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Abstract 


The quantum algebra interpretation of q-special functions is presented. 
The connection between these functions and representations of q-algebras 
is explained and it is shown how generating functions and addition for­
mulas are obtained in this approach. The relation between Uq(.s1(2))and 
the 2tPi series is used for illustration purposes. 

Most special functions of mathematical physics have q-analogues, that is generaliza­
tions to a base q. The best-known examples are the basic hypergeometric series [I], 

rtP.(al, a2, ... , a,.j b1, ••• , b.j qj z) 

(1)= f (al ;q),,(a2j q)" ... (a,.jq)" [( -1)"q~] 1+.-r z" 
,,=0 (Qjq)"(b1 jq)" ... (b.jq),, ' 

which are the q-analogues of the (generalized) hypergeometric series ,.F •. The q-shifted 
factorials (aj q)o that enter in the definition (1) are defined as follows for a complex: 

(aj q)oc oc 

(ajq)o = (aqQjq)oc (ajq)oc = II(1 - aq') , Iql < 1 . (2) 

'=0 
The q-deformed functions, like the ordinary ones, satisfy various propertiesj they have 
appeared in the evaluation of physical quantities and are certainly worthy of interest. 

The standard special functions are also known to have Lie interpretations. They 
arise for instance as matrix elements, basis vectors, etc. of representations of Lie groups 
and algebras. We have provided (see for instance [2,3,4]) similar interpretations of the q­
special functions using quantum algebras. We summarize here some of our results taking as 
example the relation between the quantum algebra Uq(.s1(2)) and the basic hypergeometric 
series 2 tP 1 • 

The following two q-analogues of the exponential playa central role in our approach: 

00 1 n 00 qin(n-l) zn.
"-z, (3)eq(z) = ~ (q; q)" Eq(z) =:E (qj q)"
,,-=0 "-=0 



0 

These functions satisfy e,(z)E,( -.I) = 1 &nd 

D: e9(~z) =~e9(~z), D; E9(~z) =_q-I ~E,(~z), (4) 

with the q-derivativea D; defined by D;V'(z) = 1V'(z) - V'(q±lz )lIz. 
The basic idea in establiabing the connection between quantum algebraa and q-special 

functions is to replace the exponential map from Lie algebras into Lie groups by q­
exponentials of quantum algebra generatorl. To tee hoW' this worb, let QI consider 
U,(,l(2)). This quantum algebra i.generated by.l:, ,-1, e and I .ubjeded to 

.1:2 _1:-2 
.l:e.l:-1 = ql/2e, 1c1.l:-1 =q-l/l I, 1:1:-1 =.1:-1 .1: = e, [e, I] = ---.~--.0-•• • (5) 

It can be equipped with .. coproduct, counit and antipode to define a Bopf algebra.. It 
also admits a module V(A,mo) with ~,mo E C, characterized by the following action oC the 
generatol'8 on the buia vedors ej, j = mo + ft, ft E Z: 

eti =q(1-Ul/t 1 - qA+j lei = q(1-2l.)/t 1 - '1>.-jIc(j = q-i/2(i' """l=-t (i-I, """l=-t {j+l . (6) 

Given any a E U9(,1(2», it. matrix elements Wij(a) in 1hi. representation are defined by 

~j =Lei Wij(a) . (7) 
i 

In analogy with Lie theory, one conaiden the following element. in the completion of 
Uq(.d(2»: 

U(a,p,1) =E,(a e) e,(p f)." (8)1 

with a, 13, 1 complex p&rameters. It is then cuy to .how that 

U-i)(j-i-l)/2 (a q(l-~A)/t)J-i (q>.+i+l;q)j_i 

~o (U( a» 
IJ a,~,1 _ 0/2 ( q(1-21.)/t) i-j=q'" p___

1 - q 

(qA-iH. q)
I i-j 

(qjq)i-J 

X 2¢1 (qA+iH, qi-A j '1i-i+1. -aR '1(1-2;)/ ) 
2 

,'1, ~ (1 _ q)Z ' 
.. .
if, - J ~ 0 , 

(9) 
W,j (U(a,p,1» = q- .,iI2q

1 q ('1j9)j-i 

x 2~1(qHi+l,gi-Aiq.i-i+l. _a g(1-2i)/2) ., . 
, q, P (1 _ q)2 ' if , - J :5 O. 

This establishes most straightforwardly the connection between Ug(al(2)) and Beine's 2~1' 
We shall now briefly indicate how thia connection can be put to use. 

It is of course possible to take instead of (8), different combinations of c'l and E.,. In 
particular for 

U(a,p,1) =/c" E,(p J)c,(a e) , (10) 

the matrix elements Wij[U(a,P.1)] are again expressed in terms of 2~1' (See Ref. [4] for 
the explicit formulas. ) Now note that U(a,p,O)U(-a,~.8,O) = 1 or in terms oC ma~ri:x 

elements that LI W" (U(a,p ,O)) W/j (U( -a, -P,O») = 6i-i,0. Substituting in this last 

relation the expressions for W(U) and W( U)one arrives at the following orthogonality 
relation: 

q(i~ +i3 )/2 (q / Zj q)j "q'(/- l)/2 ( _ zq- i- j)' (Zi q), (qA+1 i q), (q - '\ q),
6i-j,0 

(qA+l jq )i(q-A jq )i IEf:mo (qjq)/-i(qjq)/-i (11) 

x 2~1(qA+I+l ,ql-Aiq'-i+ljq,zq-i) 2~1(qA+l+ l,q'-Ajql-j+ l jq,zq-i) • 

A generating relation is obtained through the construction of a one-variable model Cor 
v(A,mo) . Let z be a complex variable and take the basis vectors to be 

(j =z", j = ma +n nE Z . (12) 

Let the generators be 'he following q-difference opera.tors 

I: = q-mo/2 r;l/l I 

e = q(I-2A)/" (_l-Dt + 1- q>.+mo ! T.)
1-'1 1-'1 .I (13) 

2 1 A-mo )1= q(l - 2A )/t _z_D; + - q .I T;l I 
( l-q 1-'1 

where T~ is defined by T.V'(z) =V'(q .I). It is easy to check that the identifications (12) and 
(13) provide & reali.aa.tion of the representation (~,mo). One now acts with U(a,p,O) on 
the basis vectors {j = zi-mo using Cor e and I the expressions given above. By construction 
U( a,p,O)zi-mo =Li zi-mo Wij[U(a, p, 0)1. On the r.h.s., the expansion coefficients of the 
series in z are given in terms of 2~1' The l.h.s. thereCore defines a generating fundion 
for t hese 2~1' This function can be evaluated with the help of the q-binomial theorem 
E~-o ~c:" = (r.~~foo and after lOme redefinitiona one obtains the following identity - ~ ,.... 
between formal power .eries: 

(zq-2mo; q}zmo ('1/11; q)mo+A 2¢O (qmo+>.+1 /1" qmD-l. j q, zyq- 2mo- l) 

o
_ " (qm - Aj9)k , ~ (A- mo+l -mo - A. '+1. ) (14) 

- ~(q2mo+l/ziq),(qiq), Y 2¥"1 q ,q ,q ,q,Z. 

Addition formulas are arrived at by observing that the matrix elements Wij[U(a,p, O)J 
and Wii[U(a,p,O») also provide models for the module v(A ,mo). That this is t rue is 
shown by presenting opera.tors 7r(i)(a) acting on the variables a and {J and such that 
1r{i) (a)Wii [U(a,.8, 0)1 = L, Wi.lt[U(a,p, O)IW'i(")' It suffices of course to give ",i(e), 1ri(f) 
and 1I'i(k)jthese &re easily obtained by exploiting the properties of the foUowing 8.IIa.logue 
of the B-C-R formula 

(n 
Eq«(X) Y eq( - (X ) = L

OC 

-( -. -) IX, YIn " 
n=O q,q n (15) 

[X,Y ]o = Y, [X,Y]n+l = q" X IX, Yjn - [X,Y]TlX, for n = 1,2, ... 



One finds 

1I"(i)(k) = q-i/2 T;;I/2 T~/2 , 


(i) ) _ - ql/2 ~ ( i -1 -i -1)
11" (e - -qDo - (1 _ q)2 fJ q ToTp - q To , (16) 

1I"(i}(I) = D; . 
This defines a 2-variable model of v(..\,mo) with {~i) = Wij (U(a,f3,O». From here, one 
can derive the second- order q-difference equation that the 2~1 latisfy. The Casimir 
operator C of U9(,,1(2» is given by C = (ql/2 - q-l/2)-2(ql/2J:2 + q-l/2J:-2 - 2) + Ie 
and on v(..\,mo) it takes the value C(..\) = (ql/2 - q-l/2)2(q..\+I/2 + q-..\-1/2 - 2). From 
1I"(i)(C) W'j (U(a,p,O» = CC..\) W,; (U(a,p,O» one sees that 2~1 obeYI: 

{z(c - abqz)(D~)2 + [(1 - c) + (1 - 4)(1 - b) - (1 - c».z] D~ 
(17) 

-(I-G)(I-b)}2~I(G,biciq,.z) = O. 

Now the addition formula. Since the Wi; (U(a,f3,O» form models for vC..\,mo) we must 

have 1I"(i)[U(a,p,O)]Wij (U(a,p,O» = L:, WiAl (U(a,f3,O» WAlj (U(a,f3,O») . Substituting 
in the r.h.s. the expressions for the matrix elements in terms of 2~1 and using the specifics 
of the two-variable model to evaluate directly the l.h.s.,one can derive after some operations 
(see Rcf.[4]) the following relation between formal series 

. . (-1 )Al qAlCH1}/2
2~1 (q..\+l+l ,q'-li OJ q,.z) 2~O (q..\-J+1, q-"\-l i q, 1O/q) = L ~--:-.:........:=--.....,....---,:--

AlEZ (qi q),-;-. (qi q)AI (IS) 

x 2~I(ql+l+l,ql-..\jql-i-Hljq,.z) 2~1(ql-j+1,q-i-liqHliq,1Dq·) . 

With this we conclude. We would first like to stress that the examples presented here 
are far from covering all the applications that the connection between q-special functions 
and quantum algebras entail. We would also like to point out that our simple quantum 
algebra approach allows one to recover [3] the results that are obtained in the quantum 
group picture (see for instance [5]) where one relates the q-special func:tiona to the matrix 
elements of corepreaentationa of quantum groups. 
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