations of this algebra. Finally, the sta.tes JQi I >, which initiate the LanczOB 
basis for each value of I, are the su(I,I) coherent states 10ji >- ev'""cL+IO;1 >. 

In order to apply such an analr-sis to the radial part of the SchrOdinger equation for 
the Coulomb problem, [-4£'- +~ + ~l t/J = Et/J, one has to consider separately the 
attractive and the repulsive cases. For bound states of the hydrogen problem (Z < 0), the 
change of variable r -+ x = (-8Ent}I/2r transforms the SchrOdinger equation into R(x )YnI = 
(d+lI)Yn/' with R(x) == -x£a+~+~ and d = 1+1. The operators L±(x) = R(x)-j±x~ 
and R are the generators of a su(I,I) algebra, and one is faced with a problem analogous to 
that of the three-dimensional oscillator, involving Meixner polynomials. Of course, one does 
not expect to encounter polynomials of a discrete varia.ble in the repulsive case (Z > 0), 
which involves only a continuous spectrum. However, by exploiting the dynamical algebra 
of the problem in the above manner, one can easily derive the expansion of Coulomb wave 
functions in terms of Laguerre and PoUaczek polynomials 14J. 
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