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Abstract

The quantum algebra and quantum group interpretation of g-special
functions is reviewed. Taking the algebra U, (sl(2)) as example, we shall
see how its representation theory can be used to make advances in the
study of the g-hypergeometric series 2¢:(a, b; c; ¢, z).

The connection between quantum algebras ard g-special functions is now well-establi-
shed. As in standard Lie theory,! these functions arise as matrix elements of certain opera-
tors in the algebra generators and also as basis vectors of the corresponding representation
spaces. This algebraic setting naturally leads to generating relations, orthogonality prop-
erties and addition formulas involving the g-special functions.?*3

Here, we shall illustrate the power of this “group-theoretic” interpretation by exam-
ining the relation between the quantum algebra U, (sl(2)) and the g-hypergeometric series
261(a, b;¢; g,2).2%! Though we mainly work within the simpler quantum algebra frame-
work, we shall also make connection with the corresponding “dual” approach, based on the
quantum group SL,(2). Indeed, matrix elements of corepresentations of SLy(2) are also
seen to involve the function 2¢;.!* We shall show that the algebra and the group settings
are completely equivalent, so that results obtained in one approach can be rephrased in
the other.®

Finally, using the quantum algebraic interpretation, we shall give explicit examples
of generating functions and summation formulas involving the g-hypergeometric function

{*) Supported in part by the National Sciences and Engineering Research Council (NSERC)
of Canada and the Fonds FCAR of Québec.
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2¢1.11 These relations should first be looked at as identities between formal power series; it
could happen that they converge only over a finite radius or only when the series terminate.

In the quantum algebra interpretation of the g-hypergeometric function 2¢,, an im-
portant role is played by the following ¢-analogs of the exponential function!®

1
el(z) = ,5:;(«.9)» =g H<b (1a)
{n(n-1)
Ey(z) = ﬂq(m)n = (~7q)o (1b)

where (a;9)a = (8;¢)oo/(39%;¢)oo i8 the q—nhifted factorial (a and a being arbitrary com-
plex numbers), with (@;¢)ec = H._o(l — ag*), |lg| < 1. Note that ey(z) E¢(-2) = 1,

and that limg_.;- e, (2(1 — g)) = limg_;- E¢(3(1 - g)) = ¢*. We shall denote by T, the
g-dilatation operator which acts as T, ¢(z) = ¢(gz), on functions of the variable z; out of
it, the g-difference operators

Dz+ =z-l(l—T‘) ) (2{1)
D =z Y(1-T;Y), (28)

are constructed. Observe that h—l—q’Df — d/dz and (l—_lq—n-’—D;' — d/dz as ¢ — 1, and
that the g-exponentials obey

D} y(Az) = Aey(Mz) , (3a)
D Ey(Az) = —g ' AE(As) (38)

where ) is a complex parameter. The basic hypergeometric series ¢, is defined by'®

r¢.(al,az,---,Gr;bh---,ba;q;‘)

00 (a1;¢)n(82; @)n - - - (@r; @)n | syl @
:z_:o (9;:)n(b;qq).....(b,;:)n [(-1) q‘L"’] ”,

with ¢ # 0 when r > s+ 1. Since (7™;¢)n = 0, for n =m +1,m +2,..., the series .9,
terminates if one of the numerator parameters {a;} is of the form ¢™™ with m = 0,1,2...,
and g # 0. By the ratio test, when 0 < |g| < 1, the ,¢, series converges absolutely for all
zif r < s, and for |z <1if 7 = s + 1. This series also converges absolutely when g > 1
and |z| < |bybs...b,|/|a1az...a,|. It diverges for z #0 when 0 < |g| <1 and r > 5 +1,
and when |g| > 1 and |z| > |bib, ... b,|/|G162 ... ar|, unless it terminates. In the following,
we shall concentrate on the case

2¢l(a b cl?f’) = E (q'q)"(c,q)'l z, ,zl <1, (5)

2

in terms of which various matrix elements will be expressed. Notice that as ¢ — ¢'~™,
with m a positive integer, this function satisfies the following limit relation®

1 - (33 @)m (b; @)m
——— 2¢1(ayb, ¢ ™iqyz) = 2™ ™ bg™, g™ i q,2) ! : 6
(q;q)_m 2 l( 10, ¢ 4y ) 3¢|(aq ybg™, q 3 q ) (Q;q)m ( )
Furthermore, in the following we shall always assume |g| < 1.

The quantum universal enveloping algebra U, (sl(2)) is the Hopf algebra generated by
the elements k, k~?, ¢ and f satisfying the relations®!”

kek™! = 1/2 Efk~! = -1/2 = k2 — k2

ek™ = g%, fET = g7M0f, [e.f]—m, (7
and kk™! = k7'k = 1. The coproduct A : Uy (sl(2)) = Uy(8l(2)) ® Uy(sl(2)), antipode
S : Ug(81(2)) — Uyg(81(2)) and counit € : Uy(8l(2)) — C are defined by:

Alk)=kQk, Ale)=e®k+Ek'®e, Alf)=fRk+k™'®f,
S(k)= k71, S(e)=-q¢'e, S(f)=-qf, (8)
e(k)=1, e(e)=10," ef)=0.

The algebra U,(sl(2)) has a Poincaré-Birkhoff-Witt basis given by: e*k?f", with p € Z
and p,v € N. :

We now introduce a left U, (si(2))-module V(*™o) = @D;er C&jy where I = {i| i =
mo +n, n € Z}, and ), m are complex numbers.®!* V(*™0) ig infinite dimensional,
unless A + mg and A — mg are both positive integers. The corresponding representation is
characterized by the following action of the generators on the basis vectors ¢;, j € I:

k& =q7%¢;,

_ 1= qA+j
et = 1"V l—fi 1, 9)

1-g*J
f&=4"" ’*”‘—I—e,“.

Given any a € Uy(sl(2)), its matrix elements W;;(a) in this representation are defined by

3 &wia); (10)
1I€EZ+mg
it clearly follows that
Wii(ab) = " Wi(a) Wi;(b) . (11)
k€EZ+mg

Analogy with ordinary Lie theory? suggests to consider the following element in the
completion of Uy (sl(2)):
U(a,B8,7) = Eq(ae)e (B f)ET, (12)
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where a, # and 7 are complex parameters. Indeed, set k = ¢ %2 and ¢ = e7". In the limit
g — 17, n — 0%, the defining relations (7) become those of 2l(2): [h,e] = —e, [A,f] = f,
e, f] = —2h, and U ((1 - g)a, (1 —)B,27/n) goes into the SL(2) group element e®*e/e.

The matrix elements of U(a,8,7) on V(*™) turn out to be expressible in terms of
the function 36:(a, b; ¢; g,2). In fact, with the help of (1), using (9) and identities involving
g-shifted factorials, it is straightforward to show that

qi—aN/A ) i3 (g, 9)-'—;'

Wy (U(a,8,1) =47 (B

1-¢ (g:9)i- (13a)
x a1 (1,421 g, a8 —"(hm) ifi-j20
] 1 'O (1 — q), ’ =Y, -

: A (1-22)/4\ 3% (,4\+i+1;q) L
W.'j (U(a,ﬁ,'y)) =q-'u/1 q(J—l)(;—l-))/: (a q ) jei

1-¢  (gi9)-i (138)
- ( Mbj41 i=A gimitl g ﬁsﬂf_‘”_’) fi—j<o0
19 E] ' i —a (1 _q)z ’ t—3=4,

with 1,7 € Z + mo. This establishes most simply the connection between the basic hy-
pergeometric series 3¢; and 2,(al(2)). Notice that by using the limiting formula (6), the
above two expressions for W;; (U (a,ﬂ,'y)) are valid irrespective of the sign of § — j.

Before using (13) to obtain properties for the function ;¢;, let us make contact with
the quantum group approach'®~2%:¢ and indicate in particular how the results described
so far enable one to recover the matrix elements of the SL(2) corepresentation given in
Ref.[14].

Let A be the space dual to U,(2l(2)). To introduce the coordinate ring A(SLy(2))
of the quantum group SL(2), consider the fundamental representation X : U,(sl(2)) —
£End C?, defined by

xi=(% Sn). xa=(53). x=(}3)

Since X is a representation, we have X(ab) = X(a) X(b), for any a,b € Uy(sl(2)). The
matrix elements of X, that we shall denote as

(3).

define mappings U(si(2)) — C, via the evaluation map e — X(a); hence 2, u, v and y are
elements of A. We shall call A(SLy(2)) the subalgebra of A generated by these coordinate
elements. This algebra is seen to inherit from 2/;(s!(2)) a Hopf structure. The coproduct
Aa: A— AQ A, antipode S4: A — A and counit £4 : A — C are defined by

Aa(X)(a®b)=X(ab) ,  a,b€Uy(al(2)), (16)
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and sA(X)=(_q—yx/=,, —q;l’u), ealX) = ((1] 2) - (17)

In terms of matrix elements, the definition (16) is equivalent to Aa(Xys) = 3., ; Xt X4,
r,8 = 1,2, with the understanding that (& ® ¥)(a ® b) = ®(a)¥(3) for &,¥ € A, a,b €
Uy(s1(2)). The product p4: A® A — Ais determined by

pa(® @ ¥)(a) = 3¥(a) = & ® ¥(A(a)) . (18)
With these definitions one finds that

zluMﬂN(enknfv) = g~ telntr=L)={ L(p+u) = { (s(u-1)41(v=1))+} (u-M)(v=N)

o (gi9)e (9:9)u (g3 9)s
(9 Q)u-m (G Q)r—ptm (1 —g)p+* ' (19a)
foruy—M=v-N, M<u<M+1L,
=0, otherwise ,

and
uMﬂNyL (e“k’f") - q—iﬁ(u+V+l—)-{ L(p+v) =4 (n(p—1)+¥(v-1))

3 . 195
- (?1‘11“.1(;’;33—” b Sy (%

with M, N, and L nonnegative integers. Given these evaluations on the Poincaré-Birkhoff-
Witt basis elements of Uy(sl(2)), it is immediate to see that the coordinate elements obey
the following commutation relations
¢ Pau=uz ¢Pzv=vz ¢Puy=yu ¢Poy=yv ww=vu, (20)
and

deteX =2y — g uv=yz — ¢ Puv=14. (21)

The matrix elements W;; defined in (10) can also be viewed as elements of A; they
indeed provide linear mappings from Uy(al(2)) into C, a = W;j(a), a € Uy(sl(2)). In-
troducing an infinite matrix W, with elements W;;, the composition relation (11) can be

rewritten in the form
AaW=WaW, (22)

and we conclude that W defines a corepresentation of SL(2).

Starting from the formulas (13), the evaluation of W;; on U(a,B,7), it is now possible
to derive the analytic expressions for the elements W;;j of W in terms of the coordinates z,
u, v and y of A. In fact, the element U(a,B,7) = E;(ae)e,(8f) k7 generates the complete
basis of U,(2l(2)):

(-1)*g*22 ((D2)* (DF)" UlesBop)) [_,_ =€ ¥ f*, (23)
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and therefore an arbitrary element of A is completely specified once its evaluation on
U(a,B,7) is given. Since z“u™v" and wMyNyl span A(SL(2)), with the help of the
formulas (19), the expressions for W;; can be easily abstracted from the matrix elements
W;j(U(a,B,7)) given before. The details can be found in Ref.[8]. One obtains

Adi+l,
PP Cadial ) P

W;; =
i =4 (9: 9)i-s

261 (qA+J+l'qj—A;qj-i+l; o _qx/:w) wImiyiti |
fi—-j<0,i4+520,
(24a)
(++59). . . o L
(q.q)». .1 'z_('+j)u’_':¢x(q'\ i+ i A;q) -+l;q,_ql/2uv) ,
14)j—d

fi-j<0,i+5<0,

Wi; = gli—O+)

(24b)
oo (@), T L
W,; =gli-d0-9) . i (q“'“,q' A ’“;q,—q‘/'uv) vimiyiti
(q- 9).—,
fs—-520,i4+52>0,
(24c¢)
(*1;9)

Wi = U043 = i3 (i) yisi 6 (q“""“,q""‘;q""“;q. _qmw) ,
19)i-5
ifi—-j20,i+35<0.
(24d)

These four cases need to be distinguished in order for the elements W;; to be analytic in
z,u, v and y. The matrix elements (24) were computed in a different way in Ref.[14]. The
quantum algebra derivation, that we have skeched, is straightforward and simpler, and
explicitly shows the equivalence between the quantum group and the quantum algebra
approach to g-special functions.

For simplicity, up to now all our considerations were based on the specific element
(12) of Uy(sl(2)). Off course, other combinations of little and big exponentials can also be
used. For instance, take

U(a,B,7) = Eq(B f) eg(ae)k? ; (25)

its matrix elements in the representation (9) can be easily worked out and one explicitly
finds (3,7 € Z + my)

~ ; I (1-22/4\ =7 (q*".“;q)._.
Wiy (0(a ) =g g-itis=rm ( L2 =t

1-gq (4 9)i-;
. L (1420)/2
x 261 (Q"_’H.Q_’_‘\:q'_’“;%—aﬂ ﬁ') y ifi—-j20,

(26a)

(= _ —wif2 q(l~!A)/4)) i (q;\+l+l;q)j_i
W.J(U(a,ﬂ,v)) q (a =% T

. e (1+20)/2

x 261 (q*"“,q""‘;q’"“;q,—aﬂ zl_—q),) , Hi-j<o0.
(260)

The case of ej(ae) Eq(f f) kY has been considered in Ref.[9], while the matrix elements
of operators in Uy(8l(2)) involving two little or two big g-exponentials can be expressed in
terms of the g-hypergeometric series 3¢, and 2¢;, and will not be discussed here. Using the
explicit expressions (13) and (26) for the matrix elements of the operators U(a, 8,7) and
U (a,B,7), one can now obtain various identities involving the g-hypergeometric function

201
As a first example, let us work out an orthogonality relation involving two 2¢; func-
tions. By recalling that e,(z) Eg(—2) = 1 and setting 7 = 0, one sees that

U(a,8,0)0(~a,—4,0)=1; (27)
acting on §;, one then finds (3,5 € Z + mo)
6.'_,"0 = E Wi (U(a,ﬂ,ﬂ)) W'j (6(—a,—ﬁ,0)) . (28)
l€Z+mo

Insert now for the matrix elements Wy (U ) and W;; (17 ) the expression (13b) and the one
that it is obtained from (26a) with the use of the following transformation rule for the 2¢,
series, !5

261(e%, 4% 6% 0,2) = (0** 5 @)e—ams 201 (0° 7% 0" Y05 000" 02) . (29)

After some simplifications and the redefinition z = —af ¢'/?/(1 — ¢)?, one finally arrives
at the following relation!!

A+1

g (g)z); W=1)/2(_yq-imiy! (@5 0)i (4745 q):
R PN P ,ezz;mq (F2a77) (9:9)i-5 (¢ Q)i (30)

21 (@ ¢ N T 0,207 2a (T 0N g 207

To get generating relations for the p¢;, one first notices that it is possible to give
a one-variable model for the representation (9), where the generators are expressed as g-
difference operators in the complex variable z acting on the space of all linear combinations
of the functions 2", n € Z. Indeed, by taking

k= q~mn/2 T]—l/? ,

_ 1 1-— A+mo 1
c:q(‘ 20)/4 (—l—qD:+_1q—q ;Tx) ’

(31)

_ 12 _ 1- A-myg _
f:q“ 22)/4 (1—_—qD, +—lq_q—zT, l) )
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and §; = z", j = mo + n, n € Z, for the basis vectors, one can check that the relations
(9) are satisfied. Let us now act directly with the operator U(a,B,7), with e, f and k
expressed as in (31), on z/~™°. With some manipulations, one finds that this action can
be expressed in terms of a 3¢ ¢g-hypergeometric series,

;. - a qi-IN/4
DlaBm)sim = simme it (2L
2 l-g¢ A4 (32)
a qj+(!+24\)/l . q—i+(l+2A)/4
—_—— ""q 2 -—-——) .
( 1-¢ . A l-g¢g

Since the series 2¢o(a, b; ¢,2) does not converge, unless it terminates or z = 0, the action
of U(a,B,7) on the module V(*™0) ig ill-defined in this model, unless V(*™o) s finite-
dimensional or § = 0. Nevertheless, by proceeding formally one can obtain a generating
relation for the g-hypergeometric function 3¢;. Recall the definition (10) for the matrix
elements of U(a,8,7), and insert (32) for the Lh.s., while in the r.h.s. substitute for

Wi; (U (a,ﬂ,'y)) the result (13a). After using the transformation formula (29), set v = 0,
j=mo,z=-afqm/2/(1-q) andy = ~(1-g)g®**)/1/a, to get'!

(2872™; @)2mo (9/¥3 Dmo+2 200(g™ 1 [y, g™ 25 q,29¢™ ™)

(g™ q) g g A (33)
vaﬂéx(q“ *1 g g g,2) .

The Lh.s. of this relation between formal series yields the 3¢, as coefficients when expanded
in powers of y. If A + my and A — mg are both positive numbers, so that V(*™o) is finite-
dimensional, the relation (33) becomes an identity between polynomial functions. Note
that here again the summand in the r.h.s. is well defined for all integers I, thanks to the
limiting relation (6). An equivalent generating formula can be similarly obtained starting
with the operator ﬁ(a,ﬂ,'y).

To get further properties of the g-hypergeometric function 3¢,, observe that the matrix
elements W;; (U(a,ﬂ,‘y)) and W;; (ﬁ(a,ﬂ.‘,)) themselves define models of the module
v{&me) - For simplicity, set ¥ = 0. Then for each element a € U,(2l(2)) define the
operator w(a) acting on the variables a, 8 such that v(a)U(a,8,0) = U(a,f,0)a. Upon
operating on §;, one obtains

w(0) Wi (U(a,8,0)) = Y Wa(U(a,8,0)) Wis(a) , (34)
1€Z+mo

that is, the functions W;; (U(a,,0)) transform like the vectors ;. From the properties
(3) of the g-exponentials it is easy to construct the operators « for k, ¢ and f, and thus
for any a € Uy(sl(2)) by composition. For instance, one finds that

SRR (350)
ﬂ.“)(e) o= '—qD; ( q)’ ﬁ (q T"Tﬁ - q—’T-‘) 5 (35b)
W) =5, (e

acting on the basis vectors )
£%(,8) =wu(U(@B,0) ,  jleZ+mo, (36)

obey the same commutation relations as k, e and f. Similar results are obtained using
Wi; (0(a,8,0)).

Since we have a two-variable model of the module V{(*:™0)_ from the general definition
(10) one can write, recalling (36),

U@p0) @ = Y Wi(U=n0) Wy(l@s0), @1
i€Z+mo
where the model independent matrix elements W;; (17 (a,ﬁ,O)) are still given by (26). This
allows deriving addition formulas for the g-hypergeometric series 2¢1: one just needs to
evaluate explicitly the Lh.s. of (37), i.e. to compute directly the action of U(a,,0) on
the basis functions E;” (z,y), when e and f are realized as in (35), a and 3 being replaced
by z and y.
We shall not give here the details of this evaluation (see Ref.[11]), but only collect the
final results. In the case a = 0, one finds the following generating relation

wai = Vs (a1 o), s e T
(we’ 'q)('q,’qg:l : i9)i-j 192 (g1, ¢" 2 wg 41,0 q,2)
1 i §
(5 )—j—a (P @) ok AL -A, 1-j—k41,
= z), |z/<1
2 (@5 a)i—j—k (g5 )k (@0 e i93), el <1,

(38)
while for af # 0, one has

PRA L AR SR L R S . i sl
(0 00) el g 0fd) ,é; (9 Q)i-j—+ (a1 0)s (39)
T Caa T ST T B0 BT Ct A R T A T R ) I
Concerning the convergence of this last result, the remarks made after Eq.(33) also apply.
In particular, when the module V(™od) jg ﬁmte—dnmennonal (39) becomes an identity
among polynomials.
Indeed, take mo = 0 and A a positive integer. Recalling the definition of the little
g-Jacobi polynomials,'®
Pn(20,b;9) = 2¢1(¢7", abg" " ag; 0,92) , (40)

and setting for simplicity [ = j, m = A + j and n = A — j, from (39) one gets
en (g™t —¢"/2:0) Pm(wg™™i0™59)
e 5': E(k-n) [ ] (@™ a4

P e Pa-k(z:6*,4" " ™;0) Pm(watigt "™ Hig) .
(41)

(_l)kqb(tﬂ)/z
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The ¢, are g-Charlier polynomials,'®

en(z;8:9) = 2¢1(¢7",2;0:4,~¢"* /a) (42)

while the polynomials P, are defined by

with

Pa(z;0;9) = 2"3 [:] (aigh 2", (43)
k=0
n] _ (gi9)n
[E] TTNCT) (Al

They satisfy the following three-term recursion relation

Pasi(z;619) = [1+ 2(1 — ag™)] Pa(2i0;q) — 2 (1 — ¢") Pa-i(2;659) , (45)

and reduce to the Rogers-Szegd polynomials!®2*~22 in the limit a — 0.
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