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1. INTRODUCTION

Recently, Zamolodchikov has suggested a way of exploring the properties of the
Ising model in a background magnetic field, i.e. away from criticality(!). The critical
temperature is fixed so that unperturbed the theory is described by a ¢ = -21 conformal
field theory. The Hamiltonian is then perturbed by the addition of a non conformally
invariant piece depending uporr the background magnetic field. An obvious ques-
tion to ask concerns the nature of this perturbed two-dimensional field theory. Via
a sequence of ingenious arguments Zamolodchikov suggests the hypothesis that the
perturbed theory is actually an integrable theory of eight massive bosons. Follow-
ing this development, our aim is to try to discover what this integrable theory is by
conjecturing a candidate (inspired by comments of Hollowood and Mansfield(?), and
testing Zamolodchikov’s arguments. On the way, we have discovered(®) (and some-
times rediscovered) a number of interesting facts concerning affine Toda field theory
and two-dimensional factorisable S-matrices. It seems to us that this by itself war-
rants further investigation. Much of this material has also been found by Christe and
Mussardo), whose work has considerable overlap with ours.

We begin by outlining Zamolodchikov's strategy. The unperturbed ¢ = -% confor-
mal field theory has field content I, o and ¢, with conformal weights (0,0), (TIE"I!_G‘)
and (%,%), (together with their descendants), with respect to the two sets of mu-
tually commuting sets of Virasoro generators L, and L,. The Virasoro generators
correspond to the moments of the holomorphic and anti-holomorphic parts of the
energy-momentum tensor
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in tum (2,0) and (0,2) descendants of I. There are many ‘conserved’ auantities
P*) (or Py

PM = § 413 y

in the sense that 651’,(” = 0. Indeed, in this case all the quantities T,(:)l belong to the
holomorphic part of the conformal family of I. The conserved quantities are labelled
by their spin s (or —s for the anti-holomorphic part) and & labels their multiplicity.
Any quantitiy T,(i)l which is itself a derivative with respect to z is to be regarded as
trivial in this context since it will not lead to an interesting conserved charge.

In the perturbed theory, whe.re the Hamiltonian is given by
H = Herr + Ao(z2, %), (1.2)

most of the conserved quantities will cease to be so, but not all. The idea is to seek
out those densities Ty41(2,2) which at A = 0 belong to the previous set, and which
satisfy

85 Tou1 = ARy = 8,5s1 (13)

for some operator S,_;. From (1.2), A is assigned conformal dimensions (—{-Z, i—g) and

thus R, has dimension (s + -113, —ll—s) and therefore belongs to the conformal family of 0.
Comparing dimensions of the spaces of operators of spin s +1 in the conformal family
of I modulo z-derivatives with the space of operators of spin s in the conformal family

" of ¢ modulo z-derivatives, it is found that for s = 1,7,11, 13, 17,19 the dimension of

the first space exceeds by one the dimension of the second. In these cases, the mapping
defined by 0; (eq(1.3)) followed by projection onto the second space (i.e. removing
the z-derivative pieces) certainly has non trivial kernel. In other words, there will be
operators S, for at least these spins, and hence conserved quantities. Zamolodchikov
further suggests that a complete set of conserved quantities will correspond to those
whose spins are the integers coprime to 30, the first six of which are those given above.
A more interesting observation perhaps is that these integers are also the exponents
of the Lie algebra Eg modulo 30 (and 30 is the Coxeter number of E3)(®). That there
is a coset construction of the ¢ = 1 conformal theory based on Ejg (Egl) X Eé”/Ef,”)
is well known(®). The remarks about conserved quantities makes it plausible that the
perturbation A is somehow probing the coset structure.

The next stage in Zamolodchikov’s argument is to explore a theory with the
above set of conserved charges (is it uniquely determined?) using techniques from
S-matrix theory to find a minimal solution to the bootstrap equation consistent with
the conjectured conserved quantities. The outcome is a theory of eight self-conjugate
massive scalar bosons. In the next section we briefly review the main features of the
S-matrix and bootstrap ideas to be employed.

2. FACTORISABLE S-MATRICES(!"

We shall be brief in this section and assume in the first instance that the interesting
theories contain self-conjugate particles only, with distinct masses. (This assumption
is too strong for most of the Toda theories we consider later but is sufficient for the
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present discussion. For Ew, E7 and Diyeq the particles nre sclf-conjugate, but only

with internal angles 9:5, -:‘,92‘,

(=7 -6, m -6, 7—8) Equally, particle

in the first two cases are the particles distinguished by mass alone. For all oth“ Y : i
siply Inced cases, some particles appear in conjugate pairs.) In particular, the h e e g oo, Sy S MAOPRFEAR 50.-6 [ o .o,

. . . . . re
is no reflection and multiparticle S-matrix elements are products of two particle S-

matrices. Thus, the two particle S-matrix is

[a(61),5(62)); = Sas(8) la(61),5(62)) . (2-1)‘

where 6, is the rapidity, i.e.
pi = m;(cosh §;,sinh 6;) =26, —6,. (2.2)
The S-matrix is
(1) unitary, which in this case means that for each clement
5(6)s!(8) = 5(8)S(-6) = 1 (2.3)
(11) crossing symmetric, which in this case requires

5(8) = S(ir — 6), (2.4)

and is therefore 2im periodic taking (2:3) and (2.4) together.

(111) Additionally, particles tay occur as bound state poles in S-matrix elements for
0 < 6 < im, with positive residue. Thus, particle ¢ may occur as a bound state
in the process ab — ab if there is a simple pole at 6 = 6, — 6, = 16, in the S,
S-matrix element (with a suitable residue). In that case (sce figure)

we have,

bo=0c—i(r=6%)  G=0+i(r—08), (2.5)
and
Oy~ 00 =i (27 — 65, — 6F) = i65,.
On the other hand,
m? = pl = (pa+ s)? = m 4 mi + 2ingmy cosh(fy — 0,)
=m? +m} + 2mamy cos 05, (2.6)

and the bound state masses correspond to a particular rapidity value. Indeed,

in view of (2.6) the three masses mgq, miy, me form the sides of a triangle Agp,

respectively, although attention must be paid to the sign of the residue.

(iv) The bootstrap property represents a non trivinl consistency requirement on the
scattering of three particles, immplied by the existence of bound states which nre
themsclves possible asymptotic states. It is indicated by the dingran

and expressed by the formula
S4c(8) = Saa(6 — i6°,)Sau(8 + 165.), (2.7)

where 6 = 6, — 8.

The conserved quantities mentioned in the previous section must be consistent

—_
<
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with the S-matrix. Since they are not in general scalars, this is a non trivial
requirement. Thus, when two particles bind to form a third we would expect
(using an analytic continuation argument), that if

P,la(8)) = qie* a(6)),

then

o, —isf} b isf

qe 4 qle Ve — q¢ (2.8)

for alt possible fusing channels. There is a similar set of equations for the
companion quantities bearing the opposite spins P_,, but with no extra content.

Actually, eqs(2.8) are very strong in the sense that given a conjecture for the spins
of the conserved quantities the possible fusing angles are highly constrained and hence
also the possible particle masses. With a few extra assumptions, properties (i)-(iii)
and in particular (iv) and (v) uniquely detennine the ‘minimnl’ model consistent with
the set of conserved charges. Zamolodchikov's stnrting point assumes the existence of
two particles 1 and 2 say, cach containing itself and the other one as a possible ‘fusion’.
Provided the mass ratio mz/my is the ‘golden ratio’ (1.e. 2cos 7 /5 = 1.618) the fusion
angles are consistent with the conserved quantities suggested in the previous section.
However, the manifestly crossing symmetric unitary S-matrix

= (1) () () ()

where
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does not yet satisfy the first of the bootstrap conditions (eq(2.7) witha = b =¢ =
d = 1), to wit

Su(8)=§ (e—i’i) (e i—").
1(6) = Su 3 S {6+ 3
However, this is remedied by the addition of one more pole at § = i7/15, with its
crossed channel partner at 147/15 and an overall — sign. Thus, instead of (2.9) we

are forced to set
suo=-(3) () ) () (=) () @10

and recognise the need for a third particle 3 for which m3/m; = 2cos /30 2 1.989.
The next step uses the bootstrap to set up candidates for Sj2(8), S13(8) and so on,
introducing extra particles as necessary to render the matrix elements consistent.
Remarkably, the procedure closes on a ‘minimal’ solution containing eight particles
in the computed mass ratios (to m): :

1.618 1.989 2.405 2956 3.218 3.891 4.783.

The question is, what is really going on and can we understand this minimal
solution field theoretically? Perhaps there is no field theory for which the minimal
solution occurs as a perturbative solution.

In the next section we shall describe a simple field theory which is certainly related
to the S-matrix Zamolodchikov describes and which might be used as a framework
within which to explore further. In any case, it seems to us that the connection with
Toda theory is by itself interesting and revives interest in work begun many years
ago.

3. AFFINE TODA FIELD THEORY

Integrable Toda theory associated to each Lie algebra Dynkin diagram has been
much discussed in the past(®) and its quantum theory is known to be conformal(®).
It is natural then, when considering a perturbed conformal field theory, to seek a
perturbed Toda theory, perturbed in such a way as to preserve integrability. It is
also known that the conserved quantities of these theories do indeed occur at spins
corresponding to the exponents of the underlying Lie algebra whose simple roots
define the theory(!?). These considerations and the remarks in the previous two
sections concerning Ejg suggest that the scalar field theory we seek might be affine
Toda theory(!!) (i.e. Toda theory with an additional exponential term depending on
the extra root), whose Lagrangian after a field shift could be taken to be

1 a a m2 d Ba,-¢
C:-Q-O,‘d) 6“¢ —’ﬁ-.z'l—;)n,'ﬂ (31)

where Y_f n;a; = 0 and the r-component simple roots are selected from any one of the
affine Dynkin diagrams (of rank r + 1) in Kac’ list(®). The roots a; are normalised so
that the long roots have length /2, and the parameter 3 keeps track of the overall
scale of the roots (classically it is irrelevant). We have organised (3.1) in such a way

that the minimum of the potential (for real f) occurs at ¢* =0, a=1,...,r and
the potential may be expanded perturbatively about the origin. Thus

2 r 2 r
V(9) = T Lni+ o Lo nafalg®s’
g5 25
2 r
+ ma—lﬁ alalaletdbet + ..., (3.2)
0
and, for any choice of roots we may compute the ‘classical’ masses and couplings. The

first surprise is that for e(al), the affine diagram associated with Eg, the classical masses

are in precisely the ratio discovered by Zamolodchikov. In other words, diagonalising

the (mass)? matrix

(M?)a = m* Y niatal (3.3)
0

yields (in ascending mass order), the eigenvalues m?/m%

4,/3sinm/30sin7/5
16/3sin/30sin /5 cos’n/5
164/3sin7/30sin /5 cos? /30
64./3 sin /30 sin 7 /5 cos? r/5 cos’ Tm/30

4,/3sin 117 /30sin 7 /5
4,/3sin Tr/30sin 27 /5
4,/3sin 137 /30sin 27 /5
256./3 sin 7/30sin 7 /5 cos? 27 /15 cos® 7 /5. (3.4)
An even greater surprise is that the 8-vector m = (my,...,mg) is an eigenvector

of the Eg Cartan matrix corresponding to the smallest eigenvalue 2 cos 7/30. This
enables us to assign the masses unambiguously to the vertices of the Dynkin diagram

for Ejg:

®
o

¢
¢
[}

q

(This is also in ascending order in dimension of the first cight representations of
Es.)” For the other affine theories the masses fit into a similar pattern. However, we
have no satisfactory explanation for these facts.

+ These masses are also numerically the same as the ‘dimensions’ of Ocneanu’s operators associated
witht!?) Ey.



Once the mass matrix is diagonalised, the couplings of mass eigenstates are com-
puted (but not by hand!), and are found to be zero except for the entries in the table
at the end of this paper. The top entry in each row in the upper half of the table
labels the bound state particle in ascending mass (and indicates the sign of the cou-
pling), the lower entry is the fusion angle as a multiple of 7/30. The magnitude of
the couplings is given by the general formula

2
[c*¢] = ——m,mysin 65, (3.5)

Jh

where h is the Coxeter number (30 for Eg). Actually, the same formula is applicable
to all simply laced Toda theories i.e. corresponding to the a(!) d(1) and e(!) series)
and, with slight modification, to the non-simply laced cases as well. We will not
discuss the signs of the couplings any further.

Using the masses and couplings we can conjecture a ‘minimal’ S-matrix (the part
ignoring f3) consistent with the bootstrap programme outlined in section (2). The
result for Eg is presented in the lower half of the table containing the couplings. The
notation is quite condensed since:

a-(5)E).

a manifestly unitary and crossing symmetric building block for the S-matrix elements.
We also note,

[~a] =[a]™"  [30-a] = [a] = [a + 60].

This S-matrix is the one obtained by Zamolodchikov(!), although he did not reveal
the full table.

There are a number of interesting remarks to be made. First of all, the positions
of the bound state poles are fixed by the bootstrap and for the conjectured S-matrix
to actually follow from a Lagrangian like that of (3.1) there must be miracles in
perturbation theory. For example, we have checked to one loop order that masses
all renormalise in the same way so that their ratios are unaffected by the coupling
constant 3. To do this requires the evaluation of propagator bubbles and the result
(again valid for each of the a,d, e series) is

2 2
A"’l’;' - f—hcot(%)

I

yeoesT (3.7)

an interesting universal formula. Obviously a proof to all orders is highly desirable.

Secondly, since the masses (and wave functions) renormalise we do not expect the
couplings computed from the S-matrix to coincide with those of the bare Lagrangian.
Moreover, the ‘minimal’ S-matrix requires adjustment to take into account the j
dependence (as B — 0 we expect the S-matrix to be unity!). In spite of this, the
basic couplings in the Lagrangian appear to have topological significance in the sense
that when a coupling is zero in the Lagrangian (3.1) it will not appear in the full
S-matrix. Again, for this to be the case, any couplings that can be generated at
higher order (e.g. a triangle vertex graph) must cancel against each other or with

higher order terms in the Lagrangian. To check this for the cg” case is a formidable

task, but we have done ‘random’ checks on other, simpler theories in the a,d. e serics.
Similarly, it is not obvious from the Lagrangian that production processes cannot
occur (they are forbidden in the S-matrix by the requirement of consistency with the
conserved quantities). However, we have found it to be the case wherever we have
checked, at least for trees and to one loop. It is as though the higher order part of the
Lagrangian is there for the express purpose of cancelling the unwanted processes, the
basic structure being dictated by the masses and the three point coupling terms(*Y).

Finally, we may conjecture (and then attempt to verify at least to order ') the
coupling constant dependence of the S-matrix along the lines proposed by Arinshtein
et al(). Suppose we take the SS?)(G) matrix element from the cg” table:

s{9(6) = —[20)(12](2],

and modify it by adding a factor whose sole purpose is to remove the poles and zeroes
as # — 0. It must satisfy the same bootstrap and consistency conditions as 519 and
avoid introducing extra poles in the physical strip. We would guess that factor to be
something like

[—20 + b][—12 + B][—2 + b], (3.8)

where b = B2 Y73 b, 3*". However, (3.8) fails to satisfy the bootstrap (and anyway
the residue signs are wrong). To correct it needs a further factor. We set,

s8(6) = S{7(6)[~20 + b][—12 + B][—2 + b](~-b]
= 5P(O)Fn(B) (3.9)

which does work satisfactorily (note, [0] = —1). Moreover, the rest of the bootstrap
appears consistent with this ansatz. Note too, at b = 2 the S-matrix is again unity
and, further, (3.9) is invariant under the transformation b — 2 —b. It is tempting
to conjecture that b — 2 corresponds to the large B limit of the theory. A natural
assumption is to take the function b to be given by an expression of the form

T PR - (3.10)
o2r 1+ B /4n’

as suggested by earlier work. It satisfies

b(4r/B) =2 - b(B),

displaying the symmetry between strong and weak coupling limits emphasised in
the context of non-affine Toda theory by Hollowood and Mansficld®) (who appear
to have set h = 4w rather than unity). Whether (3.10) is a sensible conjecture
requires checking in perturbation theory. A first non trivial check is to examine tree
diagrams, this gives the small  behaviour of §(8) and verifies (3.9) and (3.10). Similar
conjectures for a,d, ¢ scries agree to this order with (3.10). (An explanation for (3.5)7)

Actually, in any of the a,d or e theories with self-conjugate particles we would

- () (52).

where h is the appropriate Coxeter number and analogous statements hold concerning

the factor F(f3).

define similarly




If one examines the S-matrix elements carcfully, it is clear that the pole structure
is very complex, many of the bound state poles being hidden in a multipole structure.
We have not analysed these carefully, but it is expected that all these singularities
are explicable in terms of singularities of Feynman loop diagrams in perturbation
theory(!%). We give some examples in the next section, not for eg” but for dgl) which
is rather simpler to understand.

The detailed structure of the e(71) theory has been elucidated by Christe and
Mussardo(*).

4. OTHER THEORIES: BRIEF REMARKS

In this section we shall briefly remark upon other affine Toda field theories(3).
The simplest in many ways is the al!) series. There, the exponents are the set of
integers 1,2,3,...,n and the masses are 2sinwk/(n + 1). For n even every particle
occurs with its conjugate partner, for n odd there is one self-conjugate particle (the
heaviest). The particles are associated with the Dynkin diagram in mass order as
before:

The couplings are given by the nice formula:

=0 if a+b+c#0 modn+1
1

= 1—wh)(1—w)(1 —uf

L w1 - - )

f a+b+c=0 modn+1

d

where w is an (n + 1)th root of unity. The fusing angles are given by

c a+b a+b
“”:n+1ﬂ’ a+b+c=n+1; ab:?rr-n+l1r, a+b+c=2(n+1).

The associated minimal S-matrix is that of Kéberle and Swieca('®) with a coupling
dependence conjectured by Arinshtein et al(!*). We shall not reproduce it here.

The df,” theories are more subtle. The exponents are 1,3,5,...,2n -3, n—1 with
a set of masses

k
V2 V2 2/ 2sin—— k=1,2,...,n~2. (4.1)
2(n—-1)

For n even, each particle is self-conjugate, for n odd the pair with equal mass are
conjugates. Occasionally, for n = 1 mod 3, there is another particle mass degenerate

- 10 -

with the pair. However, it is self-conjugate. Attached to the Dynkin diagram the
degenerate pair correspond loosely speaking to the spinor, conjugate-spinor represcn-
tations of the algebra. For even n there is also a degenerate pair of conserved charges
with spin n— 1. Each of these theories has a minimal S-matrix associated with it, but
we list only dil) to illustrate certain general features. There, the masses are V2 for
each of the three light particles (I,1',1") and V6 for the heavy particle h. The light
particles are distinguished by the conserved charges of spin 3. The three non-zero
couplings are:

vqsi -1 1
w5 ik 21w L
c =V2, ¢ 75 c 3
The minimal S-matrix has the form
Su(8) = ~[4]
where [, I' are any two different light particles, and
Su(8) = ~14]
Sin(8) =13
Swa(8) = 14 (4.2)

where we have used the same notation as before (3.11), with A = 6. The 8 dependence
is derived consistently from the ansatz

Fu(B) =[-4+1Y (4.3)

the bootstrap and the conjecture (3.10).

In this case it is relatively easy to check the claim about mass renormalisation
(eq(3.7)) and the absence of production processes, at least to order % 1t is also
easy to identify the perturbative Feynman diagrams responsible for the second and
third order poles in expressions (4.2). The idea, originally exploited by Coleman
and Thun{1), is to identify diagrams which can be drawn as geometrical figures with
internal lines contracted or on-shell. For example, the double pole in Sj at 8 = i7/2
occurs in the box diagram

where the internal angles sum to 27 and hence corresponds to a planar figure with the
internal light particles on their mass shells. The triple pole in Sy arises differently,

from a pair of vertex corrections.



Each triangle graph is singular (a simple pole) at 8 = 27i/3, as evidenced by the
internal angles summing to = when the light particles are on shell,

Obviously, the pole structure of the cgl) theory is more complex. Nevertheless, the
ideas arc identical although it will require some ingenuity to spot the relevant diagrams
(where are the twelfth order poles in S3a(8), for example?). We are confident this will
work although we have not checked all possibilities explicitly.

The dﬁ,” theories are interesting for another reason which we mention briefly.
Recall the Sine-Gordon theory has a spectrum of solitons (a pair) and breathers(18).
In terms of the Lagrangian parameters,

V(¢) = ;QE cos k¢

the soliton mass is given by

8/a

Myoliton = M =

e
and the spectrum of breathers by
. k _, x?
my =2msin | —& - PP S
(16 ) ol o x?/8m (24
where k = 1,2,... < 8n/&% For certain values of x (actually just before a new

breather enters the spectrum), there is known to be no reflection in the Sine-Gordon
S-matrix. This occurs just at the moment when 87/&2 reaches the next integer. At
that point, &* = 87 /N say, and the breather masses are

o kx
2m sin N k=1,2...,N -1

1.e. precisely those of the df.;)ﬂ theory (including the soliton masses). Moreover, the
S-matrix is essentially identical to the ‘minimal’ dg)ﬂ S-matrix. For example, x? = o
corresponds to &2 = 87/3 and a spectrum of three light and one heavy particies in
the mass ratio 1 to /3. A comparison of the Faddeev-Korepin(1®) S-matrix (and its
extension to breathers(?%) with the expression (4.2) reveals the identity, apart from
signs in some of the | —{' matrix elements which are not in any case fixed by the

bootstrap. Remarkably, it seems that tuning the Sine-Gordon coupling constant

(1)

vields successive members of a tower of dn
this is related to perturbed ¢ = 1 conformnal field theory. We note that the cos:ot

models d4y) x (l'f,”/dsf‘) all have ¢ = 1, and that perturbations of ¢ = 1 theorics have
been identified with Sine-Gordon theory?!). As with the Ising»c‘é” relationship there
remains the problem of understanding the affine Toda conpling constant dependence.

How are two theories related if their minimal (or in the case of Sine-Gordon, actual)

minimal theories. We strongly suapect

S-matrices happen to agree?

COMMENTS

The major problemn in relating this work to perturbed conformal ficld theory lies
in understanding the réle of the coupling constant 3. To obtain a value of the central
charge ¢ small cnough to lie in one of the discrete serics of coset models Hollowood
and Mansfleld were forced to assume an analytic continuation to imaginary 4. The
same conclusion has been reached by Eguchi and Yang!®® | from a different starting
point. It is not however clcar that such a choice for J wonld make sense, from
the straightforward Lagrangian ficld theory point of view, to compute an S-matrix.
For example, the bootstrap proposed by Zamolodchikov provides a miniinal S-matrix
identical with the one we have described. However, an imaginary coupling in the
postulated extra factor FI(§) would appear to alter the physical pole structure. Thus,
we are not really able to confirm that the theory described by eq(3.1) actually coincides
with Zamolodchikov's conjecture for any value of the coupling despite the fact that

it shares the same ininimal S-matrix.

On the other hand, although we were motivated to study this problem by the
work on conformal field theories, the results we have obtained are independently
interesting. For example, although we have not mentioned it in this article so far, the
a,d. e serics is rather special, here as elsewhere (323 in the following sense. Firstly,
cach of the Toda theories corresponding to a non-simply laced algebra is obtainable
as a truncation of a theory in the a,d, e series. Eacli of the simply-laced theorics
cnjovs a minimal S-matrix in the sense we have described but the S-matrix does not
respect the truncation. In fact, the non-simply laced theories do not have minimal
S-inatrices; for example, the masses fail to renormalise universally. It seems that the
degeneracies present in most of the a.d, ¢ theories are actually important; if they are
removed by truncation the nice features tend to disappear. In the non-simply laced
theorics the coupling constant dependence must play a more significant role in the
bootstrap. There are many questions for the future besides elucidating the connection
with conformal field theory.
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