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1. 	INTRODUCTION 

Recently, Zamolodchikov has suggested a way of exploring the properties of .the 
Ising model in a background magnetic field, i.e. away from criticality(1). The critical 
temperature is fixed so that unperturbed the theory is described by a c = ! conformal 
field theory. The Hamiltonian ,is then perturbed by the addition of a non conformally 
invariant piece depending upOIt the background magnetic field. An obvious ques­
tion to ask concerns the nature of this perturbed two-dimensional field theory. Via 
a sequence of ingenious arguments Zamolodchikov suggests the hypothesis that the 
perturbed theory is actually an integrable theory of eight massive bosons. Follow­
ing this development, our aim is to try to discover what this integrable theory is by 
conjecturing a candidate (inspired by comments of Hollowood and Mansfield(2»), and 
testing Zamolodchikov's arguments. On the way, we have discovered(J) (and some­
times rediscovered) a nwnber of interesting facts concerning affine Toda field theory 
and two-dimensional factorisable S-matrices. It seems to us that this by itself war­
rants further investigation. Much of this material has also been found by Christe and 
Mussardo(4), whose work has considerable overlap with ours. 

We begin by outlining Zamolodchikov's strategy. The unperturbed c = ~ confor­
mal field theory has field content I, a and f, with conformal weight3 (0,0), (ft, is) 
and (!, !), (together with their descendants), with respect to the two sets of mu­
tually commuting sets of Virasoro generators Ln and Ln. The Virasoro generators 
correspond to the moments of the holomorphic and anti-holomorphic parts of the 
energy-momentum tensor 

00 	 00 
n 2T(z) = L L n z- - t(Z) = L Ln z-n-2, 
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in turn (2,0) and (0,2) descendants of I. There are mrui~· 'conserved' auantities 
pjk) (or p~:») 

p(k) = f dz T(k) 	 (1.1 ) , ,+1 

in the sense that 8zpjk) == o. Indeed, in this case all the quantities T;!)I belong to the 
holomorphic part of the conformal family of I. The conserved quantities are labelled 
by their spin s (or -3 for the anti-holomorphic part) and k labels their multiplicity. 

Any quantitiy T'(!)I which is itself a derivative with respect to z is to be regarded as 
trivial in this context since it will not lead to an interesting conserved charge. 

In the perturbed theory, where the Hamiltonian is given by 

H = HeFT + Aa(z, z), 	 ( 1.2) 

most of the conserved quantities will cease to be so, but not all. The idea is to seek 
out those densities T,+I(Z, z) which at A = 0 belong to the previous set, and which 
satisfy 

8i T,+! = )"R, =8%5,-1 	 ( 1.3) 

for some operator 5,-1' From (1.2), ).. is assigned conformal dimensions (*, H) and 
thus R, has dimension (3 +-16 ' -h) and therefore belongs to the conformal family of a. 
Comparing dimensions of the spaces of operators of spin 3 +1 in the conformal family 
of I modulo z-derivatives with the space of operators of spin 3 in the confonnal family 
of a modulo z-derivatives, it is found that for oS = 1,7,11,13,17,19 the dimension of 
the fir·st space exceeds by one the dimension of the second. In these cases, the mapping 
defined by 8i (eq(1.3)) followed by projection onto the second space (i.e. removing 
the z-derivative pieces) certainly has non trivial kernel. In other words, there will be 
operators 5,-1 for at least these spins, and hence conserved quantities. Zamolodchikov 
further suggests that a complete set of conserved quantities will correspond to those 
whose spins are the integers coprime to 30, the first six of which are those given above. 
A more interesting observation perhaps is that these integers are also the exponents 
of the Lie algebra E8 modulo 30 (and 30 is the Coxeter number of E8)(5). That there 

is a coset construction of the c = ! conformal theory based on E8 (E~I) x E~l} / E~2») 
is well known(6). The remarks about conserved quantities makes it plausible that the 
perturbation A is somehow probing the coset structure. 

The next stage in Zamolodchikov's argument is to explore a theory with the 
above set of conserved charges (is it uniquely determined?) using techniques from 
S-matrix theory to find a minimal solution to the bootstrap equation consistent with 
the conjectured conserved quantities. The outcome is a theory of eight self-conjugate 
massive scalar bosons. In the next section we briefly review the main features of the 
S-matrix and bootstrap ideas to be employed. 

2. 	FACTORISABLE S-MATRICES(I,1) 

We shall be brief in this section and assume in the first instance that the interesting 
theories contain self-conjugate particles only, with distinct masses. (This assumption 
is too strong for most of the Toda theories we consider later but is sufficient for the 
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pr('~ent di s cU9~ioll . For E~, £7 	rulll D' V ' the pnrticles nrc ~df· conjll~:lte, bllt olllyFl 

in t he first t wo cases :lrc t he p;u ticles dis tinguished by 1II a.<; ~ alol1 f' . Fo r all ot h 

sililply laced ca.-;cs , somc pnrticles nppear in conjugnte pairs.) In particlllar, there 

is no reflectioll ;U1d IlIllltipnrticie S-matrix clemellts arc products uf two p;uticle S­
llIiltrices. Thus, the two particle S-rnatrix is 

In(Ot), b(Ol))in =506 (0) la(Od, b(02))o., (2.1 ) 

where O. is the rnpidity, i. t:. 

Pi = mi(cosh 8j , sinh 8d 8 = 81 - 82 , (2 .2) 

Th~ S ' Jl1ntrix is 

(i) 	unitary, whidl ill this cnse me1\l1S that for eru:h elelllent 

5(8)5 1(8) == 5(8)5(-8) = 1; (2 .3) 

(ii ) 	crossing symmetric, which in this case requires 

5(8) = 5(i1l" - 8), (2 .4) 

il/ld i~ therefore 2ilT periodic taking (213) and (2.4) togcthn. 

(iii) 	Additiollally, particles rna.y occur 1\..'1 bound state poles in S -rnntrix clements for 

o~ 8 ~ i1l", with positive residue. Thus, particle e lIIay occur as a bOllnd state 

in the process ob -> ab if there is a simple pole at 8 = 8
0 

= ie~b in the Sob8b ­
S-mntrix clement (with a suita.ble rcsidue). In that case (sec figure) 


b/~ 

we bnve, 

80 = Be - i (". - 8!c) 8& = 8e + i (rr - 0bJ, (2 .5) 

• 	 nnd 

86 - 80 = i (2:r - e!e - ebc ) = iB~b ' 

011 the other b;uHI, 

m~ = p~ = (Pa + l'b)2 = 711; +ml + 2m071l6 c0511(Ob - O~) 
= Ill; + rni + 2m" I11b cos B~b' (2 .G) 

and the bOlllld stntr m:L~ses c:orrespond to a p;uticular rapidity vallie. Illdeed, 

in view of (2 .G) the three ma.~ses rn., 1116, lTIe form the sides of a trianF,lc Dabc 

- 4 - ... 

with internal nll,l!;ks e~6' eae ,0:11 (==:r - O~&, 1f - e:c,:T - ti:e ) . Equally, partirle 

~--------""II""=I.=-~""~ lIlay OCCllI as n physical b01l11l1 !; tn te ill the pro(c !; se~ bc -. be or en -. co , 

respectively, altllOllgh nttention musl Lr. prud to the sign of the residue . 

(iv) 	The bootstrap property repre~ents n non trivial consistency requiremcnt 011 the 

scattering of three particles, implied by the exi!'!tellce of boulld 5tnt~, whi,h nrc 

thclII~c1ves pos~ible n.'lyJllptotic stnte~. It is ilHlicntcti by the diagrnm 

c 

..c 

~ 

alld expressed by the fonnula 

5dc(8) = 5d,,(e - iii!c)5,Ib(O + iii~e). ( 2.1) 

where 0 = 8e - Od . 

(v) 	The conserved qt\alltitie~ mentioned in the previous section IIlllst be co nsi s tcnt 

with the S-mntrix. Since they nre not in gencm! scalars, this is n nOli tri\'inJ 

rcqllirement. Thlls, when two particles bind to fonn A. third we wOll.ld c:qH'ct 

(llsing an rulalytic continuation argillllent), thal if 

P J !n( 8)) = q: t:'~ la( 8J) , 

then 

q:e-jJ~:. + q!eiJ~:. ::= q: 	 (23) 

for all po~sible fnsing chrumcls. There is a similar sr:t of cqllations for thr 

companion quantities bearing the opposite spins P- J , but with no extra cOlltent. 

Actually, eqs(2 .8) are very strong in the sense that givcn n conjecture for the spins 

of the conserved quantities the possible fusing anglcs Me highly constrained n.no hCllce 

also tile pos~ible particle masses_ With a fcw e:drn nssllmptiollS, J>ropertie~ (i)·(iii) 

rul(l in pnrticular (iv) alld (v) uniqllcly dclenninc the 'minimrJ' model consistcnt with 

the set of conserved cha.r~es. Zamolodchikov's stnrting point ;\$SUlTles the existcnce of 

two Jmrticles 1 and 2 say, en.ch contruning itself IUld the other one n.'l n possible 'fusion '. 

Provided the mnss rntio rn2/rnl is the 'golden rntio' (i.t: . 2co'31f/5 ~ 1.618) the fusion 

angles are consistent with the conserved qunntities su~ested in the prcvioWl ~di"ll. 

However, the Illn.lufestly crossing symmetric IInitnry S -mntrix 

(29)5 II ( 8) == (~) G) (D C30) , 
where 

sinh (~+ i::-o)
(0)=-----, 

sinh (~ - I:TO) 
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does not yet satisfy the first of the bootstrap conditions (eq(2.7) with a = b = c = 

d = 1), to wit 


5 11 (0) = 5 11 (0 - ~) 511 (0 + i;) . 

However, this is remedied by the addition of one more pole at 8 = i7r/15, with its 
crossed channel partner at 147r /15 and an overall - sign. Thus, instead of (2.9) we 
are forced to set 

5 	 (8 - - (~) (~) (~) (2.) (~) (2i) (2.10)
11 	 ) - 3 6 5 10 30 30' 

and recognise the need for a third particle 3 for which m3/ml = 2 cos 7r /30 ~ 1.989. 
The next step uses the bootstrap to set up candidates for 512(8),513 (8) and so on, 
introducing extra particles as necessary to render the matrix elements consistent. 
Remarkably, the procedure closes on a 'minimal' solution containing eight particles 
in the computed mass ratios (to mI): 

1.618 1.989 2.405 2.956 3.218 3.891 4.783. 

The question is, what is really going on and can we understand this minimal 
solution field theoretically? Perhaps there is no field theory for which the minimal 
solution occurs as a perturbative solution. 

In the next section we shall describe a simple field theory which is certainly related 
to the S-matrix Zamolodchikov describes and which might be used as a framework 
within which to explore further. In any case, it seems to us that the connection with 
Toda theory is by itself interesting and revives interest in work begun many years 
ago. 

3. 	AFFINE TODA FIELD THEORY 

Integrable Toda theory associated to each Lie algebra Dynkin diagram has been 
much discussed in the past(8) and its quantum theory is known to be confonnal(9). 

It is natural then, when considering a perturbed conformal field theory, to seek a 
perturbed Toda theory, perturbed in such a way as to preserve integrability. It is 
also known that the conserved quantities of these theories do indeed occur at spins 
corresponding to the exponents of the underlying Lie algebra whose simple roots 
define the theory (1 0) . These considerations and the remarks in the previous two 
sections concerning Ee suggest that the scalar field theory we seek might be affine 
Toda theory(ll) (i.e. Toda theory with an additional exponential term depending on 
the extra root), whose Lagrangian after a field shift could be taken to be 

m 21 r
L = -U IjJGfy,¢a - - L n e~o.,~ 	 (3.1 ) 

2 P {32 1=0 1 

where L~ njOj = 0 and the r-component simple roots are selected from anyone of the 
affine Dynkin diagrams (of rank r + 1) in Kac' list(5). The roots OJ arc normalised so 
that the long roots have length y'2, and the parameter {3 keeps track of the overall 
scale of the roots (classically it is irrelevant). We have organised (3.1) in such a way 

- b 	 ­

that the minimum of the potential (for rea..l (3) occurs at 9a = 0, a = 1, .... rand 
the potential may be expanded perturbativcly about the origin. Th\ls 

2 r 2 r 

V( 1» = :2 L nj + ~ L nlo:'o~1>a1>b 
f' 0 0 

m2{3 r ~ b c ~ b c+ -3
1 

I>jOjOj1> ¢ ¢ + ... , (3.2) 
• 0 

and, for any choice of roots we may compute the 'classical' masses and couplings. The 

first surprise is that for e~I), the affine diagram associated with Ee, the classical masses 
are in precisely the ratio discovered by Zamolodchikov. In other words, diagonalising 

the (mass)2 matrix 

(Af2)ab = m2 L 	
r 

njoiot (3.3) 
o 

yields (in ascending mass order), the eigenvalues m;/m2: 

4}3 sin 11" /30 sin 11" /5 

16}3 sin 11" /30 sin 11" /5 cos 2 11" /5 

16}3 sin 7r /30 sin 11" /5 cos2 11" /30 

64}3 sin 11" /30 sin 11" /5 cos2 
rr /5 cos

2 
7rr /30 

4}3 sin 1l7r /30 sin 11" /5 

4}3 sin 77r /30 sin 211" /5 

4}3·sin 1311" /30 sin 211" /5 

256}3 sin 11" /30 sin 11" /5 cos2 211" /15 cos4 11" /5. (3.4) 

An even greater surprise is that the 8-vector m = (m}, ... ,me) is an eigenvector 
of the E8 Cartan matrix corresponding to the smallest eigenvalue 2 cos 11" /30. This 
enables us to assign the masses unambiguously to the vertices of the Dynkin diagram 

for E8: 

~I ~ 
3 5" 1- ~ b 1. 

(This is also in ascending order in dimension of the first eight representations of 

E8.)· For the other affine theories the masses fit into a similar patten!. However. we 

have no satisfactory explanation for these facts. 

* These masscs are also numerically the same "-~ the ' dimension~' ofOcneanu's operators ;\.SSOCi;ltCJ 

with(ll) Ed. 
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Once the mass matrix is diagonalised, the couplings of mass eigenstates <tfe com­
puted (but not by hand!), and are found to be zero except fo r the entries in the table 
at the end of this paper. The top entry in each row in the upper half of the table 
labels the bound state particle in ascending mass (and indicates the sign of the cou­
pling), the lower entry is the fusion angle as a multiple of rr 130. The magnitude of 
the couplings is given by the general formula 

I abcl 2 . BC 
c = ,jh mamb sm ab (3.5) 

where h is the Coxeter number (30 for £8) ' Actually, the same formula is applicable 
to all simply laced Toda theories i. e. corresponding to the a{l),d{l) ande(1) series) 
<tOd, with slight modification, to the non-simply laced cases as well. We will not 
discuss the signs of the couplings any further. 

Using the masses and couplings we can conjecture a 'minimal' S-matrix (the part 
ignoring fJ) consistent with the bootstrap programme outlined in section (~). The 
result for £8 is presented in the lower half of the table containing the couplings. The 
notation is quite condensed since: 

( a-) (30 - a-) (3.6)[a-] = 60 6()' 

a m<Ulifestly unitary and crossing symmetric building block for the S-matrix elements. 
We also note, 

[-a] = [a-tl [30 - a-j = [a-] = [a- + 60]. 

Tills S-mntrix is the one obtained by Zamolodcillkov{l), although he did not reveal 
the full table. 

There are a number of interesting remarks to be made. First of all, the positions 
of the bound state poles are fixed by the bootstrap and for the conjectured S-matrix 
to actually follow from a Lagrangian like that of (3.1) there must be miracles in 
perturbation theory. For example, we have checked to one loop order that masses 
all renormalise in the Jarne way so that their ratios are unaffected by the coupling 
constant fJ . To do tills requires the evaluation of propagator bubbles and the result 
(again valid for each of the a, d, e series) is 

6m 2 fJ2 II" 
__I = -cot(-) i = 1, .. . , r (3.7)mf 4h h 

an interesting universal formula. Obviously a proof to all orders is illghly desirable. 

Secondly, since t he masses (and wave functions) renormalise we do not expect the 
couplings computed from the S-matrix to coincide with those of the bare Lagrangian. 
Moreover, the 'minimal' S-matrix requires adjustment to take into account the fJ 
dependence (8..9 fJ -> 0 we expect the S-matrix to be unity!). In spite of tills, the 
basic couplings in the Lagrangian appear to have topological significance in the sense 
that when a coupling is zero in the Lagrangian (3.1) it will not appear in the full 
S-matrix. Again, for tills to be the case, any couplings that c:tn be generated at 
higher order (e.g. a triangle vertex graph) must cancel against each other or with 

higher order terms in the Lagrangian. To check tills for the e~l) case is a formidable 
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task, but we have done 'random' checks on other, simpler theories in t he (I , d. e !'wri cs . 
Similarly, it is not obvious from the Lagrangi<Ul that production processes cannot 
occur (they are forbidden in the S-matrix by the reqllirement of consis tency with the 
conserved quantities). However, we have found it to be the c<t.<;c wherever we have 
checked, at least for trees and to one loop. It is as though the higher order part of the 
Lagrangian is there for the express purpose of cancelling the unw:tnted processes, the 
basic structure being dictated by the masses Rnd the three point coupling tenns{lJ). 

Finally, we may conjecture (and then attempt to verify at lca..'it to order 13") the 
coupling constant dependence of the S-matrix along the lines proposed by Arinshtein 

et al( H) . Suppose we take the S~~) ( B) matrix element from the e~l) table: 

S\~)(B) = -[~0J[12J[21, 

and modify it by adding a factor whose sole purpose is to remove the poles and zeroes 
as fJ -+ O. It must satisfy the game bootstrap and consistency conditions as 5(0) and 
avoid introducing extra poles in the physical strip . We would guess that factor to be 

something like 
(3.8)[-20 + b][-12 + bJ[ -2 + b], 

where b = fJ2 2::00 b fJ 2n . However, (3.8) fails to sntisfy the bootstrap (and anywayn 

the residue signs are wrong). To correct it needs a further factor. \Ve set, 

S\~)(B) = S\~ ) (9)1-20 + b][ -12 + b][-2 + bJl-bJ 

(3 .9) == S~~)(B)Fll(fJ) 

which does work satisfactorily (note, [0] = -1). Moreover, the rest of the bootstrap 
appears consistent with this ansatz. Note too, at b = 2 the S-matrix is again unity 
and, further, (3.9) is invariant under the transformation b -> 2 - b. It is tempting 
to conjecture that b -> 2 corresponds to the large fJ limit of the theory. A natural 
assumption is to take the function b to be given by an expression of the form 

821 (3.10)
b(fJ) = 211" 1 + '(J2/4rr' 

as suggested by earlier work. It satisfies 

b( 4rr1fJ) = 2 - b(fJ), 

displaying the syrrunetry between strong and weak coupling limits emphasised in 
the context of non-affine Toda theory by Hollowood and Mansficld(2) (who appcM 
to have set h = 4rr rather than unity). Whether (3 .10) is a sensible conjecture 
requires checking in perturbation theory. A first non trivinl check is to examine tree 
diagrams, this gives the small fJ behaviour of S(3) and .....erifies (3 .9) and (3 .10). Similar 
conjectures for a,d, e series agree to this order with (3.10). (An explanation fo r (3.5)1) 

Actually, in any of the a, d or e theories with self-conjugate pMticles we would 

define similarly 

(3.11 )[a-] = (;h) (h;a-), 
where h is the appropriate Coxeter number and analogou!'l statements hold ((mcemin~ 

the factor F(fJ)· 
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If one examines the S-matrix elements carefuily, it is clear that the pole structure 
is very complex, many of the bound state poles being hidden in a muitipole structure. 
We have not analysed these c;uefully, but it is expected that all these singularities 
;ue explicable in terms of singularities of Feynman loop diagrams in perturb:1.tioll 

theory(l5). \Ve give some examples in the next section, not for e~J) but for d~l) which 
is rather simpler to understand. 

The detailed structure of the eV) theory has been elucidated by Christe a..Ild 
:/\1 ussardo( 4). 

4. 	 OTHER THEORIES: BRIEF REMARKS 

In this section we shall briefly remark upon other affine Toda field theories(3). 
The simplest in many ways is the a(l) series. There, the exponents ;ue the set of 
integers 1,2,3, ... , n and the masses are 2sin rrk/(n + 1) . For n even every particle 
occurs with its conjugate partner, for n odd there is one self-conjugate particle (the 
hea.viest). The particles are associated with the Dynkin diagram in mass order as 
before: . 

::t .:; 	 3 '1. 

The couplings are given by the nice formula: 

llbc 
c	 = 0 if a + b + c 1= 0 mod n + 1 

= ~(1 - w ll )(l - w b)(l _ we) 
yn + 1 

if 	 a + b + c = 0 mod n + 1 

where w is an (n + l)th root of wlity. The fusing angles are given by 

8e a + b b 
b =--Jr a+ +c=n+l' 8~b = 2rr _ a + b a + b + c = 2( n + 1).

a n + 1 ' 	 , n + 1 Jr , 

The associated minimal S-matrix is that of Koberle and Swieca(16) with a coupling 
dependence conjectured by Arinshtein et al( 14). We shall not reproduce it here. 

The d~l) theories are more subtle. The exponents are 1,3,5, ... , 2n - 3, 11 - 1 with 
a set of masses 

k1r 
k = 1,2, ... ,n - 2. ( 4.1) /2, /2, 2J2sin 2(n _ 1) 

For n even, each particle is self-conjugate, for Tl odd the pair with equa.l mass are 
conjugates. Occasionally, for n = 1 mod 3, there is another particle mass degenerate 
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with the pair. However, it is self-conjugate. Attached to the Dynkin diagram the 
degenerate pair correspond loosely speaking to the spinor, conjuga.te-spinor represen­

tations of the algebra. For even n there is also a degenerate pair of conserved charges 
with spin n - 1. Each of these theories has a minima.! S-matrix associated with it, but 

we list only d~l) to illustrate certain general features. There, the masses arc v'2 for 
each of the three light particles (1, [', [") and v'6 for the heavy pn.rticle n. The light 

particles are distinguished by the conserved charges of spin 3. The three nOll-zero 

couplings are: 
-1llilc/'I'I" = h, II"" _~ c	 = }2' c - /2 

The minimal S-matrix has the form 

511·(8) = -[4] 

where [, [' are any two different light particles, and 

51/(8) = -[4] 
5/1.(0) = [1][3] 

511,,(0) = [4]3 ( 4.2) 

where we have used the same notation as before (3.11), with h = 6. The (3 dependence 

is derived consistently from the ansatz 

F/l.(13) = [-4 + b] 	 ( 4.3) 

the bootstrap and the conjecture (3.10). 

In this case it is relatively easy to check the claim about mnss renormalisation 
(eq(3. 7)) and the absence of production processes, at least to order 13 2 • It is also 
easy to identify the perturbative Feynman diagrams responsible for the second and 
third order poles in expressions (4.2). The idea, originally exploited by Coleman 
and Thun(17), is to identify diagrams which can be drawn as geometrical figures with 
internal lines contracted or on-shell. For example, the dou ble pole in 5,,, at 8 = i rr /2 
occurs in the box diagram 

~ 
~ 

1f [ 1.''t 
f'

'-13 
h 

1..' 

\~ 
where the internal angles sum to 2;r and hence corresponds to a pbn;u figure with the 
internal light particles on their mass shells. The triple pole in 5hh ;uises differently, 

from a pair of vertex corrections. 
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~h. 

~" [ .( Mf"j'J~ 
/' ~ 
1. 

~ 

j ~ 

Each triangle graph is singular (a simple pole) at 8 = 2rri/3, as evidenced by the 

internal angles summing to -;r when the light particles are on shell. 

Olwiously, the pole structure of the e~l) theory is more complex. Np.vertheless, the 

ideas are identical although it will require some ingenuity to spot the relevant diagrams 

(where are the twelfth order poles in 588(B), for example?). We are confident this will 

work although we have not checked rul possibilities explicitly. 

The cIn1
) theories are interesting for another reason which we mention briefly. 

Recall the Sine-Gordon theory has a spectrum of solitons (a pair) and breathers(18). 
In terms of the Lagrangian parameters, 

a 
V( ¢) = 2 COSl".. ¢ 

K. 

the soli ton mMS is given by 

mjo/iron == m = 8jQ'
,,2 

and the spectrum of breathers by 

ml: = 2m sin ( 1: K2 ) ( 4.4) 

where k = 1,2, .. . < 811'/"K2. For certain values of K. (actually just before a new 

breather enters the spectrum), there is known to be no reflection in the Sine-Gordon 

S-matrix. This Occurs just at the moment when 871/"K 2 reaches the next integer. At 
that point. ;.;2 = 8-rr / N say, and the breather masses are 

(br)2m sin 2N k = 1,2, ... ,N-l 

I.e. precisely those of the d~~l theory (including the soliton masses). Moreover, the 

S-matrix is essentinlly identical to the 'minimal' d~~l S-matrix. For example, 1<;2 = 2-rr 

corresponds to ;.;2 = 811'/3 and a spectmm of three light and one heavy particles in 

the mass rntio 1 to y'3. A comparison of the Faddeev-Korepin(19) S-matrix (and its 

extension to brenthers(20)), with the expression (4.2) reverus the identity, apart from 

signs in some of the [ - [' matrix elements which are not in any case fixed by the 

bootstrap. Remarkably, it seems that tuning the Sine-Gordon coupling constant" 
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yields S\l("(' , ~,:s i\'e lIIcmbcrs of it tUWI'[ of d!,I) millilIl,l! Ilwories. \\"" s tr()ll!.;I:· :-;u ' )1''("\ 

this is related to perturbed c = 1 conformal field theory, \\"c llote that the ("(wI 

lllodels d~,l) x d~I J /d~2) all have c = 1, and that pcrturbiltions of c = 1 theories ha\'(' 

been identified with Sine-Gordon theorr(~J) . As with the Ising-rV) relationship there 

remaills the probklll of underst;lndill~ the alnlle To<ia cOl1pli!l~ constilJlt d,'prnd"nc!', 

How are two theories related if their minimal (or ill the eilSI! uf Sinr·Gorcion . actllill) 

S-lIIatrices happell to agree? 

COMMENTS 

The major problem in relating this work to perturhed conformal field theory lies 

in understanding the role of the coupling constant /3. To obtain a \'altle of th e' (rntrill 

charge c small enough to lie ill one of the discrete srries of coset Illndcls Ho llowon d 

and ~vlansfield were forced to ilssume an analytic continuation to imil~inary p. The 

same conclusion has been rcached by Eguchi and YamY2), fro m a differellt startiIl~ 
point. It is not however clear that such a choice for f3 would make sen se, fro m 

the straightforward Lagrallgian field theory point of \'iew, to compute an S-lllatrix , 

For example, the bootstrap proposed by Zamolodchikov provides a m inimal S-mat ri x 

identical with the one we have described . However, an imilginary cOllpling in th e' 

postulated extrafactor F(fJ) would appear to alter the physical p o le st m cture. Thus. 

we <lre not really able to confirm that the theory described by cq( 3.1) a c tlIally coincides 

with Zilmolodchikov's conjecture for any value of tile cOll pling despite the fac t tll;)t 

it shares the s ame minimal S-matrix. 

On the ot.her hand, although we were motivated to stlldy thi s problem by the 

work 011 conformal field theories, the results we have obtilin,..d ;) rc independen t ly 

interesting. For example, although we have not mentioned it in thi s article so far, til(' 

a, d. e series is rather spccial,hcre as elsewhere (3 . ~J), ill the followine; :::e nsc . First ly. 

each of the Toda theories correspoIlding to a non-simply laced allj;cbra is oht a inablc 

as a truncation of a theory in the a, d, c series. Eilch of the s imply-bced throrics 

enjoys a minimill S-matrix in the sense we have drscribcd hut the S-matrix docs not 

respect the truncation. In fact, the non-simply laced tileories do Ilot hil\"(~ minimal 

S-matrices; for eXilrnple, the mosses fail to renormilli se uni versally. It srems that the 

degeneracies present in most of the a. d, c theories are ilct ually import :-t nt; if they arc 

remo\'ed by trunciltion the nice features tend to di s ilppcar , In the !lon- simply bert! 

theories the cOllpling constant dependence must playa morc !'i~ l1 j fic :1.Ilt rolc in tIlt' 

bootstrap. There are many questions for the future b es ides e111eidatin~ the CO Illlcctioll 

with conformal fi e ld theory. 
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