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Abstract 

The quantum algebra and quantum group interpretation of q-special 
functions is reviewed. Taking the algebra U, (..1(2}) as example, we shall 
see how its representation theory can be used to make advances in the 
study of the q-hypergeometric series 24>1 (a, bj Cj q, z). 

The connection between quantum algebras acd q-special functions is now well-establi
shed. As in standard Lie theory,1 these functions arise as matrix elements of cert&n opera
tors in the algebra generators and also as basis vectors of the corresponding representation 
spaces. This algebraic setting naturally leads to generating relations, orthogonality prop

- uerties and addition formulas involving the q-special functions.2

Here, we shall illustrate the power of this "group-theoretic" interpretation by exam
ining t he relation between the quantum algebra Uq( .. 1(2)) and the q-hypergeometric series 
24>1 (a, bj Cj q, z ) .II ,II,ll Though we mainly work within the simpler quantum algebra frame
work, we shall also make connection with the corresponding "dual" approach, based on the 
quantum group 5L'I(2). Indeed, mat rix elements of corepresentations of 5L,(2} are also 
seen to involve the function 2¢I.lt We shall show that the algebra and the group settings 
are completely equivalent , so that results obt&ned in one approach can be rephrased in 
the other.1I 

Finally, using the quantum algebr&c interpretation, we shall give explicit examples 
of generating fu nctions and summation formulas involving the q-hypergeometric function 

(0) Supported in part by the National Sciences and Engineering Research Council (NSERC) 
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24>1.11 T hese relations should fi rst be looked at as identities between formal power seriesj it 
could happen that they converge only over a finite radius or only when the aeries terminate. 

In the quantum algebra interpretation of the q-hypergeometric function 24>1, an im
portant role is played by the following q-analOS8 of the exponential function 111 

oc 1 1 
e,(.~ ) =L (q jq)" ~"= (Zjq)oo ' Izi < I, (la) 

·,,=0 
j"C"-I) 

E., (z ) = L00 

L-() .I" = (-ziq)oo , (lb),
,,=0 lJ ,q" 

where (aj q)Q = (aj lJ)oo/(aqQ jlJ)oo is the q-ahifted factorial (a and a being arbitrary com
plex numbers), with (ajq)oc = n :'o(1 - aqi), Iql < 1. Note that e.,(~)E,(-z) = I, 
and that lim,_l- e,(z(l - q» = lim,_I- E,(.I(1 - q» = e·, We .hall denote by T& the 
q-dilatation operator which ad ... T.'I/(~) = 'I/ (qz), on functions ofthe variable Zj out of 
it, the q-difference operatotl 

• 
D~ = .1-

1(1 - T&) , (2a) 

n; = .1-
1(1 - T.-l) , (26) 

are CODlitructed. Observe thai ~D; -+ dldz and (1_~_ , )D; -+ dIu .. q -+ I, and 
that the q-exponentiala obey 

n: e,(~z) = ~e,(~z) , (3a) 
n; E,pz) = _q-l ~E,(~z) , (3b) 

where>. is a complex paramder. The basic hypergeometric series rtP. i. defined bylll 

r¢.(a l, a2,' .. ,4r i 61" . . ,6&j qj .I)

=:f: (a1jq)n(a2jq)" ... (arjq)" [(_I)"q~]l+·-r zit (4) 
,,=0 (9jq)n(61 jq)" ... (6.jq)" t 

with q i- 0 when l' > ,,+ 1. Since (q-m iq )" = 0, for n =m + I,m + 2",., the series rtP. 
terminates if one of the numerator parameters {ad is of the form q-m with m = 0,1,2 . .. , 
and q =I- O. By the ratio test, when 0 < Iql < I, the r4>. series converges absolutely for all 
z if r ~ ", and for Iz i < 1 if l' = , + 1. This series also converges absolutely when Iql > 1 
and Iz i < Ib1b2 ... b.I/la1a2." arl. It diverge.s for Z =I 0 when 0 < Iql < 1 and r > • + I, 
and when Iql > 1 and Izi > Ibl~ ... b.I/IGl a2 ... a,.I, unless it terminates, In the following, 
we shall concentrate on the case 

24>1(a,bjcjlJ,z) = f: (ajq)"(6jq),, " loll < I, (5)
,,=0 (qjq)"(Cjq),, Z I 
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in terms of which various matrix elements will be expressed. Notice that as c -+ q1-m, 
with rn a positive integer, this function satisfies the following limit relatione 

1
(qjq)-m 24>I(a,b,l-m jqjz ) = zm 24>1(CUr, 6qm ,qm+1jq,z) (ajq)m(bjq)m . (6)

(qj q)m 

Furthermore, in the following we shall always assume Iql < l. 
The quantum universal enveloping algebra U, (05l(2)) is the Hopf algebra generated by 

the elements k, k -', e and f satisfying the reiationsI8 ,17 

P _ 1e-2 
k e k -1 = q1 /2 e , k f k- 1 = q-1/2 f , Ie, fJ = q1/2 - q 

(7)-1/2' 

and k k-1 = k- 11e = 1. The coproduct A : U,(.d(2» -+ U,(05l(2)) ® U,(05l(2)), antipode 
S: U,(05l( 2) ) -+ U,(05l(2)) and counit £ : U,(05l(2)) -+ C are defined by: 

A(A:) =k ® k, A(e) = e ® k + k -1 ® e , A(f) = f ® k + Ie -1 ® f , 

S(k) = k- 1 

, See) = _q1 /2 e , S(f ) = _ q-l/2 f , (8) 


£(k) = 1 , fee) = 0 , £(f) = 0 . 


The algebra Uq (.tl(2» has a Poincare-Birkhoff-Witt basis given by: ejJic Pf"', with p E Z 
and Jl ,v E N. 

We now introduce a left Uq (.tl(2»-module v CA ,mo) = EDjEl Cej, where I = til i = 
rno + n, n E Z}, and ~, rno are complex numbers.II ,14 v(A ,mo) is infinite dimensional, 
unless >. +mo and >. - rno are both positive integers. The corresponding representation is 
characterized by the following action of the generators on the basis vectors (j, j E I: 

k ej = q- j/2 ej , 
A+ . 

el . - q(1-2A)/4 ~ t .
'" - 1 _ q ..,-1, (9) 

f e · - q(1-2A)/4 1 - qA-j t. 
) - 1 _ q ..,+1' 

Given any a E U.,(o5l(2)), its mat rix elements Wij(a) in this representation are defined by 

aej = L ei Wij(a) j (10) 
iEZ+mo 

it clearly follows that 

Wij(ab) = L Wik(a) Wkj(b) . (11) 
kEZ+mo 

Analogy with ordinary Lie theory2 suggests to consider the following element in the 
completion of Uq (05l( 2)): 

U(a,fJ,"Y) = Eq(a e) eq(tJ f) P (12)I 
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where 0, (J and 7 are complex parametera. Indeed, aet k =q-1/2 and 9 =e-". In the limit 
q -+ 1-, '1-+ 0+, the defininS relatiou (7) become tboae of .1(2): [h,e] = - e, [h,f] = f, 
[e, fl = -2", and U«1-q)o,(1-9)P,27/'1) soea into tbe SL(2) group element eoee" e.,l. 

The matrix elementl of U(O,Il,7) on V(A,lng) turn out to be expra.ible in term. of 
the function acPl(a,b;c;9,Z). In fact, with the help of(I),lUing (9) and identitiea involving 
q-.hifted. fadoriala, it i••traisbtforward to ahow that 

(I-U)/.)i-J ( A-HI . )
W. .(U( fJ ») - --rjfl 

(
fJ-9_- 9 , 9 i -j 

" GI, , 7 -q 1 -9 (9;q)i-; 
(130) 

. . . , q( l-li) /2 
X A. (qA+l+l 91-A ' 9"-J+l' 9 -afJ--- ) if i -J' > 02",1 , I I , (1 _ 9)2' - , 

(1 -2.).)/.);-i (q.l+Hl. q) .. 
w,.. (U( (J ») - --rj/2 (i-i)(;-i-l)/2 _9__ ' J- . 

') GI, ,7 -9 q ( a l- q (q;9)j-i 
(I3b) 

. . .. (1 - 2i)/2 
X2cPl (qA+J+l ,q'-A; g' - g)2 ), if i - j ~'+1; q, -all (1 _ 0 , 

with i , j E Z +mo. Thia establilhel moat limply the connection between the basic hy
pergeomdric series 2;1 and U9 (.1(2)) . Notice that by u&ing the limiting formula (6), the 

above two expressions for Wii(U(o ,Il, 7») are valid irrespective of the &ian of i - j. 

Belore using (13) to obtain properties for the function 2cPl, let us make contact with 
the quantum group approachll - 20,H and indicate in particular how the results described 
so far enable one to recover the matrix elemenh of the SL9(2) corepreaentation given in 
Ref. \141· 

Let A be the space dual to U,(.1(2». To introduce the coordinate ring A(SL, (2)) 
of the quantum group SLt (2), coDiider the fundamental representation X: U,(.1(2))-+ 
£nd C2, denned by 

1/4 0 ) 
X(k) = ( q 0 q- l/4 , X(e) = (~ ~) , X U ) = (0 00) . (14)1 

Since X is a representation, we have X(ah) = X(a)X(b), for any a,b E U,(.,(2». The 
ma.trix elements of X I that we .hall denote .. 

X = (z u) (15)
v'll' 

define mappings U,(,C(2» -+ C, via the evaluation map a -+ X(a); hence:1:, u,v and JI are 
elementl of A. We .hall call A(SL.(2» the .ubalgebra of A generated by these coordinate 
dementi . This algebra i. seen to inherit from U.(.,(2)) a Hopf structure. The coproduct 
~A: A -+ A ® A, antipode S... : A -+ A and counit t: ... : A -+ C are defined by 

~... (X) (0 ® b) = X (ah) , a, b E U'I(.1(2» , (16) 
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and 
S...(X) = (y _ ql/2u ) , ... (X) = (1 0) (17)_q-l/21J z ' o I . 

10 terms of matrix elementa, the definition (16) is equivalent to ~A(Xr.) = 2:.=1,2 X,., X,., 
r,' = 1,2, with the under.tanding that (t ® (I )(a ® b) = t(a)q,(b) for .,IJ' E A, a,b E 
U,(."(2)). The product ~... : A ® A -+ A i. determined by 

~A(. ® q,)(a) E tlJ'(a) = t ® IJ'{A(a)) . (18) 

With theae definitioDl one fincla that 

zLuMvN (epk"r ) = q-!'("+I'-L)-!L(,,+6I) - !(,.(,,-l)+I'(6I- l»+l(,,-M)( .. -N) 

x (q;9 )L (9jq)" (Qi9) .. 

(q; 9},,-M (qi q)L-p+M (1 - Q),,+6I ' (19a) 

for ~ - M = &I - N, M ~ ~ ~ M + L , 

= 0 I otherwile I 

and 

uMvNyL (e"cPr ) = q-!p("+6I+L)-~L("+")-!("(" -l)+"( " -I)) 

x (q ;9)" (q;9 ) .. 6 6 (19b)
(1 _ q),,+ 61 p,M ",N, 

with M, N, and L nonnegative integers. Given these evaluation. on the Poincare..Birkhoff
Witt basis elements of U,(,1(2», it is immediate to see that the coordinate elements obey 
the following commutation relations 

ql/2zu = uz ql/2zv = VZ ql/2U~ = VU ql/2v'll = yll UV =vu , (20) 

and 
det,X = zy- q-l/2uv =yz - ql/2uv = 1,A . (21) 

The matrix elemeniB Wii defined in (10) can also be viewed as elements of Ai they 
indeed provide linear mappings from Ut {.1(2» into C , a -+ Wij{a), 0 E U,(al(2)). In
troducing an infinite matrix W, with elements Wi;, the composition relation (11) can be 
rewritten in 'he (orm 

A... W = W®W , (22) 

,and we conclude that W defines a corepresentation of S L,(2). 
Starting from the formulas (13), the evaluation of Wij on U(a,fJ,"Y), it is now possible 

to derive the analytic expressions for the elements Wij of W in terms of the coordinates z, 
U, tI and JI of A. In fad, the element U(O,fJ,7) = Eq(ae) e9(pJ) Ie-r generates the complete 
basis of Uq(.'(2»: 

( _1)"q,,(2-P)/2 ((D;)" (D+)" U(a,p,p») /. = ell IeP I" , (23) 
, o=.p~o 
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and therefore an arbit rary dement of A il completely Ipecified once its evaluation on 
U(o, lJ, l) is given. Since zLuM"N and uMvNyL Ipan A(SL,(2», with the hdp of the 
formulas (19) , the expreasionl for Wij can be euily abstracted from the matrix elementl 
Wij(U(o,P,7» given before. The detail. can be found in Ref.[9J. One obtainl 

~+i+l . ) 

~. . _ (i-j)(~-j) (q ,q i- i ~ ( qA+J+I qi-l..qi-I+1' q -ti/:luv)ui-iJ/Hi 


IJ - q (q; 9)i -i :I 1 " , , , 


ifs-i$O, i +j~O, 
(244) 

~+i+ l . )(
Wij = q(i-j)(.Hi) q ( . (1.i -; z-(i+J)uj-1 2411 (q~-i+1lq-i-l.;qi-i+1 iq, _ql/2uv) , 

q,q J-' 

ifi-j$O, i+j$O, 
(24b) 

. . . (q>. - H l j9) /_. ( . . . . ) ....
W .. _ q{J - I)(~-I) 1 ~ 9>'+1+1 9,-l.'q'-J+l _ql /2uv lI' -JI/'+J' qIJ - (Il; q)i-i :I 1 , I I I , 

ifi-j~O, i+j~O, 
(24c) 

( ~-H l. ) 
= q(j-i)(A+;) q ( . ),.9 : -; z-(i+i)lIi-j2~1 (9~-i+l'9-J-liqi-i+1 iq,_ql /2Ull) IWii 

9,9 '-J 

ifi-j~O, i+j$O. 
(24d) 

These four cases need io be distinguished in order for the elements Wii to be analytic in 
z, u, v and y. The ma.irix elements (24) were computed in a different way in Ref.[14J. The 
quantum algebra derivation, that we have Inched, i. Itraigbtforward and simpler, and 
explici tly shows the equivalence between the quantum group and the quantum algebra 
approach to q-special functiona. 

For simplicity, up to now &l.l our conlideration. were bued on the .pecific element 
(12) of Uq{.s1(2». Off course, other combinations of little and big exponentials can also be 
used. For instance, take 

U(O,i3,7) = E,(pf)e,(oe)lc"f i (25) 

its matrix elements in the representation (9) can be easily worked Qui and one explicitly 
finds (i,j E Z + mol 

j
Wii (U(O,i3,l») = q-..,j/2 q(i- j )(i- i-1)/2 (p q(I - U)/.)i- (q~-Hliq)i_i 


1 - q (q; q)I_; 


x 2~ (q~-i+l -j-l.. i-)+1. q(1+2i)/2)1 ,q,q q -o~ 'f' ." ~ (1 _ '1)2 ' l' - J ~ °, 
(264) 
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W (U(O,P, l») = q-..,i/2 (0 q(I _2), )/4 )i-i (qA+i+l; q)i-i
ij 

1-q (q;q)i-; 
(1+2i)/2 

X '" (q~-i+l q-i-~ . ..j -i+l. q -otl -q--) if i - J' < 02.,,1 , , ow ,,~ (1 _ q)2' - . 

(26") 
The case of c,(o c) Ev (P f) Ie'" has been coneidered in Ref.!9}, while the matrix dementi 
of operators in U, (.s1(2» involving two little or two big q-exponentiala can be expreesed in 
terms of the q-hypergeometric series a~l and :I~2 ' and will not he discussed here. Uaing the 
explicit expreeaions (13) and (26) for the matrix dements of the operators U( o,P,7 ) and 
U(O,P,l), one can now obtain variOUI identities involving the q-hypergeometric function 

2~1' 
As a first example, let us work out an orthogonality relation involving two 2~1 func

tions. By recalling that e,(z}E,( -.J ) = 1 and letting 7 = 0, one sees that 

U(o, P, O) ii (-0, -P, 0) = 1 ; (27) 

ading on { j, one then finds (i ,i E Z +mol 

6i-i ,0 = L Wil(U(O ,P, O») W'i(U(- O, - P,O») . (28) 
IEZ+mo 

Insert now for the matrix elements W;I(U) and W'i (U} the expression (13b) and the one 
that it is obtained from (264) with the use of the following transformaiion rule for the 2~1 
seriee,lli 

2~1(q-,q6 i ct i q , .J) =(qoH-cz;q)c _ __ 6 2~I(qC-O,qC-· i qC j q , qoH-cz) . (29) 

After some simplifications and the redefinition z = -oP ql/2 /(1 - q)2, one finally arrives 
at the following rda.iionll 

q(i2+j2)/2(q/Zj q)j L I(I - l)/2( -i- i) ' ( z;q),(qHl ; q),(q-~ ;q),
6i - j ,0 q -zq

(qA+l;q)i (q-\q)j lEZ+mo (q; q),-j (q; q)'-i (30) 

x 2~I(q~+I+t, q'-\q'-Hljq, zll-i) 2~I(q~+1+1,q'-~;q'-i+ 1 i q, zq -j) . 

To get generating relations for the :I ~I' one first notices thai it is possible to give 
a one-variable model for the representation (9), where the generators are expressed as q
difference operators in the complex variable z acting on the space of all linear combinations 
of the functions zn, n E Z. Indeed, by taking 

Ie = q-m o/2 T~-1/2 , 

e = q(1-2~)/" (_I_D; + 1 - qHmo ! T.) ,
l-q l-q z (31) 

2 1 ~-mQ )f = q(1-2~)/4 _z_D; + - 'I Z T.- 1 , 
( 1-q l-q 
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and ei = z", j = mo + n, n EZ, for the basis vectors, one can check that the relations 
(9) &re satisfied. Let us now act directly with the operator U(a,p,'1 ), with e, I and • 
expressed u in (31), on .Ii-mo. With lOme manipulations, one finds that this action can 
be expreaaed in terms of a 2~O q-hypergeometric series, 

. . . a (l-U)/f 
moU(a,p,'1).I, - = .IJ -"'o q-n/2 (-- 9_--_ i 9)

• 1 - 9 A+i (32) 
. a ql+(1+U}/f '-A q-HO +U)/f ) 

X 2~ ( -- 1 ,q1 jfl ,fJ· 1 . z - q -q 

Since the aeries 2~o(G,6jq, z) does not converge, unless it terminates or z = 0, the action 
of U(a,p,'1) on the module y(A.mo) i. ill-defined in this model, un1eu v(A,mo) is finite
dimenaional OY p = O. Nevertheleu, by proceeding formally one can obtain a generating 
relatjon for the q-hypergeometric fundion Ifl. Recall the definition (10) for the matrix 
elements of U\a,p.'1), and ineert (32) for the l.h .•. , while in the r.h... .ubditute for 

Wii (U(a,fj, 1») the reault (134). After uain, the transformation formula (29), aet 7 = 0, 

j = mo, :I: = -ap 9mo+1/2 /(1 - q)2 and tI = -(1 - fl)q(UH)/f z/a, to getll 

(zq-2mo jq)2",0 (q/'lli q)",o+A 2;0 (q"'o+A+l/II, qmo-A j q, Zl/q-2mo-l) 

_ ~ (qlno - Aj q), I ~ (A- mo+1 -mo-A. 1+1. ) (33) 
- LJ ( 2m o+l/ . ) ( . ) tI 2'1'1 '/ , q I q 19, Z • 

IEZ q :1:,,/1 'l.q l 

The l.h .•. of this rela'ion between formalleriea yieldl the 2 ~1 u coefficients when expanded 
in powers of II. If ~ +mo and ~ - mo are both pOlitive numbers, 10 that y(A,mo) is finite
dimensional, the relation (33) becomea an identity between polynomial functions. Note 
that here again the summand in the r.h .•. it well defined for all integers " thankB to the 
limiting relation (6). An equivalent generating formula can be similarly obtained starting 
with the operator U(a, 13. 7). 

To get fttrther properties oC the q-hypergeometric function 2;1, obaerve that the matrix 

element& Wii (U(a ,I3,"Y)) and Wii (ii(a,I3,1») themselves define models of the module 

vp ,mo ). For simplicity, set 7 = O. Then for each element a E U,(.l(2)) define the 
operator "'(/I) acting on the va.riablea a, p .uch that 1I'(G) U(o,fJ,O) = U(a,p,O)a. Upon 
operating on ~j, one obtains 

",(a) W ii (U(a,p.O») = L Wil(U(a,p,O») WI;(O), (34) 
IEZ+ mo 

that is, the functions Wij (U(a,p,O» transform like the vectors {j' From the properties 
(3) of the q.exponenlials it is easy to construct the operators 11' for Al, e and I, and thus 
(or any /I E Ug(.d(2» by composjtion. For indance, one finds that 

1I'(I)(A:) = q-I/2 T;;I/2 T; /2 , (350) 

1/2 
1I'(I)(e) = - qD; - 9 )2 p(qlToTi 1 

- q-IT;;l) , (35b)-(
1 - q 

11'(/)(1) = Dt ' (35c:) 
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acting on the basis vectors 

e}I)(a,.8) = Wu(U(a,.8 ,O») , i,l E Z + mo , (36) 

obey the same commutation relatioDl u J:, e and I. Similar results are obtained uaing 

Wi; (iiea,p, 0»). 
Since we have a two-variable model of the module V(A,mo), from the general definition 

(10) one can write, recalling (36), 

U(a ,p,O) e}l)(z,y) = L Wli(U(Z,y,O» W;i(U(a,,8,O») , (37) 
iEZ+mo 

where the modd independent matrix elementl Wij (U(0,13.0») are still given by (26). This 

allows deriving additjon formulu for the q-hypergeometric aeries 2;1: one JUBt needs to 
evaluate explicitly the th.•. of (37). i. e. to compute directly the action of ii(a, p, 0) on 
the basis functions {~'}(z , tI), when e and I are realized as in (35), a and,8 being replaced 
by z and'll. 

We sha.ll not give here the details of this evalttation (see Ref. [ll]), but only collect the 
final results. In the case a = 0, one finda the following generating relation 

(wni- >'. q) . (qA-H L n)
~ ,1- ] • ~ 1-; tP ( A+I+1 I-A I- A. I- Hl O. )

(qjq) ' ~i J 2 'I , q , w,/ ,9 , , q,z 

00 ( A- HI. ) . (j - A.) 
_ ~ q ,9/- J- 1r q ,9. Ir ~ (l+/+1 I-A. I-j-HI. ) I 1<1 
- LJ () () W 2'f'1 q ,q,q •'I. %, Z • 

'=0 'Ii q I- i-' 'Ii q , 
(38) 

while for a,8 =I 0, one has 

l + l+l I- A A-i+ l - A- j ~ (_1)"q"(H1)/2
2;I(q ,q jOjq,z) 2~0(q ,q jq, w/q) = LJ ( ) () ( ) 

" EZ qi q I-i - Ir qi q " 39 

x 2;1(qA+I+ I,q'-A iql-i-.Hl jq,z) 2tPi (Q>' - i+1 ,q - i-Ajqlr+l jq ,wq") . 

Concerning the convergence of this last result , the remarks made after Eq.(33) also apply. 
In particular, when the module y(mo,A) is finite-dimensional, (39) becomes an identity 
among polynomials. 

Indeed, take rno = 0 and ~ a positive integer. Recalling the definition of the little 
q-Jacobi poiynomials,15 

p,.(Zj4,bjQ) =2tPl(q-", abq"+1 jaqjq,qz) , (40) 

and setting for simplicity I =i. m = oX + j and n = A - j , from (39) one gets 

C,.(qm+l j -q" /%jq) 'Pm(wq-mjq"+liq) 

~ I« A: - n ) [n] (qm+l ; q)" J: Ir n-m Ir A: n-m-" 
= LJ q k (.) Z p,.-Ir(Zj q , q jq) Pm(W9 jq ,q i q) . 

I:=-m q,q A: 

(41) 
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The en are q-Charlier polynomiala,15 

cn(z;a;q) = :al/ll (q-",Zj OiQ, -qn+1 fa) , (42) 

while the polynomial. 'P.. are defined by 

P..(Zi Gj q) =t [~] (ajq). i r 
, 

h.O 

(43) 

with 	

[n] (qiq)n (44)
i: = (qiq). {qiq)n-II . 

They satisfy the following three-term recursion relation 

1'n+1 (Z; Gj q) = [1 + z{1 - Gqn)] 1'..(zi aj q) - z (1 - qn) 1'n- 1(Zi a i q) , (45) 

and reduce to the Rogen-Ssego polynomia.la16,21-22 in the limit a -+ O. 
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